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Compared to this activity in the stabilization or estimation
Abstract problem, the quantization problem for system identification [6]
. L has not been adequately considered. When a controlled plant
In this paper, we analyse the effect of the quantization of Sigizy, heyworks is unknown or its system parameters may change
nals used for system identification and show an optimal qu"’HUring the operation, we need a form of adaptation for the con-
tization scheme for minimizing estimation errors under a cop, system. It is als,o necessary to know the effect of quanti-

straint on the numk_)er .Of subsections of the quantized S19N3'3tion of the 1/0 data used for the system identification. From
The optimal quantization scheme has the property that |t%

h S dd di f . s point of view, we consider this problem and give an optimal
coarse near the origin and dense at a distance from 't_ In ntization scheme for minimizing estimation errors under a
definition area of the signals. We also evaluate the estima

i d sh trade-off betw th tizati straint on the number of levels of the quantized signals. The
parameters and show a trade-off between the quantizalion gy, 5| guantization has a type of dual property to the case of
ror and the noise error under the constraint on the amount

: S bilization by [5], that is, the quantization is coarse near the
information in the output data. origin of the signals and it is dense at a distance from it. In
this paper, we deal with this problem based on the most sim-
1 Introduction ple setting and an idealized situation for system identification.

The reason is to reveal the essential property of the optimal

The problem of quantization of signals in control systems hg§antization problem in system identification and assist intu-
a long history, and in recent years this problem has again b§gp: understanding of it.

discussed actively by several research groups and interesting

results have been achieved. Such research activity is certalflyhis paper, we omit the proofs of the lemmas and theorems.

related to the recent rapid improvement in the transmission &gfer the full paper version [7] of this paper for the details.

pacity of computer networks. Long-distance automatic control

is now realistic with high-speed networks, and the necessity®f Formulation

understanding the effects of transmission limitations on infor-

mation in control systems has become more widely accepte®ealing with the general case for the strict treatment of the ef-
fect of signal quantization on system identification may result

The history of research on the quantization problem in _contriﬂl a discussion with excessive computation and a complexity
Theo_ry r;]]aybbeksun;n?rlégd as foIIc;w§.hWe can Sﬁe this ProRat hinders the intuitive understanding of the results. In order
em in the books of the 70s (e.g., [2]); however, the approaﬁp reduce such difficulty, there are two possible approaches.

$heleme_ntary and thr? quant||zta)1t|02 erior_ is rﬁgarded as NOBfe first is to simplify the treatment of the quantization, such
< tu_rmng point is the result by [3], [ ] in WNOSE papers _thzfs noise, in the classical manner. This approach is effective for
behaviour of control systems, and their stability or state esti

. . . ESUMis case of sufficiently precise quantization of /0O data, and the
tion, are analysed in detail. In the last few years, stab|I|zat|9Q

. X : ult is similar to the usual case of analogue signals. However,
problems of quantized systems have been gctlvely con&derm% approach cannot reveal the property that is unique to the
€9 .[11]’ [1.2]’ [11, [9], [5]. In pa_rtlcular, we pick up the results,,  ytization problem in system identification. The second ap-
bY Elia & Mitter [5] bec_ause their results are _r_elat_ed to those oach is to consider simple models for system identification,
this paper. They considered a form of stab|I.|zat.|on of MIM nd, in contrast, the effect of quantization is examined strictly.
systems and showed: 1) the coarsest quantization scheme

A - . RIS approach has the disadvantage that it is applicable only for
isfying the stability, 2) an exponential growth rate of the S'Z8ealized situations. However, it has the potential to reveal the

of the quantization SeCt,'OHS: It Is de.ns'e near the ongin asentia| property of the quantization in system identification
becomes coarse at a distance from it in the space of signals



and this is the main purpose of this research. This shows that the estimation errér— ¢ can be evaluated
gEm the magnitudes oA E and AW. The conventional, and

From the above discussion, in this paper we consider the f :
X . easonable, method to evaludtél’ is to show the convergence
lowing scalar systems based on the most simple case of sys em

