
ON THE VALIDITY DOMAIN OF H∞ CONTROLLERS UNDER
SATURATION CONSTRAINTS

Gianni Bianchini†, Alberto Tesi‡
†Dipartimento di Ingegneria dell’Informazione, Università di Siena,
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Abstract

The H∞ disturbance rejection problem for a family of linear
systems subject to control input constraints is considered. A
class of controllers generalizing the standard Riccati equation-
based state feedback is proposed and an estimate of their do-
main of validity is derived. A simple criterion for tuning con-
troller parameters for validity domain maximization and local
performance improvement is presented.

1 Introduction

The problem of controller design for global/local stabilization
with performance requirements in the presence of actuator sat-
uration has been addressed by several authors. In [1], the issue
of global stabilization with bounded controls is considered, and
a design procedure based on passivity arguments is proposed;
such design ensures global lp boundedness of the noise-to-state
map, although it does not allow for finite-gain requirements.
In [2], global stabilization with finite noise-to-state lp gain
is achieved for systems with input-additive noise via gain
scheduled feedback design, while in [3] the non input-additive
case is addressed: it is shown that if the open-loop system is
critically unstable, then stability with finite noise-state lp gain
is achievable for some p only in a semiglobal setting, while
non finite-gain global stabilization is shown to be possible via
gain scheduling. The mixed sensitivity problem with saturated
control was addressed in [4]. In that paper, global stabilization
with l2 bounded map from noise to input-state pair is achieved.
In this paper we investigate the properties of a class of H∞

controllers for linear single-input systems subject to actuator
saturation, with respect to the domain of validity. Our approach
follows the spirit of [9],[10]. In those papers, exploiting the
HJI approach to nonlinear H∞ [6], the H∞ mixed sensitivity
problem is addressed for a family of single-input nonlinear
systems, and a class of controllers depending on a scalar
nonlinear function m(·) is derived. In [9], an estimate of
the domain of validity of such controllers is given in closed
form, while in [10] sufficient conditions in the shape of a
geometric criterion are given for the existence of m(·) yielding
a nonlinear controller ensuring the prescribed level of l2 per-
formance globally. In this paper we exploit a similar condition
to investigate the domain of validity of a class of saturated H∞

controllers for linear systems. The proposed controller class is

a generalization of the classical linear state-feedback based on
the algebraic Riccati equation approach. For a given controller,
a closed form estimate of its domain of validity is derived.
Moreover, the controller parameters can be tuned in order to
achieve the maximization of the domain of validity within the
controller class and to improve local closed loop performance.
The paper is organized as follows. In Section 2 we formulate
the problem and give some preliminary results. Section 3
illustrates the main result, whose proof is reported in Section 4.
An application example is presented in Section 5. Conclusions
are drawn in Section 6.

Notation. R
n: real n-space; x ∈ R

n: vector of R
n; R

p×n:
real p × n-space; A ∈ R

p×n: matrix of R
p×n; AT : transpose

of A; A−1: inverse of A; A > 0 (A ≥ 0): positive definite
(semidefinite) matrix; 〈Ψ,Φ〉R = ΨT RΦ: inner product of Ψ
and Φ (with weighting matrix R).

2 Problem statement and preliminary results

Consider the following single-input multi-output system

{

ẋ = Ax + B sat(v) + Ed
y = Cx

(1)

where x ∈ R
n is the state vector, v ∈ R is the control input,

d ∈ R is the exogenous (unknown) disturbance, y ∈ R
p is

the system output, A ∈ R
n×n, B ∈ R

n, E ∈ R
n, G ∈ R

n,
C ∈ R

p×n, and sat(·) : R → R is defined as

sat(v) =
1

2
(|v + vsat| − |v − vsat|) ; vsat > 0 (2)

meaning that the control input saturates at a level ±vsat.
Let us recall the solution of the standard linear state feedback
H∞ disturbance rejection problem for (1) neglecting the input
saturation constraint (2) (i.e., setting vsat = +∞).

