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Abstract

There are several identification methods designed for the
errors-in-variables problem. In this paper we focus on dis-
cussing the underlying assumptions for several of these meth-
ods. Some assumptions are shown to have far reaching con-
sequences. For example, if the noise-free input happens to be
periodic, simple estimators that give consistent parameter esti-
mates of the system parameters can easily be designed. If the
variances of the input and output noises are unknown, some
structural assumption must be added for the system dynamics
to be identifiable. On the other hand, should the ratio between
output noise variance and input noise variance be known, it
is possible not only to estimate the system parameters consis-
tently, but also to combine this with a reasonable estimate of
the unperturbed input.

1 Introduction

Many different solutions have been presented for system iden-
tification of linear dynamic systems from noise–corrupted out-
put measurements see, for example, [6], [11]. On the other
hand, estimation of the parameters for linear dynamic systems
when also the input is affected by noise is recognized as a more
difficult problem. Representations where errors or measure-
ment noises are present on both inputs and outputs are usually
called “errors–in–variables” models. They play an important
role when the purpose is determination of the inner laws that
describe the process, rather than the prediction of its future be-
havior.

The class of scientific disciplines which make use of such
representations is very broad, as proved by the several ap-
plications collected in [14], [15], such as time series mod-
elling, array signal processing for direction–of–arrival estima-
tion, blind channel equalization, multivariate calibration in an-
alytical chemistry, image processing, astronomical data reduc-
tion, etc. In case of static systems, errors–in–variables repre-
sentations are closely related to other well–known topics such
as latent variables models and factor models [3].

Some comparisons between different approaches for errors-
in-variables modelling are given in [10] and references therein.

The focus here is on the role of the assumptions. In ‘clas-
sical identification’ problems where the input signal is mea-
sured without errors, some assumptions on the noise properties
and the input properties have mostly little impact on the con-

sistency on the parameter estimates, but more on their accu-
racy. In the errors-in-variables context the assumptions can on
the other hand often have far reaching consequences. The as-
sessment of what assumptions that are realistic in practice may
vary.

The paper is organized as follows. The next section presents
the basic setup, while the principal identifiability problem is
dealt with in Section 3. There it is shown that it is not possible
to get identifiability from one single experiment without impos-
ing some (structural) assumptions, that cannot be verified from
the data. In Section 4 we describe bias-compensated versions
of the least-squares method, while other estimators based on
repeated and correlated experiments are treated in Section 5. It
can be appealing to let an identification scheme include estima-
tion of the unknown unperturbed input. This idea is discussed
in Section 6, where we show that it is feasible only if we have
some appropriate a priori information about the noise vari-
ances. We show in Section 7 how the system can be identified
when a parametric model of the unperturbed input is applied,
and summarizing conclusions are given in Section 8. Several of
the sections are ended by summarizing different results, where
the role of the key assumptions are highlighted.

2 Basic setup and assumptions

As a typical model example, consider the system depicted in
Figure 1 with noise-corrupted input and output measurements.
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Figure 1: The basic setup for a dynamic error-in-variables
problem.

The noise–free input is denoted by ����	���
 and the undisturbed
output by ����	���
 . They are linked through the linear difference
equation �

	������ 
!� � 	���
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where
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and � ��� is the backward shift operator, i.e. � ����� 	���
 " � 	����
,7
 . It is not restrictive to assume that the polynomials

�
	'� ��� 
 ,

$&	'� ��� 
 have equal degree � , which represents the order of the
system.

We assume that the observations are corrupted by additive
measurement noises

���	���
 and
���	���
 . The available signals are of

the form ��	���
+" ����	���
 - ��
	���

��	���
+" � � 	���
 - ���	���
 � (3)

The general problem is to determine the system characteristics,
i.e. the transfer function

� 	'�����(
 " $*	�� ��� 
�
	�� ��� 
 � (4)

In order to proceed, some further assumptions must be intro-
duced. To some degree they can be made more or less restric-
tive. In the coming subsections we therefore introduce a num-
ber of assumptions, that are partly alternative ones. We will
then discuss what assumptions that are necessary for different
results, and what the consequences will be if the assumptions
are relaxed.

