STOCHASTIC REALIZATION ON A FINITE INTERVAL VIA "LQ DECOMPOSITION" IN HILBERT SPACE

Hideyuki Tanaka*, Tohru Katayama*
* Department of Applied Mathematics and Physics
Graduate School of Informatics, Kyoto University
Kyoto 606-8501, Japan
e-mail: \{htanaka, katayama\}@amp.i.kyoto-u.ac.jp

Keywords: Stochastic realization; Non-stationary realization; LQ-decomposition; Hilbert space; Stochastic subspace identification.

Abstract

In this paper, we consider a stochastic realization problem with finite covariance data based on "LQ decomposition" in a Hilbert space, and re-derive a non-stationary finite-interval realization ($[4,5]$). We develop a new algorithm of computing system matrices of the finiteinterval realization by LQ decomposition, followed by the SVD of a certain block matrix. Also, a stochastic subspace identification based on a finite time-series data is briefly discussed.

1 Introduction

Stochastic realization problem is to find a set of Markov models that generate a given covariance matrices of a stationary random process $[3,1]$. It is well known that stochastic realization theory is an underlying principle for stochastic subspace identification methods [7, 8], in which Van Overschee and De Moor developed a subspace algorithm based on the non-stationary Kalman filter.

Lindquist and Picci [4, 5] have analyzed state space identification algorithms in the light of geometric theory of stochastic realization. In fact, they have discussed the state space modeling of the time-series data by separating three different cases: (i) an infinite complete covariance sequence is available, (ii) a finite complete covariance data is available, and (iii) a finite string of timeseries data is available; especially, for the second case, they have derived a non-stationary finite-interval realization of a stationary process.

Recently, in [6], we have re-derived a balanced stochastic realization of Desai et al. [2] based on "LQ decomposition" in a Hilbert space generated by a stationary second order process under the assumption (i), and briefly discussed a subspace identification method. In
this paper, along the line of [6], we consider a stochastic realization problem on a finite interval [4,5], thereby extending the result of [6] to the case where (ii) finite covariance data are available; we derive a non-stationary finite-interval realization of a stationary process by using "LQ decomposition" in a Hilbert space. The result is useful for studying a subspace identification method that estimates system matrices that produce a positive covariance sequence.

Due to space limitation, proofs of theorems and lemmas are omitted.

2 Problem Statement

Consider a second-order stationary process $\left\{y_{t}, t=0\right.$, $\pm 1, \cdots\}$, where y_{t} is a p-dimensional non-deterministic process with mean zero and covariance matrices

$$
\begin{equation*}
\Lambda_{k}=\mathrm{E}\left(y_{t+k} y_{t}^{T}\right), \quad k=0, \pm 1, \pm 2, \cdots \tag{1}
\end{equation*}
$$

where a set of covariance matrices $\left\{\Lambda_{k}, k=0\right.$, $\pm 1, \cdots\}$ is a positive real sequence in the sense that $\sum_{i, j} u_{i}^{T} \Lambda_{i-j} u_{j}>0, u_{i} \not \equiv 0$. We assume that there exists a finite dimensional realization for y, so that the covariance matrix has a decomposition $\Lambda_{k}=$ $H F^{k-1} G, k=1,2, \cdots$, where (F, G, H) is a minimal realization with $F \in \mathbb{R}^{n \times n}$.

According to [4, 5], we define the tail matrix by

$$
\boldsymbol{y}_{t}:=\left[\begin{array}{llll}
y_{t} & y_{t+1} & y_{t+2} & \cdots
\end{array}\right] \in \mathbb{R}^{p \times \infty} .
$$

We also define a vector space spanned by all finite linear combinations of $\left\{\boldsymbol{y}_{t}\right\}$ as

$$
\mathcal{Y}^{\infty}:=\left\{\sum a_{k}^{T} \boldsymbol{y}_{k} \mid a_{k} \in \mathbb{R}^{p}, k=0, \pm 1, \cdots\right\} .
$$

For the elements $a^{T} \boldsymbol{y}_{i}$ and $b^{T} \boldsymbol{y}_{j} \in \mathcal{Y}^{\infty}$, we define an inner product by

$$
\begin{align*}
\left\langle a^{T} \boldsymbol{y}_{i}, b^{T} \boldsymbol{y}_{j}\right\rangle_{\frac{I}{\infty}} & :=\lim _{\nu \rightarrow \infty} \frac{1}{\nu} \sum_{k=t_{0}}^{t_{0}+\nu-1} a^{T} \boldsymbol{y}_{k+i} \boldsymbol{y}_{k+j}^{T} b \\
& =a^{T} \Lambda_{i-j} b \tag{2}
\end{align*}
$$

where the right hand side is independent of t_{0}, because y is stationary. By completing the vector space \mathcal{Y}^{∞} with respect to convergence in the norm induced by the inner product (2), we get a Hilbert space, which is also written as \mathcal{Y}^{∞}.

