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Abstract

In this paper, we analyse the effect of the quantization of sig-
nals used for system identification and show an optimal quan-
tization scheme for minimizing estimation errors under a con-
straint on the number of subsections of the quantized signals.
The optimal quantization scheme has the property that it is
coarse near the origin and dense at a distance from it in the
definition area of the signals. We also evaluate the estimated
parameters and show a trade-off between the quantization er-
ror and the noise error under the constraint on the amount of
information in the output data.

1 Introduction

The problem of quantization of signals in control systems has
a long history, and in recent years this problem has again been
discussed actively by several research groups and interesting
results have been achieved. Such research activity is certainly
related to the recent rapid improvement in the transmission ca-
pacity of computer networks. Long-distance automatic control
is now realistic with high-speed networks, and the necessity of
understanding the effects of transmission limitations on infor-
mation in control systems has become more widely accepted.

The history of research on the quantization problem in control
theory may be summarized as follows. We can see this prob-
lem in the books of the 70s (e.g., [2]); however, the approach
is elementary and the quantization error is regarded as noise.
The turning point is the result by [3], [4], in whose papers the
behaviour of control systems, and their stability or state estima-
tion, are analysed in detail. In the last few years, stabilization
problems of quantized systems have been actively considered,
e.g., [11], [12], [1], [9], [5]. In particular, we pick up the results
by Elia & Mitter [5] because their results are related to those in
this paper. They considered a form of stabilization of MIMO
systems and showed: 1) the coarsest quantization scheme sat-
isfying the stability, 2) an exponential growth rate of the size
of the quantization sections: it is dense near the origin and
becomes coarse at a distance from it in the space of signals

that are quantized, 3) the growth rate can be represented by the
poles of the plants.

Compared to this activity in the stabilization or estimation
problem, the quantization problem for system identification [6]
has not been adequately considered. When a controlled plant
with networks is unknown or its system parameters may change
during the operation, we need a form of adaptation for the con-
trol system. It is also necessary to know the effect of quanti-
zation of the I/O data used for the system identification. From
this point of view, we consider this problem and give an optimal
quantization scheme for minimizing estimation errors under a
constraint on the number of levels of the quantized signals. The
optimal quantization has a type of dual property to the case of
stabilization by [5], that is, the quantization is coarse near the
origin of the signals and it is dense at a distance from it. In
this paper, we deal with this problem based on the most sim-
ple setting and an idealized situation for system identification.
The reason is to reveal the essential property of the optimal
quantization problem in system identification and assist intu-
itive understanding of it.

In this paper, we omit the proofs of the lemmas and theorems.
Refer the full paper version [7] of this paper for the details.

2 Formulation

Dealing with the general case for the strict treatment of the ef-
fect of signal quantization on system identification may result
in a discussion with excessive computation and a complexity
that hinders the intuitive understanding of the results. In order
to reduce such difficulty, there are two possible approaches.
The first is to simplify the treatment of the quantization, such
as noise, in the classical manner. This approach is effective for
the case of sufficiently precise quantization of I/O data, and the
result is similar to the usual case of analogue signals. However,
this approach cannot reveal the property that is unique to the
quantization problem in system identification. The second ap-
proach is to consider simple models for system identification,
and, in contrast, the effect of quantization is examined strictly.
This approach has the disadvantage that it is applicable only for
idealized situations. However, it has the potential to reveal the
essential property of the quantization in system identification



and this is the main purpose of this research.

From the above discussion, in this paper we consider the fol-
lowing scalar systems based on the most simple case of system
identification of an MA (moving average) model by the least
squares method:

yo(i) = q(y(i)) + w(i) (1)

y(i) = φ(i)θ, (2)

where

φ(i) := [u(i) u(i− 1) · · · u(i− n + 1) ]

θ := [ θ1 θ2 · · · θn ]T ,

w is a noise andq is a quantizer of the original analogue output
y. Assume|y| ≤ κ, andq is defined by

q(y) := sgn(y)ȳj , y ∈ Sj , ȳj ≥ 0, (3)

where

S0 := {y = 0}
Sj := {y : dj−1 < y ≤ dj} , j > 0
Sj := {y : dj−1 ≤ y < dj} , j < 0 (4)

d0 = 0 < d1 < d2 · · · < dM = κ,

d−1 = −d1, d−2 = −d2,

. . . , d−M = −dM = −κ, (5)

and sgn(y)ȳj is the assigned quantized value to the subsection
Sj . The quantizer is symmetrical with respect to the origin,
and hereafter we may omit references on the negative section
if they are obvious from the context.

