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complexity and the observationéY;,) are conditionally independent and
identically distributed giveriX,).

Abstract
) ) ) - If X and) are finite, sayX| = N, || = M, then we have
The purpose of this paper is to provide explicit results on the

almost sure asymptotic performance of adaptive encoding and P(Y,, = v,,,... Yo = yo|Xp = Zn,... Xo = 2¢) =
prediction procedures for finite-state Hidden Markov Models.

In addition, Rissanen’s tail condition [14] will be verified, from n

which a lower bound for the mean-performance of universal HP(Yi = yilXi = ).
encoding procedures will be derived. The results of this paper =0

are based on [10]. In this case we will use the following notations

1 Introduction P(Yy, = y|X =z) =0"(y), B*(y) = diag(b™(y)),

Hidden Markov Models have become a basic tool for modevlv-hereZ =1, N and- indicates th"?“ we take the true value
: . . . L of the corresponding unknown quantity.
ing stochastic systems with a wide range of applicability. For
a general introduction see [16]. The estimation of the dynaret Q* be the transition matrix of the unobserved Markov pro-
ics of a Hidden Markov Model is a basic problem in applicecess(X,,), i.e.

tions. A key element in the statistical analysis of HMM-s is

a strong law of large numbers for the log-likelihood function, Qj; = P(Xnt1 = jlXn =1).

see [11], [12], [3]. An alternative tool that has been widely o o ) o

used in linear system identification is theorylofnixing pro- A key quantity in estimation theory is the predictive filter de-
cesses. The relevance of this theory is established in [10] usﬂﬁﬁ’d by ,

a random-transformation representation for Markov-processes Pl = P(Xng1 = j[Ya, ..., Yo). @)
(see [9]). The advantage of this approach is that, under syifriting phy = (P, p:N,)T, the filter process satisfies
able conditions a more precise characterization of the estings Baum-equation

tion error-process can be obtained, which, in turn, is crucial for

the analysis of the performance of adaptive prediction, see [6]. Phig = 7(Q*T B*(Y,)pr), 2)
The purpose of this paper is to provide expllqlt results on tf\\N erer is the normalizing operator: for > 0, z # 0 set
almost sure asymptotic performance of adaptive encoding an )i — 41/ S 29, see [1]. Her i _ P(Xo = )
prediction procedures for finite-state Hidden Markov Models. g ' Po 0=J)-

In addition, Rissanen’s tail condition [14] will be verified, fromin practice, the transition probability matrig* and the ini-

which a lower bound for the mean-performance of universtl probability distributionpf; of the unobserved Markov chain

encoding procedures will be derived. (X,,) and the conditional probabilitiels(y) of the observa-
tion sequencéY;,) are possibly unknown. For this reason we

2 Hidden Markov Models consider the Baum-equation in a more general sense

We consider Hidden Markov Models with a general state space Pt = 7(Q" B(Yz)pa), ®3)

X and a general observation or read-out spsiceBoth are

assumed to be Polish spaces, i.e. they are complete, separdfifpinitial conditionp, = ¢, whereQ is a StQChaSi“C matrix,
metric spaces. D, 1S @ probability vector o, and B(y) = diag(b*(y)) is a

collection of conditional probabilities.



Continuous read-outwill be defined by taking the following Let (F,,) and (F,") be two sequences of monoton increasing
conditional densities: and monoton decreasingalgebras, respectively such thag
andF," are independent for atl.
P(Y, € dy| X, = z) = b (y)A(dy),
Definition 3.2 A stochastic procesgX,,) taking its values in

where is a fixed nonnegatives-finite measure. Let T k ) . hat > V!
a finite-dimensional Euclidean spacelismixing, if it is M-

B*(y) = diag(b*'(y)), bounded and with

wherei = 1,..., N, then the conditional probability defined Y4(1) = sup EY || X,, — E(X,|F._ )|
under 1 will satisfy the Baum-equation. In the rest of the sec- nzr
tion we deal with continuous read-out, which includes the finite

