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Abstract

The purpose of this paper is to provide explicit results on the
almost sure asymptotic performance of adaptive encoding and
prediction procedures for finite-state Hidden Markov Models.
In addition, Rissanen’s tail condition [14] will be verified, from
which a lower bound for the mean-performance of universal
encoding procedures will be derived. The results of this paper
are based on [10].

1 Introduction

Hidden Markov Models have become a basic tool for model-
ing stochastic systems with a wide range of applicability. For
a general introduction see [16]. The estimation of the dynam-
ics of a Hidden Markov Model is a basic problem in applica-
tions. A key element in the statistical analysis of HMM-s is
a strong law of large numbers for the log-likelihood function,
see [11], [12], [3]. An alternative tool that has been widely
used in linear system identification is theory ofL-mixing pro-
cesses. The relevance of this theory is established in [10] using
a random-transformation representation for Markov-processes
(see [9]). The advantage of this approach is that, under suit-
able conditions a more precise characterization of the estima-
tion error-process can be obtained, which, in turn, is crucial for
the analysis of the performance of adaptive prediction, see [6].

The purpose of this paper is to provide explicit results on the
almost sure asymptotic performance of adaptive encoding and
prediction procedures for finite-state Hidden Markov Models.
In addition, Rissanen’s tail condition [14] will be verified, from
which a lower bound for the mean-performance of universal
encoding procedures will be derived.

2 Hidden Markov Models

We consider Hidden Markov Models with a general state space
X and a general observation or read-out spaceY. Both are
assumed to be Polish spaces, i.e. they are complete, separable
metric spaces.

Definition 2.1 The pair(Xn, Yn) is a Hidden Markov process
if (Xn) is a homogenous Markov chain, with state spaceX
and the observations(Yn) are conditionally independent and
identically distributed given(Xn).

If X andY are finite, say|X | = N , |Y| = M , then we have

P (Yn = yn, . . . Y0 = y0|Xn = xn, . . . X0 = x0) =

n∏

i=0

P (Yi = yi|Xi = xi).

In this case we will use the following notations

P (Yk = y|Xk = x) = b∗x(y), B∗(y) = diag(b∗i(y)),

wherei = 1, . . . , N , and∗ indicates that we take the true value
of the corresponding unknown quantity.

Let Q∗ be the transition matrix of the unobserved Markov pro-
cess(Xn), i.e.

Q∗ij = P (Xn+1 = j|Xn = i).

A key quantity in estimation theory is the predictive filter de-
fined by

p∗jn+1 = P (Xn+1 = j|Yn, . . . , Y0). (1)

Writing p∗n+1 = (p∗1n+1, . . . , p
∗N
n+1)

T , the filter process satisfies
the Baum-equation

p∗n+1 = π(Q∗T B∗(Yn)p∗n), (2)

whereπ is the normalizing operator: forx ≥ 0, x 6= 0 set
π(x)i = xi/

∑
j xj , see [1]. Herep∗j0 = P (X0 = j).

In practice, the transition probability matrixQ∗ and the ini-
tial probability distributionp∗0 of the unobserved Markov chain
(Xn) and the conditional probabilitiesb∗i(y) of the observa-
tion sequence(Yn) are possibly unknown. For this reason we
consider the Baum-equation in a more general sense

pn+1 = π(QT B(Yn)pn), (3)

with initial conditionp0 = q, whereQ is a stochastic matrix,
pn is a probability vector onX , andB(y) = diag(bi(y)) is a
collection of conditional probabilities.



Continuous read-outswill be defined by taking the following
conditional densities:

P (Yn ∈ dy|Xn = x) = b∗x(y)λ(dy),

whereλ is a fixed nonnegative,σ-finite measure. Let

B∗(y) = diag(b∗i(y)),

wherei = 1, . . . , N , then the conditional probability defined
under 1 will satisfy the Baum-equation. In the rest of the sec-
tion we deal with continuous read-out, which includes the finite
case in a natural manner.

We will take an arbitrary probability vectorq as initial condi-
tion, and the solution of the Baum equation will be denoted by
pn(q).

A key property of the Baum equation is its exponential stability
with respect to the initial condition. This has been established
in [11] for continuous read-outs. Here we state the result for
HMM-s with a positive transition probability matrix:

Proposition 2.1 Assume thatQ > 0 and bx(y) > 0 for all
x, y. Letq, q′ be any two initializations. Then

‖pn(q)− pn(q′)‖TV ≤ C(1− δ)n‖q − q′‖TV , (4)

where‖ ‖TV denotes the total variation norm and0 < δ < 1.