The estimated parameterθ̂ using the least squares method with
I/O datau(i) andyo(i) is given by

θ̂ = (UTU)−1UT
(
Ỹ + W

)
, (6)

where

U := [ φ(1)T φ(2)T · · · φ(N)T ]T

W := [ w(1) w(2) · · · w(N) ]T

Ỹ := [ ỹ(1) ỹ(2) · · · ỹ(N) ]T

ỹ(i) := q(y(i)). (7)

Define the quantization error betweenỹ andy by

e(i) := ỹ(i)− y(i), (8)

and the estimated parameterθ̂ can be written as

θ̂ = (UTU)−1UT(Uθ + E + W )
= θ + ∆E + ∆W, (9)

where

E := [ e(1) e(2) · · · e(N) ]T

∆E := (UTU)−1UTE

∆W := (UTU)−1UTW. (10)

This shows that the estimation errorθ̂ − θ can be evaluated
from the magnitudes of∆E and∆W . The conventional, and
reasonable, method to evaluate∆W is to show the convergence
rates of

N(UTU)−1 N→∞−→ 1
σ2

I

1
N

UTW
N→∞−→ O (11)

by using the mutual independence of the input signalu and
the noisew. This methodology is also basically applicable to
the case of∆E, however, we should note thatu ande are not
independent in general, and the situation is much more compli-
cated. In order to see this and demonstrate the basic property
of the optimal quantization we use the following example as an
illustration. For example, a row ofUTE is given by the form:

N∑

i=1

u(i)e(i). (12)

Approximately, the magnitude ofe is given as

|e| ≤ max{y − dj−1, dj − y}, dj−1 < y ≤ dj , j > 0, (13)

and the right hand side of the inequality (13) depends on the
setting of the subsectionSj . The sum of the widths of all the
subsectionsS−M , ... ,SM is constant, and therefore, if we set
the width of some subsection to be small in order to reduce the
quantization error, it causes the widths of the other sections to
be large, and the total quantization error may increase as a re-
sult. In order to reduce the total quantization errors, it is known
from (12) thatq should have the following property: the mag-
nitude of|e(i)|, which is multiplied by a largeu(i), should be
small, and conversely, the magnitude of|e(i)|, which is multi-
plied by a smallu(i), should be large. This is a basic property
of the optimal quantization scheme for reducing the magnitude
of ∆E, and in the following we analyse the expectation and the
variance of (12).

First, we define subsetsΦj of the regression vectorφ associated
with the subsectionSj by

Φj := {φ : y = φθ ∈ Sj} . (14)

Next, we consider a variable transformation:

y = φθ = φT · T−1θ =: φ′θ′, T−1θ =
[

1
O

]
, (15)

then,Φj is represented as

Φj = {φ : φ′1 ∈ (dj−1, dj ]} , j > 0. (16)

Corresponding to this transformation, the estimated parameter
θ̂ is also transformed as follows:

θ̂′ := T−1θ̂

= T−1(UTU)−1UT(Uθ + E + W )
= (TTUTUT )−1TTUT(UT · T−1θ + E + W )
= θ′ + ∆E′ + ∆W ′

∆E′ := (U ′TU ′)−1U ′TE,

∆W ′ := (U ′TU ′)−1U ′TW, U ′ := UT. (17)



Note 2.1 In the remainder of this paper, we assume that the
transformation matrixT is given. Of course, this assumption is
a contradiction in the system identification problem becauseT
is defined from the trueθ. However, the main purpose of this
paper is not to propose a concrete system identification method,
but to show the essential property of the optimal signal quan-
tization, and therefore, we consider this ideal situation. More-
over, if necessary for dealing with realistic problems, we can
use an approximated transformation matrix from non-optimal
quantized data and revise it by iterative experiments.

Next, define

Ij := {φ′1 : φ′1 ∈ (dj−1, dj ]} , j > 0, (18)

then, the subsectionsSj , Φj , andIj correspond to each other,
and the probability distribution ofy depends only on that of
φ′1. Therefore, in order to analyse the probability distribution
of y, the variableφ′1 and its subsectionIj are convenient to
deal with, and hereafter, we mainly discuss the problem using
them. We assume a probability distribution ofφ′1 as follows.

Assumption 2.1 φ′1 obeys a uniform distribution in[−κ, κ].

We denote the probability distribution of Assumption 2.1 by
F (φ′1).