2.1 Assumptions on the system

A1a. The dynamic system (1) is asymptotically stable, i.e.�
	���
 has all zeros outside the unit circle.

A1b. All the system modes are observable and controllable, i.e.�
	���
 and $&		�!
 have no common factors.

A1c. The order � of the system is a priori known.

Out of the above assumptions, A1c is the most restrictive in
practice. It implies that we do not treat the undermodelling
case.

2.2 Assumptions on the measurement noise

A2a. The processes
���	���
 and

���	���
 are mutually uncorrelated,
and uncorrelated with the noise–free signals ����	���
 and ����	���
 .
A2b. The sequences

��
	���
 and
���	���
 are zero–mean white noises

with variances 
�� and 
�
 , respectively.

The assumption A2b may be regarded as a bit restrictive. If�� 	���
 should model not only measurement noise, but also ac-
count for process noise and modelling errors, then it is likely
correlated and not white.

We can have different situations concerning to what degree
the noise variances are known.

A2c The noise variances 
 � and 
 
 are unknown.

A2d The noise variances 
�� and 
�
 are both known.

A2e The ratio 
�
���
�� is known.

Obviously, the condition A2c is more general (and more realis-
tic) than A2e. It will turn out in the coming analysis, that when
A2e is implied, much stronger results will hold than under A2c.
Of course, assumption A2d is still more restrictive than A2e.

It is sometimes possible to allow for weaker assumptions.
The measurement noises may be somewhat correlated. Some
estimation methods can be extended to handle that

���	���
 is a
moving average process,

���	���
 is an ARMA process, or that
���	���


and
���	���
 are correlated.

2.3 Assumptions on the true input

A3a. The true input � � 	���
 is a zero–mean stationary ergodic
random signal.

We may also have

A3b. The spectral density of � � 	���
 is a rational function. Note
that this implies that � � 	���
 can be modelled as an ARMA pro-
cess.

For some identification methods, see Section 7, but certainly
not all, the assumptions A3a and A3b have to be imposed.

2.4 Assumptions on the experiment

A4a. One experimental data set is available.

A4b. More than one experimental data set are available. The
unperturbed input data � � 	���
 from the different data sets are
correlated.

When A4b holds, a simple estimation algorithm can be applied,
see Section 5. However, it is not obvious when the assumption
can be realistically applied.

To discuss these assumptions, consider the following extension
of Figure 1.

SYSTEM

�
�

� �

� �

�

������

�������

�

� 	���


�
	���


����	���
 ����	���
 ��	���


���	���


���	���


Figure 2: The basic setup, including input generation.

One option is to assume one experiment only, and that � ��	���

cannot be effected by the user. The experiment is ‘arranged’ by
nature, or the considered system is just a part of a larger system
and excited at some other point. The true input � � 	���
 is mod-
elled as a stationary stochastic process with rational spectrum.
This means that in Figure 2,

�
is a finite order, unknown lin-

ear filter, and � 	���
 is an (unmeasurable) white noise sequence.
Hence for this option assumptions A3b and A4a apply.

Another option is to assume that the signal � 	���
 is fully ac-
cessible to the user, but that the filter

�
is an unknown and pos-

sibly nonlinear filter, so that � � 	���
 can neither be chosen freely,
nor computed. Nevertheless, in such scenarios it is possible to



make repeated experiments with the same 	���
 , and hence with
the same � � 	���
 . In such cases the assumption A4b applies.

2.5 Notations

The following notations will be convenient. The parameter
vector to be estimated is� " 	'/ � � � � /!4�6 � � � � 6 4 
�� � (5)

Similarly we introduce the regressor vector� 	���
#" 	 � ��	�� � ,7
�13131 � ��	�� � � 
��
	�� � ,7
 � � � �
	�� � � 
�
 � � (6)

Further, we will use the conventions:� � � denotes the true parameter vector, and
��

denotes its es-
timate.��� � 	���
 denotes the noisefree part of the regressor vector.
Hence� � 	���
 " 	 � � � 	�� � ,7
 � � � � � 	�� �8, 
 � � � � � 	�� � � 
 
 � � (7)� �� 	���
 denotes the noise-contribution to the regressor vec-
tor. This means that

�� 	���
#" 	 � ���	�� � ,7
�1(131 � ���	�� � � 
 ���	�� � ,7
 � � � ���	�� � � 
�
 � � (8)

3 Identifiability and verifiability

Consider the case of Gaussian distributed data. This means that
only (first and) second order moments carry information about
the distribution, and that higher-order moments do not bring
further information. We may alternatively say that we limit our
study for the time being to infer information from second-order
statistics.