Let \mathcal{U} be a Hilbert subspace of \mathcal{Y}^{∞}, and the orthogonal projection of $\boldsymbol{\eta} \in \mathcal{Y}^{\infty}$ onto the space \mathcal{U} be denoted by $\hat{\mathrm{E}}_{\frac{I}{\infty}}(\boldsymbol{\eta} \mid \mathcal{U})$. Also, let the row space spanned by a matrix U be expressed as $\operatorname{span}(U)$. If $\langle U, U\rangle_{\frac{I}{\infty}}$ has an inverse, the orthogonal projection is written as

$$
\begin{align*}
\hat{\mathrm{E}}_{\frac{I}{\infty}}(\boldsymbol{\eta} \mid U) & :=\hat{\mathrm{E}}_{\frac{I}{\infty}}(\boldsymbol{\eta} \mid \operatorname{span}(U)) \\
& =\langle\boldsymbol{\eta}, U\rangle_{\frac{I}{\infty}}\langle U, U\rangle_{\frac{I}{\infty}}^{-1} U . \tag{3}
\end{align*}
$$

We extend \mathcal{Y}^{∞} to $\mathcal{Y}^{\bullet \times \infty}$ so that matrices are included as its elements ${ }^{1}$.

We assume that the data are generated by a linear system and described by

$$
\left[\begin{array}{c}
\boldsymbol{x}_{t+1} \\
\boldsymbol{y}_{t}
\end{array}\right]=\left[\begin{array}{l}
F \\
H
\end{array}\right] \boldsymbol{x}_{t}+\left[\begin{array}{l}
\boldsymbol{w}_{t} \\
\boldsymbol{v}_{t}
\end{array}\right]
$$

where $F \in \mathbb{R}^{n \times n}$ and $H \in \mathbb{R}^{p \times n}$ satisfy a decomposition $\Lambda_{k}=H F^{k-1} G, x_{t} \in \mathcal{Y}^{n \times \infty}$ is a state matrix, and the elements of tail matrices, $\boldsymbol{w}_{t} \in \mathcal{Y}^{n \times \infty}$ and $\boldsymbol{v}_{t} \in \mathcal{Y}^{p \times \infty}$ are white noises satisfying

$$
\left\langle\left[\begin{array}{l}
\boldsymbol{w}_{s} \\
\boldsymbol{v}_{s}
\end{array}\right],\left[\begin{array}{l}
\boldsymbol{w}_{t} \\
\boldsymbol{v}_{t}
\end{array}\right]\right\rangle_{\frac{I}{\infty}}=\left[\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right] \delta_{s t}
$$

with $R>0$.
Given finite data $\boldsymbol{y}_{t} \in \mathcal{Y}^{p \times \infty}, t=0,1, \cdots, 2 \tau-1$ with $\tau>n$, Lindquist and Picci $[4,5]$ have derived a finite-interval realization for \boldsymbol{y}_{t}, which is given by the

$$
\left.\begin{array}{l}
{ }^{1} \text { We defi ne } \mathcal{Y}^{p \times \infty} \text { as } \\
\mathcal{Y}^{p \times \infty}:=\left\{\left.\left[\begin{array}{llll}
\boldsymbol{\eta}_{1}^{T} & \boldsymbol{\eta}_{2}^{T} & \cdots & \boldsymbol{\eta}_{p}^{T}
\end{array}\right]^{T} \right\rvert\, \boldsymbol{\eta}_{k} \in \mathcal{Y}^{\infty}\right.
\end{array}\right\} .
$$