. 2 . rates of

identification of an MA (moving average) model by the leas

1

squares method: NUTU)TP N g
g
yo(i) = Q(y(z)) + w(l) (1) iUTW N;C;O o) (11)
y(i) = o(i)0), ) N

by using the mutual independence of the input signand
the noisew. This methodology is also basically applicable to
o(i) = [u@@) u(i—1) - u(i—n+1)] the case ofA E, however, we should note thatande are not
T independent in general, and the situation is much more compli-
0:=1[00 6 - bn], cated. In order to see this and demonstrate the basic property

w is a noise ang is a quantizer of the original analogue outpu’i’f the optimal quantization we use the following example as an

where

y. Assumely| < , andg is defined by illustration. For example, a row @f T E is given by the form:
N

q(y) = sgn(y)y;, y € S, §; = 0, 3) 3 uli)eli). (12)
where =1

Approximately, the magnitude efis given as
So :={y =0}

S, = {y:dj1 <y<d},j>0 le] <max{y —dj1,dj -y}, dj1 <y <dj, j>0, (13)
S;={y:dj_y <y<dj}, j<O0 (4) and the right hand side of the inequality (13) depends on the
setting of the subsectiofi;. The sum of the widths of all the
subsections$_,,, ... , Sy is constant, and therefore, if we set
doy = —dy, dy = —dy, the width of some subsection to be small in order to reduce the
cory dopy = —dy = —K, (5) quantization error, it causes the widths of the other sections to
. ) ] be large, and the total quantization error may increase as a re-
and sgity)y; is f[he a}s&gned qu_ant|zgd value to the SUbse_Ct,'QUIt. In order to reduce the total quantization errors, it is known
S;. The quantizer is symmetrlcal with respect to the Origiflyom (12) thatg should have the following property: the mag-
_and hereafter we may omit references on the negative sectigi,qe of|e(i)|, which is multiplied by a large:(i), should be
if they are obvious from the context. small, and conversely, the magnitude|efi )|, which is multi-
The estimated paramet@using the least squares method witfplied by a smalk(i), should be large. This is a basic property

d():O<d1<dQ"‘<d]\4:}{7

/O datau(i) andy, (i) is given by of the optimal quantization scheme for reducing the magnitude
) . of AFE, and in the following we analyse the expectation and the
6= (UTU)" Ut (Y + W) , (6) variance of (12).
where Fi_rst, we define ;ubse{sj of the regression vectgrassociated
with the subsectio®; by
U:=[o(1)T ¢2)T - o(V)T]"
oo o B = {61y =00 € 5} 14)
IZV o [Nw( ) ~w( ) o ~w( %] Next, we consider a variable transformation:
Vie=1[g1) %@2) - g(N)] 1
§(i) == q(y(i)). ) y = ¢0=¢T -T'0=¢0,T'0= {0] , (15)
Define the quantization error betwegmandy by then,®; is represented as
e(i) == y(1) — y(i), (8) O ={¢:¢y € (dj-1, djl}, j > 0. (16)
and the estimated paramefecan be written as Corresponding to this transformation, the estimated parameter
A 6 is also transformed as follows:
0 = (UTU)'UT U+ E+W) P
= 0+ AE+ AW, 9 o
FarT Al ®) = T UTU)T'UT U+ E+W)
where = (T"UTun)'\TTUTWUT T+ E+W)
E = [e(l) e?2) - eNN)]" = 0 +AF + AW
AE = (UTU)'UTE AE" = (UTU)'UTE,

AW = (UTU)'UTW. o) AW’ = UTU)'U"TW, U :=UT. 17)



Note 2.1 In the remainder of this paper, we assume that tffier each subsectiof;. We considetl; (= (d;—1, d;]), Ij41
transformation matrig” is given. Of course, this assumption i§= (d;, d;;1]) where their boundaries;, d; 1 have a relation
a contradiction in the system identification problem becduse(see Fig. 1):

is defined from the tru@. However, the main purpose of this dj = rjdjs1, 75 €10,1]. (20)
paper is not to propose a concrete system identification method,

but to show the essential property of the optimal signal quan- -
tization, and therefore, we consider this ideal situation. More- q(é1)
over, if necessary for dealing with realistic problems, we can Gjt1|————— - ‘I—'_I

use an approximated transformation matrix from non-optimal L7
quantized data and revise it by iterative experiments. = AT
Yi N
A B
Next, define TR I
7 it [
. Y1 i
I = {1+ ¢'y € (dj-1, d4i]}, >0, (18) 0 : : :
then, the subsectior$;, ®;, andI; correspond to each other, d; dHf ¢1
and the probability distribution of depends only on that of S I "]J.H'
¢',. Therefore, in order to analyse the probability distribution
of y, the variableg’; and its subsectiod; are convenient to Fig.1 The quantization scheme @f

deal with, and hereafter, we mainly discuss the problem using
them. We assume a probability distributiongsf as follows.  \we gbtain the following result.

