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models, Internal Model Control of validity: they are only valid if the discharge remains close
to the point of linearization. Other nonlinear models were also
Abstract developed to replicate the nonlinear feature of flow transfer in

a river [2]; however, they incorporate @nstanttime-delay,
A simple nonlinear model for flow transfer in a river stretch ighich cannot match correctly the full PDE model.
obtained through several steps: first the diffusive wave modg
a quasilinear partial derivative equation, is linearized arou
equilibrium points, corresponding to the hydraulic equilibriu
regimes. Secondly, the moment matching method is usecriB

me nonlinear models have been recently developed, which
resent correctly the time-delay variation with the discharge,
ut these models were designed for simulation purposes, and
) X X ) X R not described in a manner that would allow controller de-
app_roxmate the linear PDE by a linear OD_E with a tlme.d ign. For example, Camacho and Lees [3] used a close ap-
lay indexed by the value of the reference discharge. A sin oach to the one presented here, but the model obtained is of

lr)onllnearc;ntlade_:_lhs then derlvc;ed aréallytlcally frorg this fsmny ractional order, and the order changes as the discharge varies.
Inear models. | ne proposed model can reproduce _t € NONYYich a model cannot be used to design a controller with classi-
ear behavior of the time-delay with discharge variations. Thi§ ,oniinear control methods

simple nonlinear model is inserted into a Internal Model Con-

troller framework in order to obtain a nonlinear controller té the present article, we obtain a “simple” nonlinear model
control river flow. Simulations demonstrates the performanées the discharge transfer in a river from a knowledge-based
of the nonlinear controller compared to a linear one. model (diffusive wave model). It has fixed order, but contains
a variable time-delay. This model should be adapted to the case
of rivers with low flows, where the delay varies a lot with the
discharge. An appealing feature of a model is the fact that its

Automatic control is considered as an possible effective mediffameters are directly related to channel characteristics and
to improve water management Of dam_river Systems (Wher@wraulic Conditions. SImplICIty alSO enableS Calculation in
dam is used to control the discharge at some point in the rifgpited time, which gives perspectives in terms of utilization
downstream). In this perspective, it is important to have a@f the modelin real-time, for example for forecasting.

curat_e mpdels of flow transfer._This introduction presen_ts th‘ﬁe final objective of this work is the design of strategies to
possible interests of the paper first for the presented applicatiQyhtrol the flow along the river via a dam located upstream.

(water management) then in a more general view for contrfhis problem has mainly been considered in the linear context
theory. [11]. A first attempt to use the obtained nonlinear model is

Modelling of the flow routing in a river stretch has been thBresented at the end of the paper, with its inclusion in an In-
Subject of numerous pub"cations since the 1950’s. Weinmmfnal MOdel Controller framework, to deal W|th the Va.“a.ble
and Laurenson [12] presented a comprehensive review of pi€-delay. The proposed nonlinear controller leads to a better
proximate flow routing methods and show that all availabRerformance than a similar linear one.

methods are derived from either kinematic wave or diffusiofhe nonlinear model is obtained through several steps. Section
analogy models. 2 briefly presents the control problem. Then, the diffusive wave

Qualitatively, one of the important (nonlinear) feature of th&0del, a quasilinear partial derivative equation, is linearized
behavior of a river stretch is the presence dinae-delay(in- around equilibrium points, corresponding to the hydraulic per-
duced by the propagation phenomendmt depends on the Manent regimes. This linear PDE is then approximated by a

dischargé with important variations, especially for low dis-linear ODE with delay using the moment matching method,
charges. which leads to a family of linear models indexed by the value

_ _ _ ~of the constant discharge around which they are valid. These
Different linear models have been developed for simulatigg,, steps are carried out in section 3.

1 Introduction

IThe discharge is the quantity of water through a vertical section per ufit Single nonlinear model is then derived analytically from
of time.



these linear models; around each linearization point, it coiwith Q(z,t) the discharge (is), ©(Q) the celerity (m/s) and
cides with the corresponding linear model. This can be seenfa&), ) the diffusion (n#/s).

the main result of the paper, and is presented in section 4. The boundary conditions are given b9(0,) — u(t),

Section 5 is devoted to validate the obtained nonlinear moded,, .., 29(=:Y) — . The controlled output ig(t) = Q(X, t),
by comparing it, through simulations, to the initial diffusivevhereX is the length of the river stretch.

