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Abstract

A simple nonlinear model for flow transfer in a river stretch is
obtained through several steps: first the diffusive wave model,
a quasilinear partial derivative equation, is linearized around
equilibrium points, corresponding to the hydraulic equilibrium
regimes. Secondly, the moment matching method is used to
approximate the linear PDE by a linear ODE with a time de-
lay indexed by the value of the reference discharge. A single
nonlinear model is then derived analytically from this family of
linear models. The proposed model can reproduce the nonlin-
ear behavior of the time-delay with discharge variations. This
simple nonlinear model is inserted into a Internal Model Con-
troller framework in order to obtain a nonlinear controller to
control river flow. Simulations demonstrates the performance
of the nonlinear controller compared to a linear one.

1 Introduction

Automatic control is considered as an possible effective means
to improve water management of dam-river systems (where a
dam is used to control the discharge at some point in the river
downstream). In this perspective, it is important to have ac-
curate models of flow transfer. This introduction presents the
possible interests of the paper first for the presented application
(water management) then in a more general view for control
theory.

Modelling of the flow routing in a river stretch has been the
subject of numerous publications since the 1950’s. Weinman
and Laurenson [12] presented a comprehensive review of ap-
proximate flow routing methods and show that all available
methods are derived from either kinematic wave or diffusion
analogy models.

Qualitatively, one of the important (nonlinear) feature of the
behavior of a river stretch is the presence of atime-delay(in-
duced by the propagation phenomenon)that depends on the
discharge1 with important variations, especially for low dis-
charges.

Different linear models have been developed for simulation

1The discharge is the quantity of water through a vertical section per unit
of time.

purposes [10, 4]. Their main limitation is their narrow domain
of validity: they are only valid if the discharge remains close
to the point of linearization. Other nonlinear models were also
developed to replicate the nonlinear feature of flow transfer in
a river [2]; however, they incorporate aconstanttime-delay,
which cannot match correctly the full PDE model.

Some nonlinear models have been recently developed, which
represent correctly the time-delay variation with the discharge,
but these models were designed for simulation purposes, and
are not described in a manner that would allow controller de-
sign. For example, Camacho and Lees [3] used a close ap-
proach to the one presented here, but the model obtained is of
fractional order, and the order changes as the discharge varies.
Such a model cannot be used to design a controller with classi-
cal nonlinear control methods.

In the present article, we obtain a “simple” nonlinear model
for the discharge transfer in a river from a knowledge-based
model (diffusive wave model). It has fixed order, but contains
a variable time-delay. This model should be adapted to the case
of rivers with low flows, where the delay varies a lot with the
discharge. An appealing feature of a model is the fact that its
parameters are directly related to channel characteristics and
hydraulic conditions. Simplicity also enables calculation in
limited time, which gives perspectives in terms of utilization
of the model in real-time, for example for forecasting.

The final objective of this work is the design of strategies to
control the flow along the river via a dam located upstream.
This problem has mainly been considered in the linear context
[11]. A first attempt to use the obtained nonlinear model is
presented at the end of the paper, with its inclusion in an In-
ternal Model Controller framework, to deal with the variable
time-delay. The proposed nonlinear controller leads to a better
performance than a similar linear one.

The nonlinear model is obtained through several steps. Section
2 briefly presents the control problem. Then, the diffusive wave
model, a quasilinear partial derivative equation, is linearized
around equilibrium points, corresponding to the hydraulic per-
manent regimes. This linear PDE is then approximated by a
linear ODE with delay using the moment matching method,
which leads to a family of linear models indexed by the value
of the constant discharge around which they are valid. These
two steps are carried out in section 3.

A single nonlinear model is then derived analytically from



these linear models; around each linearization point, it coin-
cides with the corresponding linear model. This can be seen as
the main result of the paper, and is presented in section 4.

Section 5 is devoted to validate the obtained nonlinear model,
by comparing it, through simulations, to the initial diffusive
wave model; it turns out to be able to adequately reproduce the
nonlinear behavior of the time-delay with discharge variations.