If Q is only primitive, i.e.Qr > 0 with some positive integer
r > 1, then (4) holds with a randomC.

Next we are going to introduce the notion of Doeblin-condition
(see [2]):

Definition 2.2 If there exists an integerm ≥ 1 such that
Pm(x,A) ≥ δν(A) is valid for all x ∈ X and A ∈ B(X )
with some probability measureν, then we say that the Doeblin-
condition is satisfied.

Now let(Xn, Yn) be a Hidden Markov process and assume that
the state spaceX and the observed spaceY are Polish.

Lemma 2.1 Assume that the Doeblin condition holds for the
Markov chain(Xn). Then the Doeblin condition holds for
(Xn, Yn) as well.

3 Markov chains andL-mixing processes

Now we are going to introduce a class of processes calledL-
mixing processes which have been used extensively in the sta-
tistical analysis of linear stochastic systems, see [5].

Definition 3.1 A stochastic process(Xn) (n ≥ 0) taking its
values in an Euclidean space isM -bounded if for allq ≥ 1

Mq = sup
n≥0

E1/q‖Xn‖q < ∞.

Let (Fn) and(F+
n ) be two sequences of monoton increasing

and monoton decreasingσ-algebras, respectively such thatFn

andF+
n are independent for alln.

Definition 3.2 A stochastic process(Xn) taking its values in
a finite-dimensional Euclidean space isL-mixing, if it is M -
bounded and with

γq(τ) = sup
n≥τ

E1/q‖Xn −E(Xn|F+
n−τ )‖q

we have

Γ(q) =
∞∑

τ=0

γq(τ) < ∞.

The following proposition shows the importance of theL-
mixing processes.

Proposition 3.1 Let (Xn) be a Markov chain with state space
X , whereX is a Polish space, and assume that the Doeblin
condition is valid form = 1. Furthermore letg : X −→ R be
a bounded, measurable function. Theng(Xn) is anL-mixing
process.

4 Estimation of Hidden Markov Models

This section gives a brief outline of the maximum likelihood
estimation of Hidden Markov Models. Consider a Hidden
Markov Process(Xn, Yn), where the state spaceX is finite
and the observation spaceY is continuous, a measurable sub-
set ofRd. Assume that the transition probability matrix and
the conditional read-out densities are positive, i.e.Q∗ > 0 and
b∗i > 0 for all i, y. Then the process(Xn, Yn) satisfies the
Doeblin-condition.

Let the invariant distribution ofX beν and the invariant distri-
bution ofX × Y beπ. Then

πi(dy) = νib
∗i(y)λ(dy), (5)

whereπi denotes the components ofπ. Furthermore let the
running value of the transition probability matrixQ and the
running value of the conditional read-out densities be also pos-
itive, i.e. Q > 0, bi(y) > 0, respectively.

With the notationpi
n = P (Xn = i|Yn−1, . . . , Y0) we have

pn+1 = π(QT B(Yn)pn) = f(Yn, pn).

We use capital letters for random variables and lower cases for
their realizations, i.e.X is a random variable andx is a realiza-
tion of X. The only exception isp, where the meaning depends
on the context.

The logarithm of the likelihood function is

n−1∑

k=1

log p(yk|yk−1, . . . y0, θ) + log p(y0, θ).



Here thek-th term fork ≥ 1 can be written as

log
∑

i

bi(yk)P (i|yk−1, . . . , y0, θ) = log
∑

i

bi(yk)pi
k.

Now write
g(y, p) = log

∑

i

bi(y)pi, (6)

then we have

log p(yN , . . . , y0, θ) =
N∑

k=1

g(yk, pk) + log p(y0, θ). (7)

It is easy to see that the Doeblin condition is not satisfied for
the process(Xn, Yn, pn), thus Proposition 3.1 is not applicable
directly. For this reason we look for a different characterization
of (Xn, Yn, pn).

Theorem 4.1 Consider a Hidden Markov Model(Xn, Yn),
where the state spaceX is finite and the observation spaceY
is continuous, a measurable subset ofRd. LetQ,Q∗ > 0 and
bi(y), b∗i(y) > 0 for all i, y. Let the initialization of the pro-
cess(Xn, Yn) be random, where the Radon-Nikodym derivate
of the initial distributionπ0 w.r.t the stationary distributionπ
is bounded, i.e.

dπ0

dπ
≤ K. (8)

Assume that for alli, j ∈ X
∫
| log bj(y)|qb∗i(y)λ(dy) < ∞. (9)

Then the processg(Yn, pn) is L-mixing.

