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Abstract

This paper describes several fast algorithms for approximation
of the maximum entropy estimate of probability density func-
tions on the basis of a finite number of sampled data. The
proposed algorithms are compared with the exact maximum
entropy estimate in terms of approximation accuracy and com-
putational efficiency. Some application examples are given.

1 Introduction

In several scientific and engineering applications the problem
of estimating the probability density function (p.d.f.) of a ran-
dom variable on the basis of a finite number of realizations is
of crucial interest. In measurement systems, for instance, such
estimate gives a complete characterization of a sensor capabili-
ties at different operating conditions. Moreover, whenever one
is interested in estimating the interval of variation with a pre-
scribed confidence level (as, for instance, ”the 95% confidence
interval”), the whole probability density function of the vari-
able has to be known a priori (e.g., gaussianity of the p.d.f.) or
estimated from the available data. In its seminal work, Jaynes
[1] has introduced the principle of maximum entropy as the un-
derlying theoretical basis to tackle the p.d.f. estimation prob-
lem when the only a priori knowledge available is through mo-
ments of the p.d.f itself. Jaynes approach leads to the most uni-
form (or unbiased) p.d.f. estimate conditioned on the available
a priori information. From a computational point of view, the
application of the maximum entropy principle leads to the cast-
ing and solution of a nonlinear optimization problem of poly-
nomial complexity. Several variations of standard optimiza-
tion algorithms have been implemented for the solution of such
problem, see for instance [2], [3], [4]. Related problems have
also been investigated: [2] discusses the inverse problem of
determining the set of constraints that optimally describes the
observed samples accordingly to the MinMax measure [5]; [6]
and [7] have discussed conditions on the moment constraints
that guarantees the existence and uniqueness of a maximum en-
tropy p.d.f. Much less explored, at least to the authors knowl-
edge, is the study of numerical schemes for the approximation
of the maximum entropy estimate. Such study can be of inter-
est in situations in which the p.d.f. is required on-line: if this
is the case, the solution of the nonlinear optimization problem

may be too computational demanding, while approximated so-
lutions, obtained with faster computational schemes, may be
more appropriate. One such situation, that has motivated the
present research, is that of on-line localization and tracking of
autonomous vehicles when measurement errors are unknown
but bounded, with known worst case bound. Standard algo-
rithms from set-membership theory are employed to determine
the feasible set in which the vehicle is located [8], [9]; however,
more information could be obtained by estimating on line the
p.d.f. of some of the observed variables within the bounds de-
termined by the set-membership algorithms. Since the estimate
has to be produced on-line, efficiency in the numerical compu-
tation is critical for the proper integration of the p.d.f. estimate
in the localization and tracking algorithms.

With this background and motivations, in this paper a suite of
approximating numerical schemes for the maximum entropy
estimate of the p.d.f. from a finite number of samples are pro-
posed and compared with the exact estimate. The proposed al-
gorithms are all based on the construction of the approximating
function as a linear combination of basis functions; the func-
tions may be problem-specific, and selected on the basis of the
available data. The results obtained from numerical simula-
tions show the validity of the proposed approach.

The paper is organized as follows: in the next section the prob-
lem is formally stated, the maximum entropy p.d.f. estimation
approach is reviewed, and the numerical algorithm for exact
estimation described; in section 3 the implemented approxi-
mating algorithms are described; in section 4 the algorithms
are compared among themselves and with the exact estimate
in terms of accuracy and computational efficiency using simu-
lated data; finally, some conclusions are given.

2 Background and problem statement

Let ���� be an unknown p.d.f. defined over a finite real interval
��� �� and subject to the natural probabilty constraints:
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Let us suppose that � additional moment constraints on � are
known in the form:� �
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with known functions ����� and known real constants ��.