The expectation of∆E′ should be zero,

E(u′ · e) =
M∑

j=−M

(∫

Ij

u′ · e dF

)
=:

M∑

j=−M

EIj (u
′ · e) = 0.

With this in mind, we consider the next optimal quantization
problem for the signals for system identification.

Problem 2.1 For the system (2) with Assumption 2.1, give
a quantizerq that minimizes the variance of (12) such that
EIj (∆E′) = 0 (∀j) under the constraint of quantization num-
ber of[−κ, κ].

In the following we may omit the symbol “prime”, such as:

θ′ → θ, θ̂′ → θ̂, u′ → u

U ′ → U, ∆E′ → ∆E, ∆W ′ → ∆W,

in order to simplify representations except for the case of nec-
essary specifications.

3 Optimal Quantization

As described in Section 2, the quantization scheme of[−κ, κ]
ony is essentially equal to that onφ′1 and it is composed of the
setting of the subsectionsI−M , . . . , I−2, I−1, I0, I1, I2, . . . ,
IM , and the quantized values

q(y), y ∈ Sj

= q(φ′1), φ′1 ∈ Ij

= ỹj (19)

for each subsectionIj . We considerIj (= (dj−1, dj ]), Ij+1

(= (dj , dj+1]) where their boundariesdj , dj+1 have a relation
(see Fig. 1):

dj = rjdj+1, rj ∈ [0, 1]. (20)

φ̃1dj dj+1

I1 · · · Ij

· · · · · ·

Ij+1

q(φ̃1)

ỹ1

ỹj

ỹj+1

0

Fig. 1 The quantization scheme ofq

We obtain the following result.

Proposition 3.1 The optimal ratiosrj that minimize the sum
of the variances ofI1, I2, . . . , IM , and alsoI−1, I−2, . . . ,
I−M , are given by solving the following optimization problem
iteratively.

rj := arg min
r∈[0, 1]

fj(r) (21)

fj(r) := fmin
j−1r5 − 18(1− r)5 + 45(1 + r)2(1− r)3

+ 5(1− r)7(1 + r)−2 (22)

fmin
j := fj(rj), fmin

0 = 32 (23)

The optimal value of the variance is given by

VM (u · e) :=
M∑

j=−M

VIj =
1

2160
κ4fmin

M . (24)

We call this optimal quantization scheme Qopt.

Every ratio rj can be explicitly given by (21)∼ (23) iter-
atively, however, understanding the properties ofrj is not
straightforward from (21)∼ (23) directly. In this paper, we
show the asymptotic characteristics of the optimal ratiosrj

(j = 1, 2, . . .) and related quantities. We can derive the fol-
lowing series of lemmas.

Lemma 3.1

rj < rj+1, ∀j > 0 (25)

rj → 1, j →∞ (26)

Lemma 3.2

|Ij | > |Ij+1|, ∀j > 0 (27)



Lemma 3.2 shows that the optimal quantization scheme Qopt
has the property that it is coarse near the origin ofy and be-
comes dense near the boundaries of[−κ, κ]. This property is,
in some sense, a dual to the result of the quantization problem
for stabilization by [5], that is, the coarsest quantization scheme
for stabilization is dense around the origin and becomes coarse
at a distance from the origin.

Next, consider the unboundedness of
∏∞

j=1
1
rj

. If it is bounded

and
∏∞

j=1
1
rj

= γ < ∞, then this causes a contradiction of

the optimality of Qopt, that is, when a region[−γ, γ] of φ̃1 is
quantized, the width ofI1, for example, is never smaller than
one even if the number of quantization levels increases to in-
finity. Of course, this is not true and

∏∞
j=1

1
rj

is therefore un-
bounded. The next lemma gives a strict proof of this.

Lemma 3.3 ∞∏

j=1

1
rj

= ∞ (28)

From Lemma 3.1 to Lemma 3.3, we know the outline of the
quantization of the region[−κ, κ]. Next, consider the eval-
uation of the magnitude of∆E′ with respect to the number
of quantization levelsM , and the following lemma shows an
asymptotic characteristics offmin

M .

Lemma 3.4

fmin
M → Ψb

a(M), M →∞ (29)

wherea = −5 · 3− 5
2 and b = 3

2 , andΨb
a(m) is a function of

m defined as the solution of the following recurrence formula
with an appropriate initial numberψ(0) = K.