Remark 4.1 Since the positivity ofQ implies that the station-
ary distribution of(Xn) is strictly positive in every state and
the densities of the read-outs are strictly positive Condition (8)
is not a strong condition. For example for the random initial-
ization we can take a uniform distribution onX and an arbi-
trary set ofλ a.e. positive density functionsbi

0(y).

To analyze the asymptotic properties of the right hand side of
(7) Theorem 4.1 seems to be relevant. Under the conditions
of Theorem 4.1g(y, p) is anL-mixing process and the law of
large numbers is valid for such processes, see [5]. This implies
the existence of the limit of (7).

Consider now afinite state-finite read-outHMM. This case fol-
lows from Theorem 4.1, but the integrability condition (9) is
simplified due to the discrete measure.

Theorem 4.2 Consider the Hidden Markov Model(Xn, Yn),
whereX andY are finite. Assume that the process(Xn, Yn)
satisfies the Doeblin condition. Let the running value of the
transition probability matrixQ be positive andbi(y) ≥ δ > 0
for all i, y. Then with a random initialization onX × Y we
have thatg(Yn, pn) is anL-mixing process.

Consider a finite state-finite read-out HMM, parameterized by
θ, where|X | = N and|Y| = M andθ containing the elements
of the transition probability matrix and the read-out probabili-
ties. Thusθ is anN2 + NM − 2N dimensional vector with
coordinates between 0 and 1. Furthermore let the ML estimate
of the true parameterθ∗ be denoted bŷθN . Due to [11] the gra-
dient process∂pn(θ)/∂θ is also exponentially stable, thus the
process∂g(Yn, pn(θ))/∂θ is an L-mixing process, see [10].
Similarly it can be shown that∂2g(Yn, pn(θ)/∂θ2 is also an
L-mixing process. The arguments of [6] yield the following
result.

Theorem 4.3 Consider the Hidden Markov Model(Xn, Yn),
whereX and Y are finite. LetQ,Q∗ > 0 and bi(y) ≥ δ,
b∗i(y) ≥ δ for all i, y, whereδ > 0. Let θ̂N be the ML estimate
of θ∗. Thenθ̂N − θ∗ can be written as

−(I(θ∗)−1 1
N

N∑
n=1

∂

∂θ
log p(Yn|Yn−1, . . . , Y0, θ

∗) + rn, (10)

wherern = OM (N−1), i.e Nrn is M -bounded, andI(θ∗) is
the Fisher-information matrix.

A key point here is that the error term isOM (N−1). This en-
sures that all basic limit theorems, that are known for the dom-
inant term, which is a martingale, are also valid forθ̂N − θ∗.

Next we are going to prove that the tail-condition in Rissanen-
theorem, see in [14], for the error term of the estimationθ is
satisfied.

Theorem 4.4 Under the condition of Theorem 4.3 we have
∞∑

N=1

P (N
1
2 (θ̂N − θ∗) > c log N)) < ∞,

wherec > 0 is an arbitrary constant

Proof: Let

Jn =
n∑

i=1

∂

∂θ
log p(Yi|Yi−1, . . . , Y0, θ)|θ=θ∗

Then(Jn) is a martingale, andsup(Jn − Jn−1) is

∂

∂θ
log p(yn|yn−1, . . . , y0, θ)|θ=θ∗ ≤ c (11)

with some positive constantc > 0. Let the martingale(Jn) be
Gn-adapted. Furthermore let(An) denote the increasing pro-
cess associated with the submartingale(J2

n), making
J2

n −An a martingale.An has a form

An =
n∑

k=1

E((Jk − Jk−1)2|Gk−1).

Then (11) implies that

An ≤ c′n (12)

with some positive constantc′. The following very simple
lemma is given in [13]:



Lemma 4.1 Let Jn be a square-integrable martingale such
that sup(Jn+1 − Jn) ≤ c a.s., wherec > 0. Then

exp(λJn − µAn)

is a positive supermartingale, whereλ is an arbitrary positive
number, andµ is a positive number depending only onλ andc.

As a consequence of the lemma we have that

E exp(λJn − µAn) ≤ K.

Using (12) we have

E exp(λJn − µc′n) ≤ K,

E exp(λJn) ≤ exp(c′′n), (13)

whereec” = Keµc′ .

Consider the procesŝJn = 1√
N

Jn for an arbitrary fixN . Using

inequality (13) forĴn with the respective increasing associated
processÂn = An

N andĉ = c
N < c atn = N we have

E exp(λ
1√
N

JN ) ≤ c′′. (14)

The last inequality and Markov’s inequality imply that

P (
1√
N

JN > d log N) =

P (exp(λ
1√
N

JN ) > exp(λd log N)) ≤ c′′

Ndλ
.