Lemma 1 Let γ be a positive scalar and suppose P = P T > 0
is a solution of the Riccati equation

AT P + PA + P
[

γ−2EET − BBT
]

P + CT C = −Q (3)

for some Q = QT > 0. Then, the closed loop system with state
feedback

v = −BT Px (4)

has l2 gain from d to [y v]′ less or equal to γ.



We are interested in investigating the H∞ disturbance rejec-
tion problem in the saturated input case (vsat < +∞). Our
controller synthesis procedure relies on computing the scalar
control input v as a function of an auxiliary output variable. To
this purpose, let P be a solution of (3) and introduce the scalar
quantity

ξ = GT x (5)

where G = PB. Moreover, let the control input v be given by

v = u(ξ) (6)

for some continuous function u(·) such that u(0) = 0, to be
chosen by the designer. Note that the linear state feedback (4)
with non-saturated input represents a special case of (6) when
u(ξ) = −ξ.
Let n(ξ) be the continuous scalar function given by

n(ξ) = u(ξ) − sat[u(ξ)]. (7)

Then, system (1) can be rewritten in the following nonlinear
state space representation







ẋ = Ax − Bn(ξ) + Bu + Ed

ξ = GT x
y = Cx

(8)

This allows us to reformulate the H∞ control problem on (1)-
(2) as a standard nonlinear H∞ problem on (8) where the scalar
nonlinearity n(·) is defined by (7). Said another way, once a
control law u = u(ξ) has been designed for (8), the resulting
dynamics, and hence the related H∞ performance, is identi-
cal to that of system (1)-(2) where v = u(ξ). In particular,
since u(0) = 0, there exists some neighbourhood Ξ of ξ = 0
such that, for all ξ ∈ Ξ, n(ξ) = 0 and hence (8) is a linear
system and its dynamics is exactly that of system (1) in the
non-saturated input case. As a consequence, we have that

n(0) = 0 ;
dn

dξ
(0) = 0, (9)

and hence the origin is an equilibrium point of (8) and the func-
tion

kn(ξ) =
n(ξ)

ξ
. (10)

is well defined and such that kn(0) = 0.
The above formulation allows us to exploit the standard HJI
approach to nonlinear H∞ [6] in order to tackle our problem.
Such approach is based on the computation of a storage func-
tion associated with the origin of (8). The definition of storage
function and its connection with state feedback H∞ control are
briefly recalled below.

Definition 1 Let V (x) : R
n → R be a nonnegative smooth

function such that V (0) = 0 and let γ be a positive scalar.
Then, V (x) is said to be a storage function if the Hamilton-
Jacobi-Isaacs (HJI) inequality

∂V

∂x
(x)

[

Ax − Bn(GT x)
]

+
1

2

∂V

∂x
(x)

[

γ−2EET − BBT
] ∂T V

∂x
(x) +

1

2
xT CT Cx ≤ 0

(11)

holds in some neighbourhood of the origin. Moreover, the set
W of all x satisfying (11) is said to be the domain of validity
of V .

Once a storage function has been found, the following well-
known result directly provides a state feedback H∞ controller
[6].

Theorem 1 Consider system (8) and let γ > 0. Suppose there
exists a storage function V (x) and let W be its domain of va-
lidity. Then, the closed loop system with the feedback control
law

u = −BT ∂T V

∂x
(x)

has l2-gain from d to [y u]T less than or equal to γ as long as
its trajectories lie inside W .