. , . T
Assumption 2.1 ¢', obeys a uniform distribution ifr-r, «]. Proposition 3.1 The optimal ratios-; that minimize the sum

. . . of the variances ofy, I», ..., Iy, and alsol_q, I_o, ...,
\Z/:Ve Flenote the probability distribution of Assumption 2.1 b)l,M, are given by solving the following optimization problem
(01)- iteratively.
The expectation oA £’ should be zero,
u " r; = arg rIeI[lé}’ll] fi(r) (21)
B -e)= >, (/1 u- edF> = 2 Bl =0 p) = 1801 - ) 451+ )R- 1)
j=—M J j=—M
’ ’ 51— )14 )2 22)
With this in mind, we consider the next optimal quantization Fmn () min _ 39 (23)
J T I\ 0 -

problem for the signals for system identification.
) ) ~ The optimal value of the variance is given by
Problem 2.1 For the system (2) with Assumption 2.1, give
a quantizerg that minimizes the variance of (12) such that M 1 .
Er,(AE') = 0 (Vj) under the constraint of quantization num- Vm(u-e):= Z Vi = ——rtfiin, (24)
) 72160
ber of[—&, K]. j=—M

In the following we may omit the symbol “prime”, such as: e call this optimal quantization schemg Q.

0 —0,0 =0, u —u Every ratior; can be explicitly given by (21)~ (23) iter-
U' — U, AE' — AE, AW' — AW, atively, however, understanding the propertiesrpfis not
straightforward from (21 (23) directly. In this paper, we
in order to simplify representations except for the case of neghow the asymptotic characteristics of the optimal ratips
essary specifications. (j = 1,2,...) and related quantities. We can derive the fol-
lowing series of lemmas.

3 Optimal Quantization

. ) . o Lemma 3.1
As described in Section 2, the quantization scheme-ef «]
ony is essentially equal to that a#{ and itis composed of the r; <rjs1, Vi >0 (25)
setting of the subsectionts »;, ..., 1o, [_1, Iy, I1, I5, ..., .
I, and the quantized values rp =g (26)
(), y € 5; Lemma 3.2

q(¢'1), ¢'1€I;
= g (19) 1| > Lj41l, Vi >0 @7)



Lemma 3.2 shows that the optimal quantization scherggtQ 4 Evaluation of the Error Terms

has the property that it is coarse near the originy @nd be- ) _ ) )

comes dense near the boundarie$-of, x|. This property is, Using the results in the previous section, we evaluate the mag-
in some sense, a dual to the result of the quantization problBjfyde of the error term\E' based on tflel approach in [10].
for stabilization by [5], that is, the coarsest quantization scherfiSt: We evaluate the magnitude(@f " U) ™.

for stabilization is dense around the origin and becomes coarse
at a distance from the origin. Lemma 4.1 [10] Suppose that; are i.i.d. random variables

) L e with E(u;) = 0, V(u;) = o2, V(u?) = n. Then, for
Next, consider the unboundedneszﬂ);ii1 ot If it is bounded any reliability index3;, wherel — 3, > 0, and 02N —

0o 1 ) ) i 1 1 u
and][;-, = < oo then this causes a contrad|<~:t|0n of, % (Vi + (n — 1)o2) > 0, the following inequality is sat-
the optimality of Qpt: that is, when a regiof—v, 7] of ¢1 is  jsfied.

quantlzed,_ the width ofy, for examplg, is never smaller than_ Pr (”(UTU)q”l >e) < B (34)
one even if the number of quantization levels increases to in-
finity. Of course, this is not true and ", - is therefore un- — 1
i J_—1 T R €1 = (35)

bounded. The next lemma gives a strict proof of this. 02N —n, /% (V4 (n—1)02)
Lemma 3.3 < When (i) has a uniform distributionu, € [—«, ], that is,