It turns out that in such cases, without introducing more
explicit assumptions, such as A2e, it is not possible to uniquely
identify the system. In fact, when only second–order statistics
are exploited the identification of errors–in–variables models
cannot, in general, admit a single solution, [1]. As illustration,
consider the following example.

Example 3.1. Let the measurement noises be auto-correlated,
with spectral densities �	�� ) �
�
 , respectively. (Note that this is
weaker than A2b.) Set

� 	���
 "
� �
	���


��	���

� � (9)

Its spectrum is��� "
� , ���

� � ��� � � ���.-
� ���� �� �
�
�� � (10)

With � � given and
� ) ��� ��) � �� ) � �
 as unknowns, there is no

unique solution to (10).

To be more explicit, let the estimates of the aforementioned
variables be denoted by

�� ) �� ����) ��
�� ) ��
�
 . Choose a spectrum�� ��� (so far arbitrarily). One can with straightforward calcula-
tions derive �� " � ��� ��� ��� (11)�� �� " � �� - ��� � � ���� � (12)�� �
 " � �
 - � � ��� ��� � � ���������� ��� � (13)

Requiring that
��
�� and

��
�
 are positive definite function will give
the possible values of

�� ��� . Some straightforward calculations
give

� � ��� �
�
� ��� � � � - �
�
�� ���� � � ��� � � � �� � (14)

This shows clearly that except for the trivial and true solution�� ��� " � ��� , many more solutions are possible.

Results:

1. Without assumptions on the structures (the parameteriza-
tions), there will not be a unique solution to the identifica-
tion problem.

2. It is not possible to verify from the data, whether or not
these structural assumptions are verified.

4 Bias-compensation of the least-squares esti-
mate

When estimating the parameter vector
�

from the linear regres-
sion model

��	���
 " � 	���
 � -! 	���
9) (15)

the normal equations will be (in the asymptotic case of an infi-
nite number of data points)" # � 	���
 � � 	���
%$ ���&�' " # � 	���
 ��	���
 � (16)

As the data contain one contribution due to the unperturbed
input � � 	���
 and another due to the noise, the normal equations
can be written as" # � � 	���
 � � � 	���
 - # �� 	���
 �� � 	���
%$ ���&�'

" # � � 	���
 � � 	���
 - # �� 	���
 ���	���
 � (17)

Under assumption A2b
# �� 	���
 ���	���
 "(� holds. As the true pa-

rameter vector
� � satisfies" # � � 	���
 � � � 	���
)$ � � " # � � 	���
 � � 	���
 (18)

it follows that there will be a bias,���&�'�*" � � � (19)



The bias is caused by the matrix# �� 	���
 �� � 	���
#"�� �� �� "
� 
 
�� �� 
 ��� � � (20)

There are many identification schemes available that aim to
compensate for the bias effect that is induced by the noise
sources. As examples, see [4], [5], [12], [16], [17]. As-
suming the noise variances are known or estimated, a bias-
compensated least-squares scheme can be constructed as������ &�' "

	 �� �
� �
� �


�
 � �� �

�� � ��� ��� �
 � 
 ) (21)

where�� �
� " ,� �� ���
�
� 	���
 � � 	���
9) �
 � 
 " ,� �� ���

�
� 	���
 ��	���
 � (22)

Note that it is crucial in most of these schemes that the mea-
surement noise sequences are white (assumption A2b). A wide
class of bias-compensated least squares methods can in fact
be interpreted as specific variants of the instrumental variable
method, see [13].

5 Use of repeated and correlated experiments

Consider the linear regression model

��	���
 " � � 	���
 � -! 	���
 (23)

where  	���
 denotes the equation error. Assume that more than
one data set is available, so that

�������9	���
." � ����� � 	���
 � -! 
�����9	���
9)��
" ,�)�� ) � � � (24)

The true parameter vector fits perfectly the models when undis-
turbed data are used:

� ������ 	���
#" � ����� �� 	���
 � � � (25)

Assume now that

1. the noise is independent in the different data sets

2. the unperturbed regressor vector � ������ 	���
 is (well) corre-
lated in the different data sets.