Our aim is now to propose a feedback law of the form u = u(ξ)
in (8), and to show that such control law can be associated to a
storage function with suitable domain of validity, according to
Theorem 1.
Consider a scalar continuous function m(σ) : R → R, which
can be written in the gain form

m(σ) = km(σ)σ (12)

where km(σ) : R → R, and introduce the control law of the
form

u(ξ) = um(ξ) = −ξ − BT PBm(ξ)
= −

(

1 − k−1

0
km(ξ)

)

ξ.
(13)

where

k0 = −
1

BT PB
= −

1

GT P−1G
. (14)

Note that expression (13) reduces to the standard linear H∞

solution (4) for km(ξ) = 0. In accordance with the equivalence
of systems (1) and (8) via (6), we can then view (13) as the
H∞ state feedback for non-saturated input, plus a perturbation
depending on a scalar function km(·).
For u(ξ) defined as in (13), the function kn(ξ) in (10) becomes

kn(ξ) = −
(

1 − k−1

0
km(ξ)

)

−
sat
[

−(1 − k−1

0
km(ξ))ξ

]

ξ
.

(15)
The key step now is to show that the control law (13) has an
associated storage function of the form

Vm(x) =
1

2
xT Px +

∫ ξ

0

m(σ)dσ (16)

We have the following result.

Lemma 2 Let γ > 0 and suppose P = P T > 0 is a solution
of the Riccati equation

AT P + PA + P
[

γ−2EET − BBT
]

P + CT C = −Q (17)

for some Q = QT > 0. Then, the following statements hold.



1. Vm(x) is a storage function and its domain of validity is
given by

Wm =
{

x ∈ R
n : xT Q̄(kn(ξ), km(ξ))x ≥ 0, Vm(x) ≥ 0

}

,
(18)

where Q̄(κn, κm) is a matrix depending on the two scalar
parameters κn and κm as follows

Q̄(κn, κm) = Q+Υ(κn, κm)GT +GΥT (κn, κm), (19)

being

Υ(κn, κm) =
= κnPB + κm

[

−AT G − γ−2GT EPE + GT BPB
]

+GT BκnκmG +
1

2

(

(GT B)2 − γ−2(GT E)2
)

κ2

mG.

(20)

2. The feedback controller

um(ξ) = −
(

1 − k−1

0
km(ξ)

)

ξ

guarantees that the l2-gain from d to [y u]T is less or
equal to γ within Wm.

Proof. Statement 1. follows by observing that the HJI
inequality (11) reduces to the first inequality in (18) once
V (x) = Vm(x) and P is selected according to (3). Statement
2. is a direct consequence of Theorem 1 and (16).

Lemma 2 provides a class of controllers parametrized by
the scalar function km(·), which guarantee the level γ of
l2-performance within the respective domains of validity Wm.
Given the required level of l2-performance, the main result in
Section 3 provides a simple criterion for computing an estimate
of the domain of validity of the H∞ control law (13) under the
saturation constraint (2) and shows how such estimate can be
maximized by a suitable selection of the function km(·). Such
criterion also provides an upper bound on the minimum level
of l2-performance that the closed loop system is guaranteed to
have globally, i.e., in the whole state space.

3 Main result

We will now state the central result of the paper, which pro-
vides a simple geometrical criterion for evaluating the domain
of validity of the control law (13) under the input saturation
constraint (2).
Define the following constants

h = 〈PB,PB〉Q−1

l = 〈K,K〉Q−1 − (BT PB)2 + γ−2(BT PE)2

l̄ = 〈PB,K〉Q−1

(21)

where the vector K is given by

K = −AT PB − γ−2BT PE · PE + BT PB · PB. (22)

The above quantities depend only on system (1) and the solu-
tion P of the linear H∞ problem (see Lemma 1). Define the
matrix

T =





0 hk−1

0
−h

hk−1

0
−(l̄2 − hl) −l̄

−h −l̄ −1



 (23)

and consider the region Ω in the (κn, κm) plane defined as

Ω =







(κn, κm) :
[

κn κm 1
]

T





κn

κm

1



 ≤ 0







.