We end, in section 6, with a first control application of the pro-
posed model: we design a nonlinear IMC controller using this
nonlinear model to control the flow in a river. This controller
is stable for a large range of discharges and leads to a better
performance than a linear one.

Notations: The acronyms ODE and PDE stand respectively
for Ordinary Differential Equation and Partial Differential
Equation and IMC stands for Internal Model Control.

2 Control problem

The system considered in this paper is a controlled river where
the action variable is the upstream discharge and the measured
variable is the downstream discharge (see figure 1). The river
is used to deliver water from the upstream dam to various con-
sumers pumping water along the river (farmers irrigating their
fields, industries, etc.). The objective of the controller is to
keep the measured downstream discharge close to a target de-
spite unmeasured users’ withdrawals.

?
y(t) = Q(X, t)

-
w

X

-
u(t) = Q(0, t)

dam
river

Figure 1: Dam-river system considered

In other terms, the control objective is to use the upstream dis-
chargeu in order to keep the downstream dischargey as con-
stant as possible, which means that the control should attenuate
the unmeasured perturbationsw. This is a problem of regula-
tion or desensitivity.

We now focus on the modelling part.

3 Obtaining a family of linear ODEs from a
quasilinear PDE

3.1 The quasilinear PDE: diffusive wave model

The diffusive wave equation is a quasilinear partial differential
equation obtained by simplification of Saint-Venant model [7]:

∂Q

∂t
+ Θ(Q)

∂Q

∂x
− E(Q)

∂2Q

∂x2
= 0 (1)

with Q(x, t) the discharge (m3/s),Θ(Q) the celerity (m/s) and
E(Q, x) the diffusion (m2/s).

The boundary conditions are given byQ(0, t) = u(t),
limx→∞

∂Q(x,t)
∂x = 0. The controlled output isy(t) = Q(X, t),

whereX is the length of the river stretch.

Θ(Q, x) andE(Q, x) have relatively complex expressions in
the general case, but simpler expressions are available for spe-
cific river geometry. Assuming uniform geometry, and if we
neglect the effect of backwater curves,Θ and E can be ex-
pressed as functions of the dischargeQ. In particular for a
rectangular large uniform geometry (slopeI, width L, Man-
ning friction coefficientn), Θ andE are then given by:

Θ(Q) =
5I0.3Q0.4

3L0.4n0.6
(2)

E(Q) =
Q

2LI
(3)

The above expressions can be replaced by more complicated
functions ofQ (for example functions obtained by identifica-
tion in case of a more realistic geometry [5]), without changing
the method exposed below.

3.2 The linear PDE: Hayami model

The linearization of equation (1) around a constant reference
dischargeQe 6= 0 (Q = Qe + δQ) gives the Hayami equation:

∂δQ

∂t
+ Θe

∂δQ

∂x
− Ee

∂2δQ

∂x2
= 0 (4)

with Θe = Θ(Qe) andEe = E(Qe).

Considering the boundary conditionsu(t) = δQ(0, t) and
limx→∞

∂δQ
∂x = 0, and the measured outputy(t) = δQ(X, t),

the linear PDE (4) with can be represented by an irrational
transfer function in the Laplace domain. It is the Hayami trans-
fer function, relating upstream and downstream discharge vari-
ationsy(s) = FHayami(s)u(s), where:

FHayami(s) = e
Θe−

√
Θ2

e+4Ees

2Ee
X (5)

with s the Laplace variable [s−1].

3.3 Approximation of the linear PDE by a linear ODE

Inverse Laplace transform tables give the impulse response of
Hayami transfer function (5):

L−1 [FHayami(s)] =
X

2
√

πEet3
e−

(X−Θet)2

4Eet (6)

It is very close to the one of a second order with delay (see
figure 2):

F2r(s) =
Ge−sτ

1 + Ss + Ps2
(7)



0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7
x 10

−5

time (h)

di
sc

ha
rg

e 
Q

 (
m

3 /s
)

Figure 2: Impulse responses of Hayami transfer function (5)
(—) and of the second order with delay (7) (– –)

We use the moment matching method to fit the frequency re-
sponse of the transfer functions (5) and (7).