wave model; it turns out to be able to adequately reproduce th? ) i )
nonlinear behavior of the time-delay with discharge variation%. Q, ) and B(Q, x) have relatively complex expressions in

the general case, but simpler expressions are available for spe-
We end, in section 6, with a first control application of the praific river geometry. Assuming uniform geometry, and if we
posed model: we design a nonlinear IMC controller using thigglect the effect of backwater curve8,and E can be ex-
nonlinear model to control the flow in a river. This controllepressed as functions of the discha@e In particular for a

is stable for a large range of discharges and leads to a beft@ttangular large uniform geometry (slopewidth L, Man-

performance than a linear one. ning friction coefficientr), © andE are then given by:
5]0.3@0.4
. . 0(Q) = 270.4.0.6 (2)
Notations: The acronyms ODE and PDE stand respectively 3L%4n
for Ordinary Differential Equation and Partial Differential BE@Q) = Q A3)
Equation and IMC stands for Internal Model Control. 2L1

The above expressions can be replaced by more complicated
functions of@ (for example functions obtained by identifica-
The system considered in this paper is a controlled river whédi@n in case of a more realistic geometry [5]), without changing
the action variable is the upstream discharge and the meastif@gmethod exposed below.

variable is the downstream discharge (see figure 1). The river

is used to deliver water from the upstream dam to various c@2 The linear PDE: Hayami model

sumers pumping water along the river (farmers irrigating their o ]
fields, industries, etc.). The objective of the controller is thhe linearization of equation (1) around a constant reference

keep the measured downstream discharge close to a targed#fgeharg&l. 7 0 (@ = Q. + 0Q) gives the Hayami equation:
spite unmeasured users’ withdrawals.
P 2Q 95Q . 0%6Q

2 Control problem

e - FE. = 4
ot +0 ox 0x? 0 “)
w
u(t) = Q(0,t)  river l with ©, = ©(Q.) andE. = E(Q.).
dam|
X y(t) = Q(x,t)  Considering the boundary conditiongt) = ¢Q(0,¢) and
lim, . 2% = 0, and the measured outpyft) = 5Q(X, t),
the linear PDE (4) with can be represented by an irrational
transfer function in the Laplace domain. Itis the Hayami trans-
Figure 1: Dam-river system considered fer function, relating upstream and downstream discharge vari-
ationsy(s) = Frayam(s)u(s), where:
In other terms, the control objective is to use the upstream dis- 6. \/o%1iE.:
chargeu in order to keep the downstream dischaggas con- Frayami(s) =€~ 2B (5)

stant as possible, which means that the control should attenuate
the unmeasured perturbatioms This is a problem of regula-

. o with s the Laplace variable {3].
tion or desensitivity. s P (<]

We now focus on the modelling part. 3.3 Approximation of the linear PDE by a linear ODE

Inverse Laplace transform tables give the impulse response of

3 Obtaining a family of linear ODEs from a Hayami transfer function (5):

quasilinear PDE
-1 X _(X—0ct)?
- Lo . . — Eot
3.1 The quasilinear PDE: diffusive wave model L7 [FHayami(s)] = NeTo 7 (6)

The diffusive wave equation is a quasilinear partial differenti?l .
i

equation obtained by simplification of Saint-Venant model [7 .-g'jr;’ez'}( close to the one of a second order with delay (see

Ge—ST

02 =
@ 1+ Ss+ Ps?

Da?

9Q
ot

+O@Q52 - BQ)

F27‘(S) (7)

=0 1)



4 Obtaining a nonlinear ODE from a family of
linear ODEs

We are now in the situation where we have a family of lin-
ear models, indexed by the valdg. of the (constant) dis-
charge around which they are valid. A natural question to ask
is whether it is possible to find a single nonlinear system that
would have these linear systems as linear approximation at a
suitable family of operating points.

discharge Q (m%/s)

The problem can be posed slightly more generally as follows :
T e v w W % % w given a family of delay differential systeniE L ) e g indexed

by a scalar parametexr:
Figure 2: Impulse responses of Hayami transfer function (5)

(—) and of the second order with delay (7) (- -) Sy { )158 = ég;\\;ﬁg) + (f)()A)U(t) (13)

does there exist a nonlinear system

We use the moment matching method to fit the frequency re- ) = flE®),ult) (14)
sponse of the transfer functions (5) and (7). nt) = h(&lt—o(8))

The purpose of the moment matching method is to equate Q}ﬁj
low order moments of two different models. It is a way to
reproduce the low frequency behavior of a given transfer func- GRS
tion, which is the main frequency range encountered in natural ere
systems. This method is used to identify the four moments

the transfer functionFs,.(s) to those of the Hayami transfer
function.

a curve\ — & of equilibria, i.e.
=0 (15)

éﬂch that each systedL, be the linearized system of (14)
around(&2, u)) ?

e’ €

. , . This question is difficult in the general case. It is addressed
Equating the first four impulse moments of both transfer funﬁére in the case of the linear systems obtained in section 3,

tions anq solvmg' for the unknownS, P andr leads to an after considering the problem of linearization of a system with
polynomial equation of degree 3, that can be solved anal%ﬁriable delay

cally [8]. Following a hydraulic classification of rivers [1], the
non-dimensional coefficient = 3X©- characterizes the be-