For given $\boldsymbol{\alpha}=\left[\begin{array}{lll}\boldsymbol{\alpha}_{1}^{T} & \cdots & \boldsymbol{\alpha}_{p}^{T}\end{array}\right]^{T} \in \mathcal{Y}^{p \times \infty}$, we defi ne the orthogonal projection of $\boldsymbol{\alpha}$ onto the space span (U) as

$$
\hat{\mathrm{E}}_{\frac{I}{\infty}}(\boldsymbol{\alpha} \mid U):=\left[\begin{array}{c}
\hat{\mathrm{E}}_{\frac{I}{\infty}}\left(\boldsymbol{\alpha}_{1} \mid U\right) \\
\vdots \\
\hat{\mathrm{E}}_{\frac{I}{\infty}}\left(\boldsymbol{\alpha}_{p} \mid U\right)
\end{array}\right] .
$$

It should be noted that a bilinear form $\langle\cdot, \cdot\rangle_{\infty}$ is described as

$$
\langle\boldsymbol{\alpha}, \boldsymbol{\beta}\rangle_{\frac{I}{\infty}}:=\left[\begin{array}{ccc}
\left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right\rangle_{\frac{I}{\infty}} & \cdots & \left\langle\boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{q}\right\rangle_{\frac{I}{\infty}} \\
\vdots & & \vdots \\
\left\langle\boldsymbol{\alpha}_{p}, \boldsymbol{\beta}_{1}\right\rangle_{\frac{I}{\infty}} & \cdots & \left\langle\boldsymbol{\alpha}_{p}, \boldsymbol{\beta}_{q}\right\rangle_{\frac{I}{\infty}}
\end{array}\right]
$$

for $\boldsymbol{\alpha} \in \mathcal{Y}^{p \times \infty}$ and $\boldsymbol{\beta}=\left[\begin{array}{lll}\boldsymbol{\beta}_{1}^{T} & \cdots & \boldsymbol{\beta}_{q}^{T}\end{array}\right]^{T} \in \mathcal{Y}^{q \times \infty}$, and the orthogonal projection $\boldsymbol{\eta} \in \mathcal{Y}^{\bullet} \times \infty$ onto $\operatorname{span}(U)$ is also calculated as in (3).
following (transient) Kalman filter with zero initial conditions

$$
\hat{\boldsymbol{x}}_{t+1}=F \hat{\boldsymbol{x}}_{t}+\hat{\Gamma}_{t}\left(\boldsymbol{y}_{t}-H \hat{\boldsymbol{x}}_{t}\right), \quad \hat{\boldsymbol{x}}_{0}=0
$$

where $\hat{\boldsymbol{x}}_{t} \in \mathcal{Y}^{n \times \infty}$ is the estimation of the state matrix $\boldsymbol{x}_{t} \in \mathcal{Y}^{n \times \infty}, \hat{\Gamma}_{t}$ is the forward non-stationary Kalman gain.
By using the non-stationary forward Kalman filter, it has been shown that the tail matrices $\boldsymbol{y}_{t}, t=0,1, \cdots, \tau-1$, satisfy the following time-varying system

$$
\left[\begin{array}{c}
\hat{\boldsymbol{x}}_{t+1} \tag{4}\\
\boldsymbol{y}_{t}
\end{array}\right]=\left[\begin{array}{cc}
F & \hat{\Gamma}_{t} \\
H & I
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{x}}_{t} \\
\hat{\boldsymbol{v}}_{t}
\end{array}\right], \quad \hat{\boldsymbol{x}}_{0}=0
$$

where $\hat{\boldsymbol{v}}_{t}$ is the forward (transient) innovation process defined by $\hat{\boldsymbol{v}}_{t}:=\boldsymbol{y}_{t}-C \hat{\boldsymbol{x}}_{t}$.
In this paper, we assume that a set of exact but finite covariance data $\left\{\Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \cdots, \Lambda_{2 \tau-1}\right\}$ is available with $\tau>n$; this is equivalent to the fact that a finite number of tail matrices $\boldsymbol{y}_{t} \in \mathcal{Y}^{p \times \infty}, t=0,1, \cdots, 2 \tau-1$ are given. Under this assumption, the problem is to give a finite-interval realization of \boldsymbol{y}_{t} by "LQ decomposition" in a Hilbert space and provide a method of computing the system matrices $F, H, \hat{\Gamma}_{t}$ and \hat{R}_{t} in (4) for $t=0,1$, $\cdots, \tau-1$.