ψ(m)− ψ(m− 1) = aψb(m− 1) (30)

By approximating the difference equation (30) with a differen-
tial equation

dψ̃(m)
dm

= (a + ν)ψ̃b(m) ≥ aψ̃b(m) + o(ψ̃b(m)), (31)

whereν > 0 is an appropriate constant number, then, we obtain

ψ̃(m) = {(−b + 1)(a + ν)m} 1
−b+1 . (32)

From (24) and the convexity of the function (32), the variance
VM (u · e) at sufficiently largeM satisfies

VM (u · e) ≤ 1
2160

κ4
(
(−3/2 + 1)

× (−5 · 3− 5
2 + ν)(M − 1)

) 1
−3/2+1

= Aκ4(M − 1)−2, (33)

A :=
1

2160

(
5 · 2−1 · 3− 5

2 − 2−1ν
)−2

.

(33) shows a relation between the optimal variance and the
number of quantization levels. In the following section this
result is used to evaluate the magnitude of∆E.

4 Evaluation of the Error Terms

Using the results in the previous section, we evaluate the mag-
nitude of the error term∆E based on the approach in [10].
First, we evaluate the magnitude of(UTU)−1.

Lemma 4.1 [10] Suppose thatui are i.i.d. random variables
with E(ui) = 0, V(ui) = σ2

u, V(u2
i ) = η. Then, for

any reliability indexβ1, where 1 − β1 > 0, and σ2
uN −

n
√

N
β1

(√
η + (n− 1)σ2

u

)
> 0, the following inequality is sat-

isfied.
Pr

(‖(UTU)−1‖1 ≥ ε1
) ≤ β1 (34)

ε1 :=
1

σ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

) (35)

Whenu(i) has a uniform distribution:ui ∈ [−κ, κ], that is,
σ2

u = 1
3κ2, η = 4

45κ4, then,

ε1 =
1

κ2
(

1
3N − n

(√
4
45 + 1

3 (n− 1)
)√

N
β1

) .

By employing Lemma 4.1, we can evaluate the magnitude of
∆E in the following proposition.

Proposition 4.1 Suppose thatui are i.i.d. random variables of
a uniform distribution in[−κ, κ]. Moreover,ỹ is the output of
the quantizerq(y) defined by (3)∼ (5), (21)∼ (23). Then, for
reliability indicesβ1, β2, a length of dataN and the number
of quantization levels2M in [−κ, κ], where1 − β1 − β2 >

0, M À 1, andσ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

)
> 0, the

following inequality holds.

Pr (‖∆E‖∞ ≤ ε1ε2) ≥ 1− β1 − β2 (36)

ε1 :=
1

σ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

) (37)

ε2 :=
A

1
2 κ2

M − 1

√
nN

β2
(38)

From this proposition, we know that the convergence rate of
the error term∆E has an order ofM−1 at sufficiently largeM
and ofN−1/2. Approximately, the total amount of information
on the quantized output transmitted from identified systems to
the observers islog2 2M × N using a binary coding. There-
fore, under a constraint of such a total amount of information,
a largeM is preferable to largeN . Of course, this fact is valid
only for the error term∆E and the situation is different for the
noise error term∆W . We introduce the result for∆W in the
following proposition.

Proposition 4.2 [10] Suppose thatui and wi are i.i.d. ran-
dom variables withE(ui) = 0, V(ui) = σ2

u, andV(wi) =
σ2

w, respectively. Then, for reliability indicesβ1, β2, and a



length of dataN , where 1 − β1 − β2 > 0, and σ2
uN −

n
√

N
β1

(√
η + (n− 1)σ2

u

)
> 0, the following inequality holds.

Pr (‖∆W‖∞ ≤ ε1ε2) ≥ 1− β1 − β2 (39)

ε1 :=
1

σ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

) (40)

ε2 := σuσw

√
nN

β2
(41)

By combining Proposition 4.1 and Proposition 4.2, we con-
clude there exists a trade-off between∆E and ∆W for re-
ducing the total identification error under the constraint of the
amount of information transmitted from the identified systems
to the observers.

5 Conclusion

In this paper, we showed an optimal quantization scheme for
system identification. The quantization has the property that it
is coarse near the origin of the signals and dense at a distance
from it in the region of interest. This shows a form of duality
against the quantization problem in system stabilization given
in [5].

From the result of this paper, we know that the difference be-
tween a uniform quantization scheme and the optimal one be-
comes trivial when the number of quantization levels is large.
In this sense, the non-uniform optimal quantization in this pa-
per is efficient when used for the condition of low capacity sig-
nal transmission in real systems.

