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Abstract 
This paper proposes a novel design method for the adaptive 
robust H∞ control problem of a class of nonlinear systems 
with parametric uncertainties and external disturbances, 
which combines adaptive control and robust H∞ control 
techniques. By the use of the parameter projection method 
in adaptive control, the adaptive control laws are derived. 
Based on Hamilton-Jacobi inequalities, the adaptive robust 
H∞ controllers are designed. A numerical simulation 
demonstrates the correctness of the proposed design 
method. 

1 Introduction 
In practical control systems, there exist many classes of 
uncertainties, such as parameter variations, external 
disturbances and model errors. Robust control for uncertain 
nonlinear systems has widely been studied in the last decade 
[1~11]. Nonlinear H∞ control, as an important branch of 
nonlinear robust control, has attracted much attention since 
1990s. With dissipative theory and differential game, 
nonlinear H∞ control can be equivalent to the solvability of 
Hamilton-Jacobi equalities or inequalities [1,2]. Robust H∞ 
control for nonlinear systems was further studied based on 
the above results [3~8].  
 
In recent years, a combination of adaptive control and 
robust control receives more and more attention and a large 
number of research results have been obtained. The 

adaptive tracking problem for a class of SISO nonlinear 
systems is discussed by the use of exact linearization, and 
the effect of an external disturbance on the tracking error 
was measured [12]. The robust adaptive control for a class 
of strict-feedback nonlinear systems is studied in [13]. In 
[14], the adaptive tracking problem with disturbance 
attenuation of a class of parametric strict-feedback 
nonlinear systems is reduced to nonlinear H∞ control 
problem. Based on Hamilton-Jacobi inequalities and the 
backstepping method, a robust adaptive controller is 
designed. The literature [15] discusses the adaptive H∞ 
tracking for a class of MIMO nonlinear systems represented 
by input-output model. By the use of the parameter 
projection method and Riccati inequalities, controllers are 
designed to ensure all signals in the closed-loop systems are 
bounded and the tracking error with H∞ performance is 
uniformly bounded. The adaptive robust control of a class 
of nonlinear systems of semi-strict feedback form is 
considered in [16, 17]. In the case where there exist 
unknown parameters and unknown nonlinear functions, the 
adaptive robust controllers are designed to ensure the 
trajectory tracking and transient performance is satisfactory. 
References [12-15] measure the effect of external 
disturbances on tracking error with L2-gain. However, all of 
the above mainly discuss the tracking problem and H∞ 
control problem defined in [5] is not studied.  
 
This paper considers the adaptive robust H∞ control 
problem of a class of nonlinear systems with parametric 
uncertainties and external disturbances. It proposes a novel 
design method of adaptive robust controllers. The design of 
the adaptive laws exploits the idea of the parameter 
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projection method in [15,18]. The robust H∞ control 
problem is solved using Hamilton-Jacobi inequalities. The 
proposed design method combines adaptive control and 
robust H∞ control techniques. Compared with the past 
research [14,15], this paper attacks the nonlinear H∞ control 
problem which is similar to the one in [5] and also the 
uncertain nonlinear systems to be considered are more 
general. 

2 Problem Formulation 
Consider a nonlinear system 
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For nonlinear system (1), suppose that  is the initial state, 
and , , , 

x0

)0 =0)( 0 =xf 0)( 0 =xg 0(xgw 0)( 0 =xk , 
, for 1 . From now on, θ  denotes the 

estimated value of 
0)0 =(xpi ri ≤≤ ˆ

θ . First, the definition of the ‘zero-state 
observable’ concept is introduced.  
Definition 1: For nonlinear system { , i.e. )}(),( xhxf
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if  implies , then system {  is 
zero-state observable. 
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The following assumptions are made on system (1): 
        A1: The system {  is zero-state observable. )}(),( xhxf

A2: The unknown parameter vector θ  satisfies 
ρθ ≤2 , where ρ  is a positive number, and 

•  denotes Euclidean norm.  
A3:                           （3） k x h x k x IT ( )[ ( ) ( )] [ ]= 0

Assumption A1 is to ensure the internal stability. 
Assumption A2 guarantees the parameter vector within a 
known region. Assumption A3 simplifies the considered 
model. Assumptions A1 and A2 are often made for 

nonlinear H∞ control in the literature. 
 The adaptive robust H∞ control problem t to be discussed in 
this paper is defined as follows: 
Definition 2: For given positive numberes γ  and ε , 
construct the controller 
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such that the closed-loop system described by (1) and (4) 
satisfies the conditions below: 
(i) The following L2-gain is finite. 
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where T . 0≥

 
Remark 1: Definition 2 is slightly different from the 
definition on the robust H∞ control problem in [5,6], where 
equation (5) in definition 2 is replaced by 
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The difference is that the condition (i) in Definition 2 
includes a positive number ε , while this is not in [5,6]. 
However, because the number ε  can be chosen arbitrarily, 
it can be small enough to guarantee the robust performance 
of the closed-loop systems. And similar functions exist in 
[12,13,15], but the literatures only discuss the tracking 
problem.  