H o= 0 (28) 02 = k% n= sk, then,

j=1

1
From Lemma 3.1 to Lemma 3.3, we know the outline of the €= 2 (1n 1,1 1 ~)
quantization of the regiofi-r, x]. Next, consider the eval- " (5 " (\/ng s(n— )> \/ﬁil)
uation of the magnitude oA E’ with respect to the number
of quantization levels\/, and the following lemma shows anBy employing Lemma 4.1, we can evaluate the magnitude of

asymptotic characteristics gfi. AF in the following proposition.
Lemma 3.4 Proposition 4.1 Suppose thai; are i.i.d. random variables of
Fmin g (M), M — oo (29) @ uniform distribution in[—«, x]. Moreover,j is the output of
M oy the quantizer(y) defined by (3}~ (5), (21)~ (23). Then, for
wherea = —5-37% andb = £, and ¥ (m) is a function of reliability indices3;, 3, a length of dataV and the number
m defined as the solution of the following recurrence formulef quantization level@ M in [—«, x|, wherel — 3; — B2 >
with an appropriate initial numbe(0) = K. 0, M > 1, ando2N — n /% (Vi + (n—1)02) > 0, the
P(m) —p(m —1) = ayp®(m — 1) (30) following inequality holds.
PI‘(HAEHOO S 6162) Z 1— 51 — ﬁg (36)

By approximating the difference equation (30) with a differen-
tial equation € 1= ! (37)

02N — n\/ﬁ—w1 (v + (n—1)02)

W) _ (a4 )0 (m) = ad(m) + o(@"(m), (D) ,
dm Az k2 [nN 38
wherer > 0 is an appropriate constant number, then, we obtain N VS By (38)
B(m) = {(=b+ 1)(a + v)m} =T . (32)

From this proposition, we know that the convergence rate of
From (24) and the convexity of the function (32), the variana@e error termA E has an order o/ ~! at sufficiently largel/

Vs (u - €) at sufficiently largeM satisfies and of N—1/2, Approximately, the total amount of information
on the quantized output transmitted from identified systems to

Vm(u-e) < 5160 K ((—3/2 +1) the observers itg, 2M x N using a binary coding. There-
1 fore, under a constraint of such a total amount of information,

X (=5-37% +v)(M — 1)) R alargelM is preferable to largd/. Of course, this fact is valid

A Ly only for the error termA £/ and the situation is different for the

= ArS(M-1)77 (33)  nhoise error term\TV. We introduce the result fah IV in the
A = 1 (5 L9—1.3-5 _ 2—11/) ’2. following proposition.
2160

(33) shows a relation between the optimal variance and tReoposition 4.2 [10] Suppose that;; and w; are i.i.d. ran-
number of quantization levels. In the following section thidom variables withE(u;) = 0, V(u;) = o2, and V(w;) =
result is used to evaluate the magnitude\df. o2, respectively. Then, for reliability indice$;, 3., and a

w?



length of dataN, wherel — 3 — 3, > 0, ando2N —  [6] M. Gevers and G. LiParametrization in control, estima-

n. /X + (n—1)02) > 0, the following inequality holds. tion and filtering problems: Accuracy aspectSommu-
b (Vi +( i) 9 nequaty nications and control engineering series, Springer-Verlag,
Pr(|AW|. <ae)>1-6 -6 @9  oomi9N
€ 1= 1 (40) [7] K. Tsumura and J. Maciejowski, “Optimal quantization
02N —n, /% (y+ (n—1)02) of signals for system identification,” Technical report,
The Department of Engineering, The University of Cam-
N i . .
€0 = 0w n (41) bridge, 12.2002

3
[8] L. Ljung, System Identification — Theory for the User

. . . Information and System Sciences Series, Prentice-Hall,
By combining Proposition 4.1 and Proposition 4.2, we con- Englewood Cliffs, NJ, 1987.

clude there exists a trade-off betwe&¥F and AW for re-

ducing the total identification error under the constraint of thefg] G. N. Nair and R. J. Evans. “Stabilization with data-rate-
amount of information transmitted from the identified systems  |imited feedback: tightest attainable boundSystems &

to the observers. Control Letters41, pp. 49-56, 2000.