Another important topic, which is not discussed in this paper, is
the problem of the coding of the quantized data. When we con-
sider the coding of signals and their code length, the optimal
quantization scheme may be different from that in this paper.
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A Appendix

Proof of Lemma 4.1[10]

The diagonal elements ofUTU are in the form of

u2
−k+1 + u2

−k+2 + · · ·+ u2
−k+N .

From the assumption that every signalui is independent, then,

E((UTU)ii) = E(u2
−k+1 + u2

−k+2 + · · ·+ u2
−k+N )

=
N∑

j=1

E(u2
−k+j)

= Nσ2
u. (42)

The variance can be calculated as

V((UTU)ii) =
N∑

j=1

V(u2
−k+j) = Nη. (43)

On the other hand, the non-diagonal elements(UTU)ij (i 6= j)
are in the form of

u−k+1u−l+1 + u−k+2u−l+2 + · · ·+ u−k+Nu−l+N , k 6= l.



Then, their expectations are given by

E((UTU)ij) = E(u−k+1u−l+1 + u−k+2u−l+2 + · · ·
+ u−k+Nu−l+N )

=
N∑

m=1

E(u−k+mu−l+m)

= 0. (44)

The variance is given by noting thatE((uk+mul+m) ×
(uk+nul+n)) = 0, even iful+m = uk+n or uk+m = ul+n.

V((UTU)ij) = E((u−k+1u−l+1 + u−k+2u−l+2 + · · ·
+ u−k+Nu−l+N )2)

=
N∑

m=1

E(u2
−k+mu2

−l+m), k 6= l

= Nσ4
u (45)

Here we decomposeUTU as

UTU = (UTU −Nσ2
uI) + Nσ2

uI,

and by employing the norm inequality we obtain

‖UTU‖1 ≥ ‖Nσ2
uI‖1 − ‖UTU −Nσ2

uI‖1. (46)

The value of the first term of the right hand side in (46) isNσ2
u,

and in the second term, by employing Chebyshev’s inequality
with (42) and (44), we obtain

Pr

(
|(UTU −Nσ2

uI)ij | ≥
√

V((UTU)ij)
r

)
≤ r,

and

Pr




n∑

j=1

|(UTU −Nσ2
uI)ij |

≥
√

V((UTU)ii)
r

+ (n− 1)

√
V((UTU)ij)

r




= Pr




n∑

j=1

|(UTU −Nσ2
uI)ij |

≥
√

N

r

(√
η + (n− 1)σ2

u

)

 ≤ nr.

Therefore,

Pr


‖UTU −Nσ2

uI‖1 = max
i

∑

j=1

|(UTU −Nσ2
uI)ij |

≥
√

N

r

(√
η + (n− 1)σ2

u

)

 ≤ n2r.

Noting that

‖(UTU)−1‖ =
1

infx
‖UTUx‖
‖x‖

=
1

infx
‖σ2

uNI+(UTU−σ2
uNI)x‖

‖x‖

≤ 1

σ2
uN − supx

‖(UTU−σ2
uNI)x‖

‖x‖
,

this means

Pr


‖(UTU)−1‖1

≥ 1

Nσ2
u −

√
N
r

(√
η + (n− 1)σ2

u

)


 ≤ rn2.

By denotingβ1 := rn2 for simplicity, we obtain the statement.

Proof of Proposition 4.1

First evaluate the magnitude ofUTE. Its i-th element(UTE)i

is of form
u1e1 + u2e2 + · · ·+ uNeN .

From the independence ofui and (33), the expectation and the
variance of(UTE)i are given as:

E((UTE)i) = 0, V((UTE)i) ≤ NAκ4(M − 1)−2

Then by Chebyshev’s inequality, we obtain

Pr

(
|UTE|i ≥

√
Aκ4N

r(M − 1)2

)
≤ r,

for a reliability indexr, and therefore the following inequality
is deduced:

Pr
(
‖UTE‖∞ = max

i
|UTE|i ≥ ε2

)
≤ β2,

whereβ2 := nr. Combine(UTU)−1 andUTE using a norm
inequality:

‖(UTU)−1UTE‖∞ ≤ ‖(UTU)−1‖1‖UTE‖∞,

and this gives

Pr
(‖(UTU)−1UTE‖∞ ≤ ε1ε2

)

≥ Pr
(‖(UTU)−1‖1 ≤ ε1 and‖UTE‖∞ ≤ ε2

)
.

Therefore we prove the lemma.
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