The maximum entropy estimate of ���� is obtained by maxi-
mization of the Shannon entropy ���� associated to � subject
to the constraints given by equations (1) and (2), where the
Shannon entropy is given by:
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Jaynes [1] has shown that the maximization of ���� with re-
spect to � , subject to the constraints (1) and (2), leads to the
following analytical solution:
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where the Lagrangian multipliers �� � � � � � satisfy the follow-
ing relations:
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From a practical point of view, the determination of a maxi-
mum entropy p.d.f. from available data is reduced to the so-
lution of the nonlinear system of � equations (6). Although
it has been shown that this a nonlinear programming problem
of polynomial complexity, and that known methods are avail-
able for its solution, the computational cost associated to the
determination of the maximum entropy p.d.f is such to pre-
clude an on-line use of the estimate (see [3] for a thourough
discussion of several computational approaches to the determi-
nation of the maximum entropy p.d.f). The results obtained in
this paper have been obtained by applying a standard Newton-
Raphson method. In the next section some fast computational
algorithms for the approximated solution of the system (6) are
proposed.

3 Fast approximating algorithms

Three computationally efficient algorithms to obtain approxi-
mated solutions to the system (6) are now described. More-
over, it is assumed throughout the section that the functions � �
in equation (2) have the following form:

����� � �� � 	 � �� � � � � � (7)

The available data are the real constants �� in equation (2) The
proposed algorithms are based on the approximation of the
p.d.f. � (see equation (4)) with a linear combination of basis
functions:
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For any given set of basis functions ��	�, the coefficients �	
are determined by solving the following system of linear equa-
tions:
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The three algorithms differ in the choice of the set of basis
functions. Before describing the three possible choices imple-
mented, it is important to underline the relation between the ap-
proximating function � and the true maximume entropy p.d.f.
estimate � . Let the following notation be used, for any generic
function ���� and any integer �:
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Then by construction:

���� �	� � �� �� ��� � � �� � � � � � (11)

Since two functions are equal (but for a set of null measure) if
all their moments are equal, it follows that � 	 � as � 	
.

Algorithm 1: the basis functions �	 are taken as the Tcheby-
cheff polynomials, after normalization of the ��� �� interval to
the ��� �� interval:
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With this choice of basis functions, which is independent from
the available data (i.e., from the coefficients ��), the linear sys-
tem (9) can be directly solved.

Algorithm 2: the basis functions �	 are taken so that each of
them is the solution of a simplified maximum entropy estima-
tion problem involving one of the known moments; in partic-
ular, the basis function �	 is taken as solution of the following
problem:
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Applying Jaynes result to the problem (13), one obtains:
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where the �� and � are obtained as the solution of the follow-
ing nonlinear system:
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The computational advantage of this approach is that, instead
of solving one nonlinear system in � unknowns, one has to
solve � nonlinear equations in one unknown, each one inde-
pendent from the others. These equations can be potentially
solved in parallel, though we have implemented the algorithm
sequentially. After the � nonlinear equations have been solved,
the functions �	 are determined, and the linear system (9) can
be solved.

Algorithm 3: the basis functions �	 are taken so that each of
them is the solution of a simplified maximum entropy estima-
tion problem involving two of the known constraints; in partic-
ular, any basis function �	 is taken as solution of the following
problem:
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Of course for each �	 a different couple ���� ��� must be cho-
sen. Each function �	� � � �� � � � � � solution of the problem
(16) is again given through Jaynes formalism and the solution
of a nonlinear system of dimension two. After each � 	 has been
determined, the linear system (9) can be solved. As compared
to Algorithm 2, Algorithm 3 has an additional computational
burden due to the need of solving � systems of nonlinear equa-
tions of dimension two instead of one; moreover it requires the
choice of the couple ���� ��� to be associated to each �	. In our
implementation this choice has been arbitrarily made; however,

it may well be the case that some choices are to be preferred in
terms of approximating precision or computational efficiency.
Note that if only two moments are known, Algorithms 2 and 3
are coincident.