: Wwe have
case in a natural manner. oo
We will take an arbitrary probability vectar as initial condi- I'(q) = Z 7q(T) < o0
tion, and the solution of the Baum equation will be denoted by =0

Pnla) The following proposition shows the importance of the
A key property of the Baum equation is its exponential stabilityixing processes.
with respect to the initial condition. This has been established

in [11] for continuous read-outs. Here we state the result fP‘}oposition 3.1 Let(X,) be a Markov chain with state space
HMM-s with a positive transition probability matrix: X, where X is a Polish space, and assume that the Doeblin

condition is valid form = 1. Furthermore lety : X — R be
Proposition 2.1 Assume that) > 0 andb*(y) > 0 for all a bounded, measurable function. ThgiX,,) is an L-mixing
z,y. Letq, ¢’ be any two initializations. Then process.

Ipn(q) = pu(@)llrv < C(1=6)"lg = ¢[lrv, (4

where|| |7y denotes the total variation norm afd< ¢ < 1.

4 Estimation of Hidden Markov Models

This section gives a brief outline of the maximum likelihood
) o ) o estimation of Hidden Markov Models. Consider a Hidden
If Q is only primitive, i.e.Q" > 0 with some positive integer \1arkov ProcesgX,,Y,), where the state spack is finite

r > 1, then (4) holds with a randod. and the observation spageis continuous, a measurable sub-
Next we are going to introduce the notion of Doeblin-conditiofet 0fR?. Assume that the transition probability matrix and
(see [2)): the conditional read-out densities are positive,@&.> 0 and

b*t > 0 for all 4,y. Then the proces€X,,,Y,,) satisfies the

Definition 2.2 If there exists an integern > 1 such that Doeblin-condition.

P™(x,A) > év(A)isvalid forallz € X and A € B(X) Let the invariant distribution ok ber and the invariant distri-
with some probability measurg then we say that the Doeblin-pution of ¥ x ) ber. Then
condition is satisfied.

T (dy) = vib™ (y) A(dy), ()
Now let(X,,, Y,,) be a Hidden Markov process and assume that ‘
the state spac# and the observed spageare Polish. wherern® denotes the components of Furthermore let the
running value of the transition probability matr@@ and the
Lemma 2.1 Assume that the Doeblin condition holds for th&unning value of the conditional read-out densities be also pos-
Markov chain(X,,). Then the Doeblin condition holds foritive, i.e.@ > 0,0'(y) > 0, respectively.

(Xn,Yn) as well. With the notatiorp!, = P(X,, = i|Y,,_1,...,Yy) we have

3 Markov chains and L-mixing processes Prt1 = QT B(Ya)pn) = f(Yn, pn)-

Now we are going to introduce a class of processes cdlled We use capital letters for random variables and lower cases for

mixing processes which have been used extensively in the $teir realizations, i.eX is a random variable andis a realiza-

tistical analysis of linear stochastic systems, see [5]. tion of X. The only exception ig, where the meaning depends
on the context.

Definition 3.1 A stochastic procesgX,,) (n > 0) taking its e logarithm of the likelihood function is
values in an Euclidean spacelg-bounded if for ally > 1
n—1
My = SgpoEl/q”Xan < oo. > log p(yklyk-1, - - - y0,0) + log p(yo, 0).
- k=1



Here thek-th term fork > 1 can be written as Consider a finite state-finite read-out HMM, parameterized by
_ _ _ 0, where|X| = N and|)| = M andé containing the elements
log > b (yk) Plilyx—1, - -, y0,0) = log > b (yx)p}- of the transition probability matrix and the read-out probabili-
i ¢ ties. Thus is anN? + NM — 2N dimensional vector with
coordinates between 0 and 1. Furthermore let the ML estimate
_ i\ of the true parametér* be denoted by . Due to [11] the gra-
9(yp) = log ; v’ ©) dient proces®)p,,(0)/00 is also exponentially stable, thus the
processdg(Y,, pn(0))/06 is an L-mixing process, see [10].
Similarly it can be shown tha®?¢(Y,,, p,(0)/06? is also an
N L-mixing process. The arguments of [6] yield the following