The purpose of the moment matching method is to equate the
low order moments of two different models. It is a way to
reproduce the low frequency behavior of a given transfer func-
tion, which is the main frequency range encountered in natural
systems. This method is used to identify the four moments of
the transfer functionF2r(s) to those of the Hayami transfer
function.

Equating the first four impulse moments of both transfer func-
tions and solving for the unknownsS, P and τ leads to an
polynomial equation of degree 3, that can be solved analyti-
cally [8]. Following a hydraulic classification of rivers [1], the
non-dimensional coefficientχ = 3XΘe

10Ee
characterizes the be-

havior of the river for flow transfer. It is assumed in the follow-
ing thatχ > 1.35, which leads to identifying a stable second
order transfer function with delay (see [8]). In this case, the
parameters of the second order transfer function with delay are
given by:

G = 1 (8)

τ =
X

Θe
− S (9)

S = 2

√
2XEe

Θ3
e

cos(φ/3) (10)

P =
2XEe

Θ3
e

(
1− 3Ee

SΘ2
e

)
(11)

φ =
π

2
+ arctan

√
9Ee

2XΘe − 9Ee
(12)

It should be noted that in the majority of cases, rivers are in the
rangeχ > 1.35, and are therefore well represented by a second
order with delay model.

4 Obtaining a nonlinear ODE from a family of
linear ODEs

We are now in the situation where we have a family of lin-
ear models, indexed by the valueQe of the (constant) dis-
charge around which they are valid. A natural question to ask
is whether it is possible to find a single nonlinear system that
would have these linear systems as linear approximation at a
suitable family of operating points.

The problem can be posed slightly more generally as follows :
given a family of delay differential systems(ΣLλ)λ∈IR indexed
by a scalar parameterλ :

ΣLλ

{
Ẋ(t) = A(λ)X(t) + B(λ)U(t)
Y (t) = C(λ)X(t− τ(λ)) ,

(13)

does there exist a nonlinear system

ξ̇(t) = f(ξ(t), u(t))
η(t) = h( ξ(t− σ(ξ)) ) ,

(14)

and a curveλ 7→ ξλ
e of equilibria, i.e.

f(ξλ
e , uλ

e ) = 0 (15)

such that each systemΣLλ be the linearized system of (14)
around(ξλ

e , uλ
e ) ?

This question is difficult in the general case. It is addressed
here in the case of the linear systems obtained in section 3,
after considering the problem of linearization of a system with
variable delay.

4.1 Linearization of a system with variable delay

We restrict the analysis to the case of an equilibrium point, i.e.
ξ̄ andū are constant andf(ξ̄, ū) = 0.

Lemma 1 Consider an equilibrium pointf(ξ̄, ū) = 0 and the
stable time invariant linear system with delay

δξ̇ = Aδξ + Bδu (16)

δη(t) = Cδξ(t− σ(ξ̄)) (17)

with

A =
∂f

∂x
(ξ̄, ū) , B =

∂f

∂u
(ξ̄, ū) , C =

∂h

∂x
(ξ̄) . (18)

Then the outputη(t) of the control system (14) starting at̄ξ
with controlt 7→ ū + δu(t) is given by

η(t) = h(ζ̄(t− σ(ζ̄(t)))) + δη(t) (19)

where δη(t) is the output of (16) starting at 0 with control
δu(t).



4.2 Application to the family of linear models obtained in
section 3.3

The model obtained by the moment matching method from the
model of Hayami has parameters that depend explicitly on the
reference dischargeQe, sinceΘe andEe depend onQe. We
can therefore apply the results of section 4.

The flow transfer in the river is now represented by a second
order with delay transfer functionF2r(s) = e−τs

1+Ss+Ps2 with
τ , S andP given by the equations (9–12). Choosingδx =
[δ̇y, δy]T as state variables for the system without delay, this
linear system can be represented in state space by:

{ ˙δx(t) = A(λ)δx(t) + B(λ)δu(t)
δy(t) = C(λ)δx(t− τ(λ))

(20)

with A(λ) =

(
− S(λ)

P (λ) − 1
P (λ)

1 0

)
, B(λ) =

( 1
P (λ)

0

)
,

C(λ) =
(

0 1
)

andλ = Qe.