Using two data sets, we then get# " � � � � 	���
 � � � � � 	���
)$ � � � # " � � � � 	���
 � � � 	���
�
%$
" # � � � �� 	���
 " � � � � �� 	���
 � � � � � � �� 	���
)$�" � � (26)

Assume that the matrix
# " � � � �� 	���
 � � � � �� 	���
)$ is nonsingular. This

is partly a condition on the inputs being persistently exciting.
It is also a condition on sufficient correlation between the data
sets. The consequence is that from two data sets, it is possible
to derive a consistent parameter estimator as� ,� �� ���

�
� � � � 	���
 � � � � � 	���
 � �� "

� ,� �� ���
�
� � � � 	���
 � � � � 	���
!� �

(27)

This is indeed an instrumental variable estimator, [11].
A special case is mentioned in [2], [7], where some specific

measurement situations allow for repeated experiments where
the noise-free regressor vector remain the same, that is � ������ 	���

does not vary from one experiment to another. It is though also
possible to apply the estimator (27) in other situations, and the
‘experiments’ can be allowed to be overlapping, as long as the
basic assumptions are satisfied. In particular two subsets of a
single experiments may be used, as illustrated in Figure 3.""# "# time

data set 1

data set 2

Figure 3: Split of a total data set into two overlapping ones.

Results:

1. If the total data set can be split into parts, where the mea-
surement noise

���	���
9) �� 	���
 in the different parts are uncor-
related, but the noisefree regressors � ��	���
 are correlated,
it is possible to derive simple and consistent estimates of
the parameter vector

�
.

2. The estimates are IV variants, with delayed input-output
data as instruments.

6 Nonparametric modeling of the input

A tempting approach is to treat the signal values of the undis-
turbed input, ����	���
9) � " ,�) � � � ) � as auxiliary unknowns to
be estimated. It seems though not to be a pertinent approach
in general as shown in the following. When assumption A2e
holds it is though fully feasible.

Example 6.1. Consider a case as simple as possible, namely a
purely static system:

��	���
+" 6 ����	���
 - ���	���

�
	���
+" ����	���
 - ���	���
 � (28)

We regard� " 	 6 
 
 
 � 
 � ) $ � " 	�� � 	 , 
 � � � � � 	 � 
�
 � (29)

as the unknowns. Assume the data to be Gaussian distributed.
The negative loglikehood function will then be (neglecting a
constant term and skipping a factor of

� � � )% 	 � )&$ � 
 " ,� 
�
 �� ���
�
" ��	���
 � 6 � � 	���
%$ �

- ,� 
 � �� ���
�
" �
	���
 � ����	���
%$ � -('�)+* 
 
 -('�)+* 
 � � (30)

The loss function
% 	 � ),$#�(
 is easily minimized with respect to$#� giving

����	���
." 6 
 ����	���
 - 
 
 �
	���

6 � 
 � - 
 
 ) � " ,�) � � � ) � � (31)



The concentrated loss function becomes, after inserting (31)
into (30) and some straightforward calculations� 	 � 
 " ������ � % 	 � )&$ � 


" ,
	'6 � 
 � - 
 
�


� �� 
 - 6 � �� � � ��6 �� 
 �	�
- '�) * 
 
 - '�) * 
 � ) (32)

where the covariance elements are�� 
 " ,� �� ���
�
� � 	���
 (33)

etc. One can consider some different cases, based on what
assumptions on noise variances apply. The results below are
proved in [9].

Results:

1. The estimate
�6 will not be consistent in the cases� 
 � and 
 
 are both unknown, (A2c).� One of the variances 
�� and 
�
 is known and the

other is unknown.

2. The estimate
�6 will be consistent, if either� both the noise variances 
�
 and 
�� are known,

(A2d).� their ratio 
 
 ��
 � is known, (A2e).

3. Under any of the assumptions A2d or A2e it is in fact
possible to consistently estimate the gain 6(� , even if there
are � � data values, and

� - � (or
� - , ) unknowns.