To summarize: the algorithm proposed are all based on the
use of basis functions to approximate the maximum entropy
estimate. The simplest choice is to use a priori defined basis
functions (Tchebycheff functions, in our case) and then solve a
linear system of equations to obtain the approximation � . Al-
gorithm 2 increases the computational effort by selecting basis
functions on the basis of the available data, and in particular
linking each basis function to a simplified maximum entropy
problem with one single moment constraint. Algorithm 3 in-
creases even more the computational effort by linking each ba-
sis function to a maximum entropy problem with two moment
constraints, where the two moment constraints are arbitrarily
chosen among the � available constraints. It is clear that one
could proceed and define an Algorithm 4, etc. increasing the
moment constraints to which the basis functions are related.
When all the � moments are employed, one comes back to the
original maximum entropy estimate (4).

One important point to note here is that in determining � with
the procedures described above, the natural probability con-
straint of equation (1) is not enforced anymore. In particular,
for Algorithms 2 and 3 each function � 	 respects the constraint,
since it is a Jaynes solution of a maximum entropy problem,
but their linear combination does not, since the coefficients � 	

can assume arbitrary real values. This loss of the probability
constraints is due to the fact that � is an approximation of � .
It has to be remarked, though, that � is convergent to � as the
number of known moments � increases, and � does respect the
natural probabilty constraints.

In the following section the approximating capabilities of the
proposed algorithm and their computational efficiency will be
investigated through simulative examples and comparison with
the true maximum entropy estimate.

4 Examples

The first simulative example considers data generated from an
hyperbolic distribution in the interval �� ��; 1500 samples have
been generated and are reported in the histogram in figure 1.
From the samples, the empirical moments of the data set have
been computed, and used as known terms � 	 in the algorithms
previously described. In figs. 2, 3, and 4 the results obtained
with the three algorithms using moment information with two,
three and four moments respectively are reported and compared
with the exact maximum entropy estimate obtained using four
moments information. The convergence process of all the three
algorithms is rather evident. The closeness between the true es-
timate and the approximation obtained with Algorithm 3 using
the same moment constraints is remarkable.

The second example presented here is related to the classic case
of data obtained from a truncated gaussian distribution. In this
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Figure 1: Data samples obtained from an hyperbolic distribu-
tion.

case the maximum entropy estimate requires only the knowl-
edge of two moments, and coincides with the true distribution
(if the moments are known exactly). First Algorithms 2 and
3 are considered, and compared with the exact maximum en-
tropy estimate as the number of moments used by the algorithm
is progressively increased from two to four; the moments have
been computed also in this case from a sample of 1500 data in
the interval �� ��, as in the previous case. In figure 5 the re-
sults obtained with Algorithm 2 are shown. The enlargement
in the figures show the convergent behaviour of the algorithm
as the number of moments increases. Similar results are ob-
tained with Algorithm 3. Note, however, that when only two
moments are used, the resulting approximation gets slightly be-
low zero toward the end of the interval; increasing the number
of moments the failure in satisfying the probability constraints
disappears. The results obtained with Algorithm 1 are shown
in figure 6, where a much slower convergence toward the exact
estimate can be noted; moreover, the failure in satisfying the
probability constraints is present in all the estimates obtained
using up to six moments.

The three proposed algorithms and the algorithm for the exact
maximum entropy estimate are now compared in terms of com-
putational efficiency. An ensemble of 15 different data realiza-
tions have been generated, with different distributions includ-
ing gaussian, hyperbolic, exponential, and some combinations
of the above, in order to include probability densities with more
than one maximum. For each of the distributions in the set, the
exact maximum entropy algorithm, and the algorithms 1, 2 and
3 have been run using a number of moment constraints ranging
from 2 to 6. The mean computational time and the variance
obtained from the various methods over this set of distributions
is reported in figure 7. The computational time reported is in
seconds, and obtained from the implementation of all of the
above methods in Matlab on an AMD 1.1 MHz PC. It can be
seen that, starting from the fourth moment on, the computa-
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Figure 2: Probability density function estimates from the data
reported in figure 1 obtained with Algorithm 1, based on the use
of Tchebycheff functions. Black line is the exact maximum en-
tropy estimate obtained using four moments obtained from the
data. Dotted, dash-dotted and dashed lines are the Tchebicheff
approximations obtained using two, three and four data mo-
ments, respectively.

tional saving obtained with the use of the fast approximating
algorithms becomes consistent.