(24)
From (23) and (24) it follows that Ω contains the origin and
its boundary ∂Ω is described by a simple geometrical curve.
Indeed, it is not difficult to show that such curve is always a
hyperbole with an asymptote at κm = k0. Introduce the half
plane

Π = {(κn, κm) : κm > κ0} (25)

and the intersection
Ω′ = Ω ∩ Π, (26)

which is delimited in the (κn, κm) plane by the upper branch
of ∂Ω and contains the origin.
Given a positive scalar ξ̄, denote with Sξ̄ the following subset
of the state space

Sξ̄ =
{

x ∈ R
n : − ξ̄ ≤ BT Px ≤ ξ̄

}

. (27)

We have the following main result. The complete proof re-
quires some preliminary technical lemmas and is deferred to
Section 4 to improve readability.

Theorem 2 Given P evaluated as in Lemma 1 for given γ,
compute the region Ω′ according to (23), (24), (25), and (26).
Let km(ξ) be a scalar continuous function and ξ̄ > 0. Consider
the curve Cξ̄ in the (κn, κm) plane described parametrically as

Cξ̄ =

{

κn = kn(ξ)
κm = km(ξ)

− ξ̄ ≤ ξ ≤ ξ̄, (28)

with kn(ξ) as in (15) and suppose that

Cξ̄ ⊂ Ω′. (29)

Then, the domain of validity Wm of the controller

um(x) = −
(

1 − k−1

0
km(ξ)

)

ξ (30)

is such that Sξ̄ ⊆ Wm, i.e., um(ξ) guarantees the level γ of
l2-performance within Sξ̄.

Remark 1 It can be shown (see [9]) that if the point
(kn(±ξ̄), km(±ξ̄)) of the (κn, κm) plane belongs to ∂Ω, then
the boundary ∂Wm of the domain of validity is tangent to the
boundary of Sξ̄.

The above theorem provides estimates of the domain of va-
lidity of the control law (13) associated to a given choice of
km(ξ). The least conservative of such estimates is clearly as-
sociated to the maximal ξ̄ for which (28)-(29) hold, i.e., for
(kn(ξ̄), km(ξ̄)) ∈ ∂Ω. It now makes sense to look for a con-
structive criterion for the existence of a scalar function km(ξ)
satisfying (28)-(29) for given ξ̄. This would allow us to achieve
the maximization (in the estimate sense) of the domain of valid-
ity of the proposed control law, once the values of the required
l2 gain γ and saturation level vsat are given. Indeed, we have
the following result.



Theorem 3 There exists km(ξ) such that the curve Cξ̄ defined
in (28) satisfies Cξ̄ ⊂ Ω′ if, and only if, there exists a scalar
k̄m > k0 such that

(k̄n, k̄m) ∈ Ω′

where k̄n = −(1 − k−1

0
k̄m) + vsatξ̄

−1.
Moreover, under the above condition, km(ξ) can be given as

km(ξ) =







k0
m 0 ≤ ξ ≤ ξ0

sat

(k̄m − k0
m)(−1 + vsatξ

−1) + k̄nk0
m

k̄n − k−1

0
(k̄m − k0

m)
ξ > ξ0

sat

(31)
where

ξ0

sat = vsat(1 − k−1

0
k0

m)−1. (32)

and k0
m is a free parameter which must be chosen such that

(0, k0
m) ∈ Ω′.

Proof. [If] We can suppose, without loss of generality, that
km(ξ) is a scalar function with even symmetry, i.e., km(−ξ) =
km(ξ). This allows us to restrict the support of the curve Cξ̄ in
(28) to ξ ∈ [0, ξ̄] without altering the condition of Theorem 2.
We also note that in order for (29) to hold, it is required that
km(ξ) > k0. Then (15) implies the existence of ξsat > 0 such
that kn(ξ) = 0 for all ξ ∈ [0, ξsat], and ξsat satisfies

ξsat = vsat(1 − k−1

0
km(ξsat))

−1. (33)