10E¢3. i . . - - B
havior of the river for flow transfer. Itis assumed in the follow4-1 Linearization of a system with variable delay

ing thatx > 1.35, which leads to identifying a stable secongye restrict the analysis to the case of an equilibrium point, i.e.
order transfer function with delay (see [8]). In this case, the,qz are constant and(é, @) = 0.

parameters of the second order transfer function with delay are

given by: ~
Lemma 1 Consider an equilibrium poinf (¢, @) = 0 and the
stable time invariant linear system with delay
G =1 8) .
X 06 = Aé + Biu (16)
- & -5 © 3
T T e an(t) = CoE(t—o(€) (17)
2XE, ;
S = 2 o cos(¢/3) (10) With
of - _ of - _ Oh , -
_ 2XE. ([, 3E. A= =(¢u, B = —(¢u, C = —(§.(18)
P = o (1 S®§> (11) Ox ou Ox
s 9F ; z
= = e Then the outpug(t) of the control system (14) starting &t
¢ 5 + arctan 5X6. _ OF. 12) puty(t) Y (14) ga

with controlt — @ + du(t) is given by

n(t) = h((t—a(((t)) + n(t) (19)
It should be noted that in the majority of cases, rivers are in the
rangey > 1.35, and are therefore well represented by a secoiere d7(t) is the output of (16) starting at 0 with control
order with delay model. du(t).



4.2 Application to the family of linear models obtained in
section 3.3

The model obtained by the moment matching method from tg

wave model. If the discharge varies very quickly, the celerity
and the diffusion depending on the discharge would certainly
ive results different from physical observations. Indeed, the
fifusive wave equation is obtained by neglecting inertia terms

model of Hayami has parameters that depend explicitly on e dynamic equation of Saint-Venant's model [9]. These in-

reference discharg®., since®, and E. depend onp.. We
can therefore apply the results of section 4.

ertia terms contai
varies quickly.

1%%, which is not negligible if the discharge

The flow transfer in the river is now represented by a second

order with delay transfer functiof,.(s) =
7, S and P given by the equations (9-12). Choosifig =

TS .
1+Ss+Ps? with

5 Nonlinear model validation

[0y, y]T as state variables for the system without delay, thid'e nonlinear model with delay obtained is rather particular,

linear system can be represented in state space by:

{ 6z (t) = AN)dz(t) + B(N)du(t) (20)

5y(t) = C(N)da(t — (V)

5 oy
i — POx POx —
WIthA(/\)—( 1) 0)>,B()\)—( 0 >
CAN=(0 1)andr=Q.

Lemma 2 Consider the nonlinear system described by

(ztppspno o
with = = (x122)7, A(x2) and B(wzy) given
by equations above, 7(z2) = gl — S(w2),
S(x2) = 2 23523”2) cos(P(z2)/3), Plzz) =
S (1 - @(25)2?8@)), ¢(2) = 3+

as the output delay depends on the state of the non delayed
system. We will first give the conditions onsuch that the
system is well-posed, then we will compare it in simulation
with the original PDE nonlinear model.

5.1 Well-posedness

The observation equation of the nonlinear system with delay
(21) is well-posed if and only if

T(22(t)) < t
which implies
T<1
This can be written
1 ()7 (22(t)) < 1 (22)

dr(z)

wherer’ =

0F (22) , . The condition (22) can be checked at each time
arctan \/ 5xer. 55 ©(z) and E(z) given by equations

(2) and (3), the initial state given byy(t) = [0 Qo(t)]7,

fort € [—Tmaa, 0], Wherer,,q, is the maximum value of the

5.2 Numerical implementation

delay, obtained in our case for the minimum value of the inplihe system being composed of a nonlinear system with a delay

discharge.

Then each linearization of (21) around an equilibrium traje |
tory u, = z2. = Q. coincides with the linear system (20)

where) = Q..

Proof: The linearization of (21) aroung., u.) leads to :

ﬁ(m Ue) = air a2
51‘ € e) — 1 0

with axy = ~ 5225 andasa = — 5y (ue —ac) s -
o S w20 ) Pae) —S(@2e) P'(2¢) - Singeyy = a9, anday, = 0,

P2(z2¢)

one recovers the expression (20) fgr = A. We also have:

The other terms are obtained in the same way.

c.

in output, the nonlinear system without delay is first solved
with a Runge-Kutta method of order 4, and the delayed output
s computed in a second step.