1ng(yN7m,yo,9)Zzg(yk,pk)—Hng(yo,@). (7) result.
k=1

Now write

then we have

Theorem 4.3 Consider the Hidden Markov ModéK,,,Y;,),
It is easy to see that the Doeblin condition is not satisfied fathere X and Y are finite. LetQ,Q* > 0 andd'(y) > o,
the proces$X,,, Y, pn ), thus Proposition 3.1 is not applicable**(y) > 4 for all 7,3, whered > 0. Letdy be the ML estimate
directly. For this reason we look for a different characterizatiasf 9*. Thendy — 6* can be written as
of (X, Yo, Pn). | N P

—(I(O) ' =Y —logp(Yp|Yn_1,..., Yy, 0" 1

Theorem 4.1 Consider a Hidden Markov ModelX,,,Y,,), ) an::l o0 o8p(¥ulYo-t, .- 0,0%) + 7, (10)
where the state spack is finite and the observation spage
is continuous, a measurable subse®¥f Let@, Q* > 0 and
bi(y),b* (y) > 0 for all i,y. Let the initialization of the pro-
cess(X,,Y,) be random, where the Radon-Nikodym deriva
of the initial distribution7y w.r.t the stationary distributionr
is bounded, i.e.

wherer,, = Oy (N71), i.e Nr, is M-bounded, and (6*) is
the Fisher-information matrix.

R key point here is that the error termd,, (N ~'). This en-
sures that all basic limit theorems, that are known for the dom-
inant term, which is a martingale, are also valid figr — 6*.

dmo _ o ®)
dem = Next we are going to prove that the tail-condition in Rissanen-
Assume that for all, j € X theorem, see in [14], for the error term of the estima#ois
satisfied.
log & (y)|26™ (y) M(dy) < oo. 9
/| s W™ W)Mdy) ®) Theorem 4.4 Under the condition of Theorem 4.3 we have

Then the procesg(Y,,, p,,) is L-mixing. i PV} (G — 0%) > clog N)) < oo
N=1

Remark 4.1 Since the positivity of) implies that the station-
ary distribution of (X,,) is strictly positive in every state and
the densities of the read-outs are strictly positive Condition (%)rO

wherec > 0 is an arbitrary constant

IS not a strong condition. For example for the random initial- of: Let

ization we can take a uniform distribution c¥i and an arbi- "9

trary set of\ a.e. positive density function§(y). In = Z 20 log p(Y;|Yi—1,...,Y0,0)0=0
i=1

To analyze the asymptotic properties of the right hand side Bfen(/») is a martingale, anep(J, — J,—1) is

(7) Theorem 4.1 seems to be relevant. Under the conditions 0 1 P < 11
of Theorem 4.1(y, p) is an L-mixing process and the law of 96 08 P(Ynlyn—1,--- 0, O)jp—o- < ¢ (11)

large r_numbers is valiq fpr such processes, see [5]. This impligs,, some positive constant> 0. Let the martingalé.J;,) be
the existence of the limit of (7). Gn-adapted. Furthermore lét,,) denote the increasing pro-
Consider now dinite state-finite read-oiMM. This case fol- cess associated with the submartingal@), making

lows from Theorem 4.1, but the integrability condition (9) is/;; — A, a martingale A,, has a form

simplified due to the discrete measure. n
Ap = E((Jk — Ju-1)*|Gr-1).
Theorem 4.2 Consider the Hidden Markov ModéK,,,Y,,), k=1
where X’ and ) are finite. Assume that the process,,,Y,,) Then (11) implies that
satisfies the Doeblin condition. Let the running value of the

transition probability matrixQ be positive and‘(y) > 6 > 0

for all i,y. Then with a random initialization o’ x ) we with some positive constanf. The following very simple
have thaty(Y,,, p,,) is an L-mixing process. lemma is given in [13]:

A, <cdn (12)



Lemma 4.1 Let J,, be a square-integrable martingale suctb Encoding of finite state Hidden Markov Mod-
thatsup(J,+1 — J,) < ca.s., where: > 0. Then els

exp(AJp, — pAy,) The negative logarithm of the conditional probability

is a positive supermartingale, whekeis an arbitrary positive

- logp(yn|yn—17 < Y1, 6
number, and. is a positive number depending only d@andc. )

can be interpreted as a code length, see [15]. An adaptive en-

As a consequence of the lemma we have that coding procedure is obtained if we sét= 6,,_;. Following
[7] we get the following result:
EeXp()‘Jn - H“ATL) S K

Using (12) we have Theorem 5.1 Lets,, denote the loss in codelength:
Eexp()\,]n — Iuc/n) <K, - Ing(yn‘yn—la s Y1, én—l) + Ing(yn|yn—17 < Y1, 9*)-
Eexp(\J,) < exp(c’n), (13) Under the conditions of Theorem 4.3 we have

wheree®” = Kehe' 1
R Eg«(sn) = 2*;0(1 +0o(1)),
Consider the process, = ﬁJn for an arbitrary fixV. Using "

inequality (13) for.,, with the respective increasing associatefynerep = dim 6. Furthermore

processd,, = % andc= § < catn = N we have N
. p
lim Z Sp = =
1 N-oc log N "2
Eexp(A\—=Jy) < . 14 &N 3
p( JN N) < (14)
with probability 1.
The last inequality and Markov's inequality imply that
1 This result can be used for model selection for HMM-s, see
P(ﬁjN >dlog N) = [8], [4]. Due to the validity of Rissanen’s tail condition the
following "converse theorem” is also true by virtue of the fun-
1 c’ damental theorem of the theory of stochastic complexity (cf.
P(exp()\ﬁJN) > exp(Adlog N)) < N [14]):
Thus ifdA > 1 then .
- Theorem 5.2 Let g,,(v1, - .., y») be an arbitrary sequence of
1 . oy . . .
Z P(——Jn > dlog N) < oo. (15) compatible probability distributions. Then
N=1 \/N
lim inf FEo(—1log gn(yn, .- -, +1lo s Y1, 0
Using Theorem 4.3 we have n—oc logn o(~loggnly ) 2ol u1,9)

ey = NHLE) O = 67)+ On (V).

This implies that one term in the sum is

is at leastp/2 except for a set df's with Lebesgue-measure 0.

Theorem 5.1 can be extended to performance indexes differ-
ent from the conditional entropy. L&Y,,) be a binary process

P(N%(—I(e*))(éN —0%) + OM(N*%) > dlog N) < taking value 0 or 1. Let e.gj,, be the predictor defined by
1,4 . d 1 d N 1 if gu(0) = p(yn = Yyn—1,---,1,0) > %
P(N2 (O = 07) > Slog N) + P(Om(N™2) > S log N), Un(0) = { 0 otherwise. ! ! 2

andP(Op(N~7) > d1log N) < ON~* for all s > 1 thus we _ .
get that the second term is summable. Define ¢;, = Pp-(Y,, = 1|Y,—1,...,Y1,0) and similarly
Gn = Pp« (Y, = 1|Y,—1,...,Y1,0). Then the failure proba-

Using (15) this implies that bility can be expressed as

S PN by - 0%) > glogN) < 00, A 12

= Pur (7(6) # Ya) = [ (1= au)azdon(an(0))+
thus the tail probabilities are uniformly summable as stated in 0
the theorem.

1
In the next section we are going to introduce some conse- /(1 — ) @nden(qn(0)) = Wy (6),
guences of this result. 172
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