Clearly, ξsat is the value of ξ for which the control input
reaches the saturation limit um(ξ) = −vsat. Moreover, we
have kn(ξ) ≤ 0 for all ξ ≥ ξsat and kn(ξ) < 0 for sufficiently
large ξ. Then, (15) implies that for ξ̄ ≥ ξsat we have

kn(ξ̄) = −(1 − k−1

0
km(ξ̄)) + vsatξ̄

−1. (34)

It is easy to see from (24) that the curve ∂Ω in the (κn, κm)
plane for κm > k0 is a one-valued function κn = f(κm) which
does not switch convexity.
Since (0, k0

m) ∈ Ω′ and (k̄n, k̄m) ∈ Ω′, the line segment S in
the (κn, κm) plane

S : κm = k̄m+
(k̄m − k0

m)

k̄n

(κn−k̄n) ; k̄n ≤ κn ≤ 0 (35)

is entirely contained in Ω′. Now, define km(ξ) as in (31)-(32).
Let kn(ξ) be defined accordingly as in (15) and consider
the corresponding curve Cξ̄ in (28). It is easily seen that
km(0) = k0

m, km(ξ̄) = k̄m, kn(ξ̄) = k̄n and moreover, by
(34), Cξ̄ ≡ S.
[Only if] If some km(ξ) generates according to (28) a curve Cξ̄

satisfying Cξ̄ ⊂ Ω′, it must hold that (k̄n, k̄m) ∈ Ω′.

Clearly, there always exists k0
m such that (0, k0

m) ∈ Ω′,
since (0, 0) ∈ Ω′. It thus becomes a question of enforcing the
condition (a):(k̄n, k̄m) ∈ Ω′ or, in order to compute the tightest
estimate Sξ̄ (see Remark 1), the condition (b):(k̄n, k̄m) ∈ ∂Ω.
This amounts to looking for a pair of scalars (k̄m, ξ̄) satisfying,

respectively

(a)







k̄n = −(1 − k−1

0
k̄m) + vsatξ̄

−1 ≥ f(k̄m)
k̄m > k0

k̄n < 0
or

(b)







k̄n = −(1 − k−1

0
k̄m) + vsatξ̄

−1 = f(k̄m)
k̄m > k0

k̄n < 0
(36)

Once this is accomplished, the control law (13) with km(ξ)
as in (31) guarantees the prescribed level γ of l2-performance
within a domain of validity Wm an estimate of which is given
by Sξ̄ in (27).

Remark 2 Note that ξ̄ solving (36) for k̄m = 0 yields esti-
mates of the domain of validity of the standard linear H∞ so-
lution u = −BT Px.

Remark 3 In solving (36) (b), the value of k̄m can be chosen
in general so as to maximize the corresponding ξ̄.

Remark 4 If for some k̄m condition (36) (a) is found to hold
for all ξ̄ ∈ [0,+∞), then the control law (13) with km(ξ) as in
(31) ensures the level γ of l2-performance globally. Unfortu-
nately, there is no evidence that the open-loop l2 gain γol can be
improved globally under the saturation constraint by means of
the proposed design. On the other hand, condition (36) (a) can
be exploited in order to compute an upper bound γ̄ ≥ γol on
the l2 gain that the closed loop system is guaranteed to exhibit
globally once a level of l2-performance γ < γol is enforced
locally. To this purpose, it is enough to verify (36) (a) for all
ξ̄ ∈ [0,+∞) (i.e., setting vsat = 0) where k̄m is assigned the
previously designed value and Ω (i.e., f(·)) is computed for γ
equal to the testing value γ̄.

Remark 5 The free parameter k0
m, which has to be chosen

such that (0, k0
m) ∈ Ω′ in order to ensure the prescribed l2-

performance, influences the feedback gain when the system
operates in the linear region. Therefore, such parameter can
be tuned in order to improve the transient response properties
in that region.

4 Proof of Theorem 2

Our first goal is to characterize the geometrical shape of the
region in the (κn, κm) plane where the matrix Q̄(κn, κm) in
(19), which plays a key role in the definition of Wm (see (18)),
is positive semidefinite. To this purpose, we need the following
auxiliary result, see [10] for the proof.