5 Conclusions

Three different algorithms have been presented for a computa-
tionally efficient approximation of the maximum entropy esti-
mate of a p.d.f. from a finite sample. The algorithms are all
based on approximating the p.d.f. estimate through a set of ba-
sis functions. The basis functions may be determined by solv-
ing a reduced complexity maximum entropy problem linked to
the original problem. The closer the link to the original prob-
lem, the fastest the convergence of the approximation to the
true maximum entropy estimate, and the lower the computa-
tional benefit of the approach. Simulation results show the con-
vergence properties of the algorithm proposed as the number of
data moments considered in the computation increases, and the
computational advantages with respect to a standard Newton-
Raphson method for the determination of the true estimate.

Current work is focusing toward the application of the pro-
posed approach in localization and tracking problems where
the data interval is determined through the application of set-
membership algorithms.
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exact maximum entropy estimate obtained using four moments
obtained from the data. Dotted, dash-dotted and dashed lines
are the Algorithm 2 approximations obtained using two, three
and four data moments, respectively. The dashed line is barely
distinguishable from the black line in the figure.

References

[1] E.T. Jaynes, ”Information theory and statistical mechan-
ics”, Phys. Rev, vol. 106, pp. 361-373, 1957.

[2] M. Srikanth, H.K. Kesavan, P.H. Roe, ”Probability den-
sity function estimation using the MinMax measure”,
IEEE Trans. Sys. Man Cyber. - part C, vol.30, n.1, pp.
77-82, 2000.

[3] X. Wu, ”Calculation of maximum entropy densi-
ties with application to income distribution”, in re-
vision to J. Econometrics, available on line at
http://are.berkeley.edu/x̃iming/, 2002.

[4] D. Ormoneit, H. White, ”An efficient algorithm to com-
pute maximum entropy densities”, Econometric reviews,
vol.18, n.2, pp.127-140, 1999.

[5] J.N. Kapur, G. Baciu, H.K. Kesavan, ”The MinMax infor-
mation measure”, Int. J. Sys. Sci., vol. 26, n.1, pp. 1-12,
1995.

[6] L.R. Mead, N. Papanicolau, ”Maximum entropy in the
problem of moments”, J. Math. Phys., vol.25, n.8,
pp.2404-2417, 1984.

[7] A. Tagliani, ”Maximum entropy in the discrete general-
ized moment problem”, Statistica, vol. LX, pp. 59-72,
2000.

[8] M.Milanese, A. Vicino, ”Information based complexity
and nonparametric worst-case system identification”, J.
Complexity, vol. 9, pp. 427-446, 1993.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

pdf approximation with Algorithm 3

Figure 4: Probability density function estimates from the data
reported in figure 1 obtained with Algorithm 3. Black line is
the exact maximum entropy estimate obtained using four mo-
ments obtained from the data. Dotted, dash-dotted and dashed
lines are the Algorithm 3 approximations obtained using two,
three and four data moments, respectively. The dashed line is
undistinguishable from the black line in the figure.

[9] A.Caiti, A.Garulli, F.Livide, D. Prattichizzo, ”Set-
membership acoustic tracking of autonomous underwater
vehicles”, Acta Acustica/Acustica, vol. 88, pp. 648-652,
2002.



0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

2.96

2.98

3

3.02

3.04

3.06

3.08

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

0.8 0.85 0.9 0.95

0

0.05

0.1

0.15

0.2

0.25

 

 

 

Figure 5: Probability density function estimates from gaussian
distributed data. Black line is the exact maximum entropy es-
timate obtained using two moments obtained from the data.
Dotted, dash-dotted and dashed lines are the Algorithm 2 ap-
proximations obtained using two, three and four data moments,
respectively.
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Figure 6: Probability density function estimates from gaussian
distributed data. Black line is the exact maximum entropy es-
timate obtained using two moments obtained from the data.
Dotted, dash-dotted and dashed lines are the Tchebycheff ap-
proximations obtained using two, four and six data moments,
respectively.
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