3 LQ Decomposition of Data Matrix

In this section, after providing some notations, we review a finite-interval realization derived from the CCA, and then compute the LQ decomposition of a given data matrix with the help of the finite-interval realization.

3.1 Covariance matrices

In terms of tail matrices $\boldsymbol{y}_{t} \in \mathcal{Y}^{p \times \infty}, t=0,1, \cdots$, $2 \tau-1$, we define data matrices as

$$
Y_{t}^{-}:=\left[\begin{array}{c}
\boldsymbol{y}_{t-1} \tag{5}\\
\boldsymbol{y}_{t-2} \\
\vdots \\
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{0}
\end{array}\right], \quad Y_{t}^{+}:=\left[\begin{array}{c}
\boldsymbol{y}_{t} \\
\boldsymbol{y}_{t+1} \\
\vdots \\
\boldsymbol{y}_{2 \tau-2} \\
\boldsymbol{y}_{2 \tau-1}
\end{array}\right]
$$

for $t=1, \cdots, 2 \tau-1$. For notational convenience, we define the reversed tail matrices by $\boldsymbol{\zeta}_{-s}:=\boldsymbol{y}_{-s+2 \tau-1}$ for $s=0,1, \cdots, 2 \tau-1$, and

$$
Z_{-s}^{-}:=\left[\begin{array}{c}
\boldsymbol{\zeta}_{-s} \tag{6}\\
\boldsymbol{\zeta}_{-s-1} \\
\vdots \\
\boldsymbol{\zeta}_{-2 \tau+2} \\
\boldsymbol{\zeta}_{-2 \tau+1}
\end{array}\right], \quad Z_{-s}^{+}:=\left[\begin{array}{c}
\boldsymbol{\zeta}_{-s+1} \\
\boldsymbol{\zeta}_{-s+2} \\
\vdots \\
\boldsymbol{\zeta}_{-1} \\
\boldsymbol{\zeta}_{0}
\end{array}\right]
$$

for $s=1, \cdots, 2 \tau-1$. It may be noted that for $t=s=$ τ, all the data matrices have the same number of rows with $Y_{\tau}^{-}=Z_{-\tau}^{-}$and $Y_{\tau}^{+}=Z_{-\tau}^{+}$, where the former are termed the past data matrices, while the latter the future data matrices.

Moreover, we define covariance matrices

$$
\begin{align*}
\Phi_{t} & :=\left\langle Y_{t}^{-}, Y_{t}^{-}\right\rangle_{\frac{I}{\infty}} \\
& =\left[\begin{array}{ccccc}
\Lambda_{0} & \Lambda_{1} & \Lambda_{2} & \cdots & \Lambda_{t-1} \\
\Lambda_{1}^{T} & \Lambda_{0} & \Lambda_{1} & \cdots & \Lambda_{t-2} \\
\Lambda_{2}^{T} & \Lambda_{1}^{T} & \Lambda_{0} & \cdots & \Lambda_{t-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Lambda_{t-1}^{T} & \Lambda_{t-2}^{T} & \Lambda_{t-3}^{T} & \cdots & \Lambda_{0}
\end{array}\right], \tag{7}\\
\Psi_{-t} & :=\left\langle Z_{-t}^{+}, Z_{-t}^{+}\right\rangle_{\frac{I}{\infty}} \\
& =\left[\begin{array}{ccccc}
\Lambda_{0} & \Lambda_{1}^{T} & \Lambda_{2}^{T} & \cdots & \Lambda_{t-1}^{T} \\
\Lambda_{1} & \Lambda_{0} & \Lambda_{1}^{T} & \cdots & \Lambda_{t-2}^{T} \\
\Lambda_{2} & \Lambda_{1} & \Lambda_{0} & \cdots & \Lambda_{t-3}^{T} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Lambda_{t-1} & \Lambda_{t-2} & \Lambda_{t-3} & \cdots & \Lambda_{0}
\end{array}\right], \tag{8}
\end{align*}
$$