Lemma 3 Consider the one-parameter family of n × n matri-
ces

R̄(κ) = R + κ(ΨΦT + ΦΨT ) (37)

where R ∈ R
n×n, R = RT > 0, Φ ∈ R

n, Ψ ∈ R
n and

κ ∈ R. Then, R̄(κ) ≥ 0 if and only if

1+2〈Ψ,Φ〉R−1 κ+
(

〈Ψ,Φ〉2R−1 − 〈Ψ,Ψ〉R−1〈Φ,Φ〉R−1

)

κ2 ≥ 0.
(38)



Exploiting the above lemma, we have a first result concerning
Q̄(κn, κm).

Lemma 4 The following conditions are equivalent

1. Q̄(κn, κm) ≥ 0
2. 〈G,G〉Q−1〈Υ(κn, κm),Υ(κn, κm)〉Q−1

−
(

1 + 〈Υ(κn, κm), G〉Q−1

)2
≤ 0

Proof. It is easily verified that Q̄(κn, κm) in (19) has exactly
the form in (37) once R = Q, Ψ = Υ(κn, κm), Φ = G, and
κ = 1. Hence, the proof follows by observing that in this case
(38) reduces to (4).

Lemma 4 provides a convenient equivalent expression for
Q̄(κn, κm) ≥ 0. The next step is to show that (4) defines a
very simple geometrical constraint on the parameters κn and
κm.
Indeed, exploiting the expression (20) of Υ(κn, κm) and af-
ter some straightforward though tedious manipulations, it turns
out that condition (4) simplifies to the quadratic form

−(l̄2 − hl)κ2

m + 2hk−1

0
κnκm − 2hκn − 2l̄κm − 1 ≤ 0, (39)

which is equivalent to

[

κn κm 1
]

T





κn

κm

1



 ≤ 0, (40)

with T as in (23).
The next result follows directly from Lemma 4, the definition
of Ω in (24), and the equivalence of (4) and (40).

Lemma 5 The following conditions are equivalent:

1. Q̄(κn, κm) ≥ 0; (41)

2. (κn, κm) ∈ Ω. (42)

Let us now characterize the condition Vm(x) ≥ 0 in the defini-
tion of Wm (18).
Given a scalar ξ̄ > 0, consider the region Sξ̄ of the state space
(27). We have the following result.

Lemma 6 Given ξ̄ > 0, if (kn(ξ), km(ξ)) ∈ Π for −ξ̄ ≤ ξ ≤
ξ̄, then Vm(x) ≥ 0 for all x ∈ Sξ̄.

Proof. Let km(ξ) = − 1

GT P−1G
+ εm(ξ) where εm(ξ) > 0 for

all −ξ̄ ≤ ξ ≤ ξ̄. We have

Vm(x)=
1

2
xT Px +

∫ GT x

0

m(σ)dσ =
1

2
xT Px +

∫ GT x

0

σkm(σ)dσ

=
1

2
xT Px −

∫ GT x

0

σ

GT P−1G
dσ +

∫ GT x

0

σεm(σ)dσ

≥
1

2
xT Px −

1

2

(GT x)2

GT P−1G
=

1

2
xT

(

P −
GGT

GT P−1G

)

x

To show that Vm(x) ≥ 0 ∀x ∈ Sξ̄ it suffices to prove that the

matrix P − GGT

GT P−1G
is positive semidefinite. From a standard

determinantal result we have

det

(

P − κ
GGT

GT P−1G

)

= (1 − κ) det(P ).

Hence, since P > 0, the above expression implies that
P − GGT

GT P−1G
≥ 0.