Thus ifdλ > 1 then
∞∑

N=1

P (
1√
N

JN > d log N) < ∞. (15)

Using Theorem 4.3 we have

1√
N

JN = N
1
2 (−I(θ∗))(θ̂N − θ∗) + OM (N− 1

2 ).

This implies that one term in the sum is

P (N
1
2 (−I(θ∗))(θ̂N − θ∗) + OM (N− 1

2 ) > d log N) <

P (N
1
2 (θ̂N − θ∗) >

d

2
log N) + P (OM (N− 1

2 ) >
d

2
log N),

andP (OM (N− 1
2 ) > d

2 log N) < CN−s for all s > 1 thus we
get that the second term is summable.

Using (15) this implies that

∞∑

N=1

P (N
1
2 (θ̂N − θ∗) >

d

2
log N) < ∞,

thus the tail probabilities are uniformly summable as stated in
the theorem.

In the next section we are going to introduce some conse-
quences of this result.

5 Encoding of finite state Hidden Markov Mod-
els

The negative logarithm of the conditional probability

− log p(yn|yn−1, . . . , y1, θ)

can be interpreted as a code length, see [15]. An adaptive en-
coding procedure is obtained if we setθ = θ̂n−1. Following
[7] we get the following result:

Theorem 5.1 Letsn denote the loss in codelength:

− log p(yn|yn−1, . . . , y1, θ̂n−1) + log p(yn|yn−1, . . . , y1, θ
∗).

Under the conditions of Theorem 4.3 we have

Eθ∗(sn) =
1
2n

p(1 + o(1)),

wherep = dim θ. Furthermore

lim
N→∞

1
log N

N∑
n=1

sn =
p

2

with probability 1.

This result can be used for model selection for HMM-s, see
[8], [4]. Due to the validity of Rissanen’s tail condition the
following ”converse theorem” is also true by virtue of the fun-
damental theorem of the theory of stochastic complexity (cf.
[14]):

Theorem 5.2 Let gn(y1, . . . , yn) be an arbitrary sequence of
compatible probability distributions. Then

lim inf
n→∞

1
log n

Eθ(− log gn(yn, . . . , y1) + log p(yn, . . . y1, θ))

is at leastp/2 except for a set ofθ’s with Lebesgue-measure 0.

Theorem 5.1 can be extended to performance indexes differ-
ent from the conditional entropy. Let(yn) be a binary process
taking value 0 or 1. Let e.g.̂yn be the predictor defined by

ŷn(θ) =
{

1 if qn(θ) = p(yn = 1|yn−1, . . . , y1, θ) > 1
2

0 otherwise.

Define q∗n = Pθ∗(Yn = 1|Yn−1, . . . , Y1, θ
∗) and similarly

qn = Pθ∗(Yn = 1|Yn−1, . . . , Y1, θ). Then the failure proba-
bility can be expressed as

Pθ∗(Ŷn(θ) 6= Yn) =

1/2∫

0

(1− qn)q∗ndϕn(qn(θ))+

1∫

1/2

(1− q∗n)qndϕn(qn(θ)) = Wn(θ),



wheredϕn(qn(θ)) is the distribution ofqn(θ) underPθ∗ .

Under the condition of Theorem 4.3ϕn(qn(θ)) can be shown
to converge in distribution toϕ(q(θ)) having an invariant dis-
tributionϕ(q, θ). Let

W (θ) = lim
n

Wn(θ).

For finiten the functionWn(θ) is smooth inθ. Assuming that
smoothness is inherited byW (θ) define

S∗ =
∂2

∂θ2
W (θ)|θ=θ∗ .

The adaptive predictor ofyn is defined as

ŷn = ŷn(θ̂n−1).

We have the following result:

Theorem 5.3 Let the loss in prediction performance be

Tn = Pθ∗(Ŷn(θ̂n−1) 6= Yn)− Pθ∗(Ŷn(θ∗) 6= Yn).

Under the conditions of Theorem 5.1 we have

E(Tn) =
1
2n

(TrS∗I(θ∗)−1 + o(1)), .

Moreover

lim
N→∞

1
log N

N∑
n=1

Tn = TrS∗I(θ∗)−1

with probability 1.

The invariant distribution ofϕ(q(θ)) in exact form even in the
simplest cases is unknown. Thus the theoretical value ofI(θ∗)
andS∗ is unknown.
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