Lemma 2 Consider the nonlinear system described by
{

ẋ(t) = A(x2(t))x(t) + B(x2(t))u(t)
y(t) = x2(t− τ(x2(t)))

(21)

with x = (x1 x2)T , A(x2) and B(x2) given
by equations above, τ(x2) = X

Θ(x2)
− S(x2),

S(x2) = 2
√

2XE(x2)
Θ(x2)3

cos(φ(x2)/3), P (x2) =
2XE(x2)
Θ(x2)3

(
1− 3E(x2)

Θ(x2)2S(x2)

)
, φ(x2) = π

2 +

arctan
√

9E(x2)
2XΘ(x2)−9E(x2)

, Θ(x) andE(x) given by equations

(2) and (3), the initial state given byx0(t) = [0 Q0(t)]T ,
for t ∈ [−τmax, 0], whereτmax is the maximum value of the
delay, obtained in our case for the minimum value of the input
discharge.

Then each linearization of (21) around an equilibrium trajec-
tory ue = x2e = Qe coincides with the linear system (20)
whereλ = Qe.

Proof: The linearization of (21) around(xe, ue) leads to :

∂f

∂x
(xe, ue) =

(
a11 a12

1 0

)

with a11 = − S(x2e)
P (x2e) anda12 = − 1

P (x2e) +(ue−x2e)
P ′(x2e)
P 2(x2e)−

x1e
S′(x2e)P (x2e)−S(x2e)P ′(x2e)

P 2(x2e) . Sinceu2 = x2e andx1e = 0,
one recovers the expression (20) forx2e = λ. We also have:

∂f

∂u
(xe, ue) =

( 1
P (x2e)

0

)

The other terms are obtained in the same way.

Remark: This model is only valid for slow variations of the
statex. It is also an underlying hypothesis for the diffusive

wave model. If the discharge varies very quickly, the celerity
and the diffusion depending on the discharge would certainly
give results different from physical observations. Indeed, the
diffusive wave equation is obtained by neglecting inertia terms
in the dynamic equation of Saint-Venant’s model [9]. These in-
ertia terms contain∂Q

∂t , which is not negligible if the discharge
varies quickly.

5 Nonlinear model validation

The nonlinear model with delay obtained is rather particular,
as the output delay depends on the state of the non delayed
system. We will first give the conditions onτ such that the
system is well-posed, then we will compare it in simulation
with the original PDE nonlinear model.

5.1 Well-posedness

The observation equation of the nonlinear system with delay
(21) is well-posed if and only if

τ(x2(t)) < t

which implies
τ̇ < 1

This can be written

x1(t)τ ′(x2(t)) < 1 (22)

whereτ ′ = dτ(x)
dx .

The condition (22) can be checked at each timet.

5.2 Numerical implementation

The system being composed of a nonlinear system with a delay
in output, the nonlinear system without delay is first solved
with a Runge-Kutta method of order 4, and the delayed output
is computed in a second step.

5.3 Nonlinear model simulations

Validation is done by comparing the output of the model pro-
posed with the one of the diffusive wave model for the same
input data. The diffusive wave equation is solved using a semi-
implicit finite difference scheme (Crank-Nicholson scheme).
We also compare the output of the proposed model to the one
given by the linear Hayami model obtained by linearization
around the initial dischargeu(0). The computations are done
for a river of lengthX = 10 km, width L = 8 m, Manning
n = 0.05, slopeI = 0.0004.

The nonlinear model with delay reproduces well the behav-
ior of the river, and is very close to the diffusive wave model
(see figure 3). One notices that the main characteristic of these
rivers for low flows, i.e. the variation of the delay with the dis-
charge, is taken well into account by the nonlinear model with
delay, whereas this is not the case for the linear model.
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Figure 3: Comparison between the diffusive wave model (yDW

—), the nonlinear model of second order with delay (yNL – –)
and the linear PDE model obtained forQe = u(0) (ylin –.–)

6 Nonlinear IMC controller design

The proposed model is used to design a nonlinear IMC con-
troller for the dam-river system. Adding an additive output
perturbationw to the model (representing water withdrawals),
leads to:

{
ẋ(t) = A(x2(t))x(t) + B(x2(t))u(t)
y(t) = x2(t− τ(x2(t))) + w(t) (23)

The control objectives as stated in section 2 are then twofold:

• reject unknown output perturbationsw

• track a reference signalyc

This should be valid on a large discharge range, since the re-
leased discharge changes a lot during the irrigation season.