To complete the proof of Theorem 2, we observe that if
Cξ̄ ⊂ Π, then Lemma 6 guarantees that the second inequality
in (18) holds for all x ∈ Sξ̄. Moreover, if Cξ̄ ⊂ Ω, then Lemma
5 ensures that Q̄(kn(GT x), km(GT x)) ≥ 0 for all x ∈ Sξ̄ and
therefore also the first inequality in (18) holds in Sξ̄.

5 Example

Consider system (1) where

A =

[

0 1
−0.2 −2

]

, B =

[

1
−1

]

, E =

[

1
0

]

, C =

[

1
0

]

′

The open loop is shown to have l2 gain from d to y equal to
γol = 10. Let us consider the H∞ disturbance attenuation
problem

‖[y u]′‖2 ≤ γ‖d‖2

with γ = 5. Solving the Riccati equation (3) for

Q =

[

5 0
0 5

]

yields

P =

[

4.98 2.54
2.54 2.58

]

and the corresponding feedback controller (4) which solves the
problem for the non-saturated input case (vsat = ∞). Let us
enforce the constraint vsat = 1. The values of matrix T in (23)
and k0 in (14) turn out to be

T =





0 −2.97 −1.19
−2.97 −5.25 −2.75
−1.19 −2.75 −1



 ; k0 = −0.4.

To provide estimates of the validity domain of the control law
(13) for km(ξ) as in (31) we need to find (k̄m, ξ̄) according
to (36)(b). In order to select k̄m such that the control law
yields the largest validity domain estimate, we find it conve-
nient (see Remark 3) to compute, from the first equation in
(36)(b), the value of ξ̄ as a function of k̄m. In Figure 1, the
solid line represents ξ̄(k̄m), while the dashed line represents
the value ξ̄sat(k̄m) of ξ at which the control input enters sat-
uration when choosing km(ξ) ≡ k̄m, computed according to
(33). Choosing k̄m such that ξ̄(k̄m) < ξ̄sat(k̄m) does not
yield any significant estimate, since the control input (13) with
km(ξ) as in (31) does not even saturate for 0 ≤ ξ̄(k̄m) (and
(36)(b) does not hold since k̄n ≥ 0). It turns out that the
largest validity domain estimate Sξ̄ is achieved with the pair
(k̄m = k̄max

m = −0.2, ξ̄ = ξ̄max = 2.42). The validity domain
estimate for the feedback controller (4) (the standard linear
H∞) is computed by taking k̄m = 0 yielding ξ̄ = ξ̄(0) = 1.72.



According to Remark 5, the additional free parameter k0
m can

be chosen in order to obtain an improvement of the transient
response properties. In Figure 2, the transient response from
the initial condition x0 = [1 1]′ (which lies close to the bound-
ary of Sξ̄) is shown for k0

m = 0.2, k̄m = −0.2 (y(t)) and for
k0

m = k̄m = −0.2 (y′(t))). Note that the expression of um(ξ)
(13) for k0

m 6= k̄m turns out to be nonlinear while for k0
m = k̄m

it is linear (see (31)). In this case, the first control law outper-
forms the second one as far as the transient behaviour is con-
cerned, while maintaining the same l2 gain within the region
Sξ̄ as it is clear from the inspection of Figure 3. Indeed, both
curves C (k0

m 6= k̄m, nonlinear um(ξ)) and C′ (k0
m = k̄m, linear

um(ξ)) lie inside the region Ω′ for −ξ̄ ≤ ξ ≤ ξ̄ as expected.
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Figure 1: ξ̄(k̄m) (solid line), ξ̄sat(k̄m) (dashed line)
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Figure 2: Transient responses: y(t) (k0
m 6= k̄m, nonlinear
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m =
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6 Conclusion

In this paper we presented an approach to H∞ controller de-
sign for a family of linear plants subject to input saturation. An
analysis of the properties of the proposed controller class was
performed with respect to their domain of validity. A method
for computing controller parameters in order to maximize the
domain of validity as well as to improve local closed loop per-
formance was derived. Finally, an application example was
presented to illustrate the proposed results.
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