3 Main Results 

The adaptive law is designed by the use of the idea of the 
parameter projection method in [15,18]. From a practical 
perspective,  is usually required to be within a 
pre-assigned region. Let Ω  and 

, where 

θ̂

θ̂ ≤
}ˆˆ|ˆ{1 ρθθθ ≤= T

0>}ˆ|ˆ{2 δρθθ +=Ω T δ . Then a smooth 
projection algorithm can be obtained as 
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where φ  is a smooth function. Let 

)ˆ,(Projˆ θφµθ =
&                                    （8） 

where µ  is an adaptive gain, 0>µ . With projection 
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function (7), if ,  for any . 1)0(ˆ Ω∈θ 2
ˆ Ω∈θ 0≥t
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The theorem below describes a sufficient condition to solve 
the adaptive robust H∞ control problem of nonlinear system 
(1) and provides an adaptive robust controller design 
method. 
 
Theorem 1: For nonlinear system (1) with assumptions 
A1~A3 and given positive numbers γ , ,  and δ , if 
there exist a positive number  and a positive definitive 
function , , such that the following 
Hamilton-Jacobi inequality 
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holds, then the following controller u  can solve adaptive 
robust H∞ control problem and guarantee 
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where ρµ =
2  is the gain of the adaptive law. 

 
Proof: In order to prove the theorem , it needs to ensure the 
conditions (i) and (ii) in Definition 2 are satisfied. Choose a 
Lyapunov function as 
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Substituting (10), (11) and (12) into (15) yields 
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Remark 2: In the previous literatures on robust H∞ control, 
the sufficient conditions and controllers  are obtained based 
on the solutions of Hamilton-Jacobi inequalities. However, 
the forms of the controllers are fixed since they are designed, 
so they can not exploit the information obtained in the 
control. This results some level of conservatism in robust 
control. In term of Theorem 3 in the literature [7], the 
sufficient condition to guarantee the robust H∞ control 
problem to be solvable is the following Hamilton-Jacobi 
inequality 

Therefore, condition (i) in definition 2 is satisfied.  
Next, consider system (1) with w . It is clear that the 
following system  
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is zero-state observable. For 0≡w , 
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condition (ii) in Definition 2 is satisfied as well.  
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holds, and a robust controller is 
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holds, the Theorem 1 in this paper is less conservative. That 

means, when (9) holds, the above Hamilton-Jacobi 

inequality may not hold, so the robust H∞ control problem 

perhaps can not be solved. However, using Theorem 1 in 

this paper, a suitable controller can be designed to solve the 

adaptive H∞ control problem, and the parameter can be 

adjusted according to the adaptive law. 
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4 A Simulated Example 

Consider nonlinear system (1) with  
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In terms of Theorem 1, the adaptive robust controller is 
given by 
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In order to illustrate the correctness of the conclusions made 
in the paper, a simulation was carried out using Matlab, 
Simulink, and Matlab Toolboxes. In the simulation, 
disturbance inputs w  and  were impulse signals, as 
shown in Figure 1 and Figure 2. The closed-loop system 
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holds. However, by computation 
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So it can not assure that the inequality (37) holds. This 
means that, in term of Theorem 3 in the previous literature 
[7],  robust controller can not be obtained to guarantee the 
robust performance of the system (1) in the case. Therefore, 
we can say, the conclusion in this paper decreases the 
conservatism of robust control for nonlinear systems to 
some level. 
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states  and  are shown in Figure 3 and Figure 4, and 

the  norms of the disturbance and control output are 
shown in Figure 5 and Figure 6. The simulation results 
show that the closed-loop system is internal stable, and the 

-gain from disturbance w  to output 

1x

2

2x

L

L2 z  is less than the 
given positive scale 1=γ . Thus, the conclusions in the 
paper are correct. 

5 1

 

time

10

di
st

ur
ba

nc
e 

w
1

5

 

time

di
st

ur
ba

nc
e 

w
2

0
.20

.15

.10

.05

00

05

10

15

5 15

 

0 0 15 20

0.0

0.2

0.4

0.6

0.8

1.0

 

 t /s

  
Figure 1： External disturbance w1 
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Figure 2： External disturbance w2 
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Figure 3： State x1 
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Figure 5 ：L2 norm of the external disturbance 
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            Figure 6： L2 norm of the control output 

5 Conclusions 
This paper has considered a class of nonlinear systems with 
parametric uncertainties and external disturbances. Using 
the parameter projection algorithm and Hamilton-Jacobi 
inequality, it has proposed a new design method for the 
adaptive robust H∞ control problem, which combines 
adaptive control and robust H∞ control. Compared with the 
past results on combining adaptive control and robust 
control, this paper successfully applied the parameter 

 6



projection algorithm to nonlinear H∞ control problem. The 
numerical simulation shows the design method is effective. 
Further research is needed to solve the problem: how to 
guarantee the estimation of the unknown parameters 
converges to an arbitrarily small region around the real 
parameters. 
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