6.1 Nonlinear IMC controller design

The design is inspired from the Internal Model Controller al-
ready developed in a linear framework [6].

The IMC based architecture enables an independent estimation
of withdrawal w. The closed-loop command is obtained by
comparing the measured outputy to the predicted output of the
internal model̂y. The difference represents the internal model
estimation of unpredicted withdrawal̂w. This estimation is fil-
tered by a linear filterf(s). The filter is designed to compen-
sate for the discrepancies between the predicted value of per-
turbationsŵ and the actual onew, due to model uncertainties.
If the nominal model was a perfect description of the system,
the effect of the withdrawal would be exactly accounted for by
the control scheme and the predicted value would be perfectly
accurate.

Once a model is chosen, the choice of controller parameter is
then reduced to the choice of the robustness filter. For simplic-
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Figure 4: IMC controller architecture

ity, we chose a first order filterf(s), so there is only one param-
eter to tune, the filter time constant. This constant is evaluated
with the linear robust design procedure described in [6]. This
leads to a rather smooth linear controller, which is robust sta-
ble for large variations of the reference discharge. The use of a
nonlinear model instead of a linear one is expected to increase
the performance of the controlled system, since model errors
should be reduced. This procedure can be extended to the case
of intermediate discharge measurements [6] (in this case, the
system becomes SIMO).

It should be noted that the time-delay of the system varies from
43 min for Qe = 10 m3/s to 227 min forQe = 1 m3/s.
The filter obtained for the linear controller is a first order fil-
ter f(s) = 1

1+Ts with time constantT = 195 min. For the
nonlinear controller, the filter is chosen equal to 1 (no filter-
ing).

6.2 Simulations

The controlled system is simulated with the original quasilinear
PDE over a large range of discharges, with unknown perturba-
tions and reference changes at various operating points. The
figure 5 shows the ability of the nonlinear IMC controller to re-
ject unknown perturbations and track reference, compared to a
linear IMC controller. The use of a nonlinear model enables to
greatly improve the real-time performance: the nonlinear con-
troller reacts from 4 to 13 hours quicker than the linear one.
This can have important implications in terms of water man-
agement. This increase in real-time performance is mainly due
to a better estimation of perturbations. As a matter of fact,
the error in estimated perturbationŝw is much lower for the
nonlinear controller (see figure 6). The important error in the
linear case necessitates a strong filtering in order to guarantee
stability for a wide range of time-delays. This leads to a degra-
dation of the real-time performance, which can be significantly
enhanced with a nonlinear model.

7 Conclusion

We described in this paper a way to obtain a simple ODE
nonlinear model from a quasilinear PDE. After linearization
around a reference regime, the moment matching method is
applied to the linear PDE in order to get an approximation of
its irrational transfer function. Then a single nonlinear model
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is obtained from the family of linear ones indexed by the value
of the discharge around which they were linearized.

The obtained nonlinear model has the advantage to be directly
related to physical parameters, as the length of the river stretch
X, the slopeI, Manning coefficientn and the widthL. This
model can be used for many different purposes:

• For quick simulation purposes, as it is easier to implement
than a complete numerical resolution of the initial partial
differential equation,

• For identification purposes: a model-based identification
usually necessitates numerous simulations of the model,
which is time-consuming. A simpler model can be simu-
lated more quickly,

• For controller design, as some dams located upstream can
be used to control the discharge downstream of the river.

We used the proposed model to design a nonlinear IMC con-
troller. It has been tested in simulation with the quasilinear
PDE, and appeared to be able to function on a wide range of
discharges. The use of a nonlinear model enables to signifi-
cantly increase the performance of a linear IMC controller.
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