5 Conclusion [10] K. Tsumura and Y. Qishi, “Optimal length of data for
identification of time varying system,”Proceedings of

In this paper, we showed an optimal quantization scheme for the 38th C.D.G.pp. 3224-3229, 1999.

system identification. The quantization has the property that it

is coarse near the origin of the signals and dense at a distajidd W. S. Wong and R. W. Brockett, “Systems with finite

from it in the region of interest. This shows a form of duality =~ communication bandwidth constraints — part I: State esti-

against the quantization problem in system stabilization given mation problems,”IEEE Trans. Automat. ControAC—

in [5]. 42-9 pp. 1294-1299, 1997.

From the result of this paper, we know that the difference b, 2] W. S. Wong and R. W. Brockett, “Systems with finite

tween i grj|f|c>rmh qu?hnt|zat|olr)1 schfeme zatnd Ehe cl)pt|rrl1al_ olne € communication bandwidth constraints — II: Stabilization
comes trivial wnen the number of quantization 1€VEIS IS 1arg€. i, jimited information feedback,” IEEE Trans. Au-

In th|s sense, the non-uniform optlma! _quantlzatlon in thIS Pa-  omat. Control AC—44-5 pp. 1049-1053, 1999.
per is efficient when used for the condition of low capacity sig-
nal transmission in real systems.

Another important topic, which is not discussed in this paper,% Appendix

the problem qf the co_ding of the quaptized data. When we C¥o0f of Lemma 4.1[10]

sider the coding of signals and their code length, the optimal o .
quantization scheme may be different from that in this paperI'he diagonal elements éf U are in the form of

2 2 2
u” +uZ + -+ ul .
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Then, their expectations are given by

E(U'D)ij) = E(u—pirtirsr + u—ppou_ipo+ -

+U_py NU_I4N)

N
Z E(u7k+mu7l+m)

m=1

= 0. (44)

The variance is given by noting tha((ugimtitm) X

(uk:—i-nul-‘rn)) =0, even iful—i—’m = Uk+4n ON Uk 4m = Ul4n-

V((UTU)i) = B((u—ppruipr +u pyou_ipo+ -

+ U NU—1+N) )
N

= Z E(u2—k+mu2—l+m)a k 7é l

m=1

= No? (45)

Here we decompogé™ U as
UTU = (UTU — No2I) + No?1,

and by employing the norm inequality we obtain

IUTU Nl > [INo3 Il = |UTU = NoiIll. (46)

The value of the first term of the right hand side in (46)Vis2,

Noting that
g R ——
inf. LUTUa]]
IE
_ 1
inf, HU?LNI—&-(U‘FIFI%—U%NI)IH
< 1
- UTU—-062NI ?
02N — sup, W TU_cENTyi]
this means

Pr (I(UTU)ll

1
> SrnZ.
No2 — ﬁ(ﬂ—i— (n— 1)03))

By denotings; := rn? for simplicity, we obtain the statement.
L]

Proof of Proposition 4.1

First evaluate the magnitude 6" E. Itsi-th elemen{UT E);
is of form

uiey + ugey + -+ UNEN-

From the independence of and (33), the expectation and the

and in the second term, by employing Chebyshev’s inequaliijriance of UTE); are given as:

with (42) and (44), we obtain

Pr ((UTU — No2I)y| > WU”) <r

and

Pr (Z (UTU — Na21),|

j=1

Y LCCATITI, /V<<UTU>ij>)

= Pr (Z (UTU — No21),

j=1
> 1/% (vVi+ (n— 1)03)) < nr.
Therefore,

Pr (||UTU — NozI|ly =max »_|(UTU = Nop 1),

j=1

> ﬁ (\/ﬁ—i— (n— l)oi)) < n?r.

E(UTE)) =0, V(UTE);,) < NA*(M —1)72
Then by Chebyshev’s inequality, we obtain

ArAN <
r(M—1)2 )~ "

for a reliability indexr, and therefore the following inequality
is deduced:

Pr <|UTE|1- >

Pr (||UTEHOO = max |UTE|; > 62) < B,

wheres := nr. Combine(UTU)~! andUTE using a norm
inequality:

IUTO) U Bl < [(UTU) WU Elloo,
and this gives

Pr ([(UTU)'UTE| < c162)
>Pr (|(UTU) i € e and|UTE|| < €2).

Therefore we prove the lemma. |
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