5.3 Nonlinear model simulations

Validation is done by comparing the output of the model pro-
posed with the one of the diffusive wave model for the same
input data. The diffusive wave equation is solved using a semi-
implicit finite difference scheme (Crank-Nicholson scheme).
We also compare the output of the proposed model to the one
given by the linear Hayami model obtained by linearization
around the initial discharge(0). The computations are done
for a river of lengthX = 10 km, width L = 8 m, Manning

n = 0.05, slopel = 0.0004.

The nonlinear model with delay reproduces well the behav-
ior of the river, and is very close to the diffusive wave model
(see figure 3). One notices that the main characteristic of these
rivers for low flows, i.e. the variation of the delay with the dis-

Remark: This model is only valid for slow variations of thecharge, is taken well into account by the nonlinear model with
statex. It is also an underlying hypothesis for the diffusivaelelay, whereas this is not the case for the linear model.
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Figure 4: IMC controller architecture

,,mﬁim 8 = % ity, we chose a first order filtefi(s), so there is only one param-
eter to tune, the filter time constant. This constant is evaluated
Figure 3: Comparison between the diffusive wave moglgl¢  with the linear robust design procedure described in [6]. This
—), the nonlinear model of second order with delay { ——) leads to a rather smooth linear controller, which is robust sta-
and the linear PDE model obtained 1@t = u(0) (yiin ——) ble for large variations of the reference discharge. The use of a
nonlinear model instead of a linear one is expected to increase
the performance of the controlled system, since model errors
should be reduced. This procedure can be extended to the case
of intermediate discharge measurements [6] (in this case, the
The proposed model is used to design a nonlinear IMC co¥¥stem becomes SIMO).
troller for the dam-river system. Adding an additive outpyt shoyld be noted that the time-delay of the system varies from

perturbationw to the model (representing water withdrawalsy3 min for Q. = 10 m3/s to 227 min forQ. = 1 md/s.

leads to: The filter obtained for the linear controller is a first order fil-

6 Nonlinear IMC controller design

i(t) = A(xa(t)z(t) + B(ao(t))u(t) ter f(s) = 1+1Ts with time constanfl” = 195 min. For the
y(t) = ot — T(x2(t))) + w(t) (23) ir:%r)llinear controller, the filter is chosen equal to 1 (no filter-

The control objectives as stated in section 2 are then twofold:
6.2 Simulations

reject unknown output perturbations L . - -
° el putp The controlled system is simulated with the original quasilinear

e track a reference signal PDE over a large range of discharges, with unknown perturba-
tions and reference changes at various operating points. The
This should be valid on a large discharge range, since the figure 5 shows the ability of the nonlinear IMC controller to re-

leased discharge changes a lot during the irrigation season.ject unknown perturbations and track reference, compared to a
linear IMC controller. The use of a nonlinear model enables to

greatly improve the real-time performance: the nonlinear con-
troller reacts from 4 to 13 hours quicker than the linear one.
The design is inspired from the Internal Model Controller alFhis can have important implications in terms of water man-
ready developed in a linear framework [6]. agement. This increase in real-time performance is mainly due

. _ . __to a better estimation of perturbations. As a matter of fact,
The IMC based architecture enables an independent estimafjon . or in estimated perturbatiorisis much lower for the

of Wlthd'l’awalw. The cldosed-loophcomrzgndds Obtam?dh b}‘lonlinear controller (see figure 6). The important error in the
pompalrlng td eAm_?ﬁsu(;% outputo the pre 'Ctﬁ ,OUtpUt? t gli[lear case necessitates a strong filtering in order to guarantee
internal model. The difference represents the internal mo § ability for a wide range of time-delays. This leads to a degra-

estimation (_)f unpr_edicted Withdr_awéz!. This_estimation is fil- dation of the real-time performance, which can be significantly
tered by a linear filteyf (s). The filter is designed to COMPeN-g . hanced with a nonlinear model

sate for the discrepancies between the predicted value of per-
turbationsw and the actual one, due to model uncertainties. .
If the nominal model was a perfect description of the systeri, Conclusion

the effect of the withdrawal would be exactly accounted for twe described in this paper a wav to obtain a simple ODE
the control scheme and the predicted value would be perfec pap Y P

honlinear model from a quasilinear PDE. After linearization
accurate. . . .

around a reference regime, the moment matching method is
Once a model is chosen, the choice of controller parametegjsplied to the linear PDE in order to get an approximation of
then reduced to the choice of the robustness filter. For simplits irrational transfer function. Then a single nonlinear model

6.1 Nonlinear IMC controller design



command

1 1
60 80 100
time (h)

output

We used the proposed model to design a nonlinear IMC con-
troller. It has been tested in simulation with the quasilinear

PDE, and appeared to be able to function on a wide range of
discharges. The use of a nonlinear model enables to signifi-
cantly increase the performance of a linear IMC controller.
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Figure 5: Simulation of the closed-loop system: comparison
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