It is hence not the fact that the number of unknowns
grows as fast as the number of data points, that causes the
consistency problem in the other cases.

Extension of the above results to the dynamic case are possible,
and will be reported elsewhere.

7 Parametric modelling of the input

In this method the errors–in–variable model (1), (3) is regarded
as a multi-variable system with both �
	���
 and ��	���
 as outputs,
[8]. Of crucial importance for this approach is the assumption
A3b,

����	���
 "�
 	�� ��� 
� 	'� ��� 
�
 	���
#) (34)

where 
 	���
 is a white noise with variance 
�� and the polynomi-
als 
 	'� ��� 
 , � 	�� ��� 
 are of the form


 	�� ��� 
+" ,.-�� � � ��� -%131(17-����
� � �� 	�� ��� 
+" ,.-�� � � ��� -21(1317-���� � � � ) (35)

with known degree � ; moreover, 
 	���
 and
� 		�!
 are relatively

prime and asymptotically stable polynomials. In this way, the

whole errors-in-variables model can be considered as a system
with a two–dimensional output vector � 	���
 " 	��
	���
 ��	���
�
 � and
three mutually uncorrelated white noise sources 
 	���
 , �� 	���
 and���	���
 :� ��	���


��	���
 � " � � ������� �� ��� ��� � , �� ��� ��� � � ��� ��� � ��� ��� � � ��� ��� � � , � !" 
 	���
�� 	���
���	���


#$
� (36)

The model (36) can be converted into the innovations form

� 	���
 "&% 	'� ��� 
  	���
 ) (37)

where % 		�!
 is the square ( �(' � ) canonical (stable and
minimum–phase) spectral factor of � � 	*).
 and  	���
 is the two–
dimensional innovations vector with identity covariance ma-
trix. Since the innovations  	���
 of model (37) can also be in-
terpreted as the one step ahead prediction errors, a prediction
error method can be applied for the identification of the system
parameters. The parameter vector

�
includes the coefficients of

polynomials
�
	�� ��� 
 , $&	'� ��� 
 , 
 	�� ��� 
 , � 	'� ��� 
 and the vari-

ances 
 � , 
�
 , 
 � . The solution to the identification problem is
then determined by minimizing the loss function+ 	 � 
#"-,/.10 � ,� �� ���

�
 	���
  �#	���
 � ) (38)

where
�

is the number of input–output samples.

Results:

1. This method yields consistent parameter estimates under
quite mild conditions. See [8].

2. There are (also other) ways to introduce parametric mod-
els for the unperturbed input ����	���
 , that leads to consistent
parameter estimators.

8 Conclusions

For errors-in-variables identification, it is often crucial what
general assumptions on noise properties and on the unperturbed
input that are imposed. Some assumptions of these types need
to be made in order to get consistent estimates of the system
parameters. Furthermore, it is not possible to verify the va-
lidity of these assumptions from the same experimental data.
In contrast, in the case of no input errors (‘classical identifi-
cation’ situations) these assumptions are not so critical. Then
they normally do not influence the consistency properties, but
the accuracy of the estimates.

Concerning the assumptions on the experimental condi-
tions, the consequences can be summarized as follows.

1. If the unperturbed input is known to be periodic, it is easy
to derive simple and consistent estimators. These estima-
tors can also be applied to the case of a more general input,
if the recorded data sets can be splitted into two (possibly
overlapping) data sets, where the unperturbed inputs are
correlated, and the noise contribution to the data are un-
correlated.



2. Another situation occurs when the unperturbed input is re-
garded as completely unknown, and estimated along with
the system parameters. In the general case, it is not pos-
sible to get consistent parameter estimates. However, if
the ratio between the output noise variance and the input
noise variance is known, this approach is fully feasible.
It leads to consistent estimates of the system parameters,
despite that simultaneously all values of the unperturbed
input are estimated.

3. Another possibility is to model the unperturbed input in a
parametric way, for example that it is coming from a sta-
tionary process with a rational spectrum. This means that
a form of joint input-output estimation process can be ap-
plied. This will be a prediction error method tied to a par-
ticular parameterization of the measured data, and gives
consistent parameter estimates under weak assumptions.
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