for $t=1, \cdots, 2 \tau$ and the block Hankel matrix

$$
\begin{align*}
\mathcal{H}_{\tau} & =\left\langle Y_{\tau}^{+}, Y_{\tau}^{-}\right\rangle_{\frac{I}{\infty}} \\
& =\left[\begin{array}{ccccc}
\Lambda_{1} & \Lambda_{2} & \Lambda_{3} & \cdots & \Lambda_{\tau} \\
\Lambda_{2} & \Lambda_{3} & \Lambda_{4} & \cdots & \Lambda_{\tau+1} \\
\Lambda_{3} & \Lambda_{4} & \Lambda_{5} & \cdots & \Lambda_{\tau+2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\Lambda_{\tau} & \Lambda_{\tau+1} & \Lambda_{\tau+2} & \cdots & \Lambda_{2 \tau-1}
\end{array}\right] \tag{9}\\
& =\left\langle Z_{-\tau}^{+}, Z_{-\tau}^{-}\right\rangle_{\frac{I}{\infty}} .
\end{align*}
$$

It should be noted that the covariance matrices of (7) and (8) are defined for $t=1, \cdots, 2 \tau$, but the block Hankel matrix (9), the covariance matrix of the future and the past, is defined for \mathcal{H}_{τ} only.

3.2 Canonical correlation analysis

As usual, we compute the canonical decomposition, or the weighted SVD, of the block Hankel matrix \mathcal{H}_{τ} as $([4,5])$

$$
\begin{aligned}
\Psi_{-\tau}^{-\frac{1}{2}} \mathcal{H}_{\tau} \Phi_{\tau}^{-\frac{T}{2}} & =\left[\begin{array}{ll}
\bar{U}_{\tau} & \tilde{U}_{\tau}
\end{array}\right]\left[\begin{array}{cc}
\bar{\Sigma}_{\tau} & 0 \\
0 & \tilde{\Sigma}_{\tau}
\end{array}\right]\left[\begin{array}{c}
\bar{V}_{\tau}^{T} \\
\tilde{V}_{\tau}^{T}
\end{array}\right] \\
& =\bar{U}_{\tau} \bar{\Sigma}_{\tau} \bar{V}_{\tau}^{T}, \quad \bar{\Sigma}_{\tau} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

where $\operatorname{rank} \bar{\Sigma}_{\tau}=n$, and $\bar{U}_{\tau}^{T} \bar{U}_{\tau}=I_{n}, \bar{V}_{\tau}^{T} \bar{V}_{\tau}=I_{n}$. Hence, we get

$$
\mathcal{H}_{\tau}=\Psi_{-\tau}^{\frac{1}{2}} \bar{U}_{\tau} \bar{\Sigma}_{\tau} \bar{V}_{\tau}^{T} \Phi_{\tau}^{\frac{T}{2}}
$$

It therefore follows that the extended observability ma$\operatorname{trix} \mathcal{O}_{\tau}$ and the extended reachability matrix \mathcal{C}_{τ} are re-
spectively given by

$$
\begin{aligned}
\mathcal{O}_{\tau} & :=\Psi_{-\tau}^{\frac{1}{2}} \bar{U}_{\tau} \bar{\Sigma}_{\tau}^{\frac{1}{2}} \\
\mathcal{C}_{\tau} & :=\bar{\Sigma}_{\tau}^{\frac{1}{2}} \bar{V}_{\tau}^{T} \Phi_{\tau}^{\frac{T}{2}}
\end{aligned}
$$

with $\operatorname{rank} \mathcal{O}_{\tau}=n, \operatorname{rank} \mathcal{C}_{\tau}=n$, and hence we have $\mathcal{H}_{\tau}=\mathcal{O}_{\tau} \mathcal{C}_{\tau}$.

From the assumption about the covariance data, there exist matrices $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times n}$ such that

$$
\begin{align*}
\mathcal{O}_{\tau} & =\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{\tau-1}
\end{array}\right] \tag{10}\\
\mathcal{C}_{\tau} & =\left[\begin{array}{llll}
B & A B & \cdots & A^{\tau-1} B
\end{array}\right] \tag{11}
\end{align*}
$$

where it should be noted that matrices A, B and C are dependent on τ.
Let $(\bar{A}, \bar{B}, \bar{C})$ be a stochastically balanced realization obtained by the infinite covariance data [2, 5], namely with $\tau \rightarrow \infty$. Then, it follows that $(A$, B, C) in (10) and (11) satisfies the relation $\bar{A}=$ $Q_{\tau}^{-1} A Q_{\tau}, \bar{B}=Q_{\tau}^{-1} B$ and $\bar{C}=C Q_{\tau}$ where $Q_{\tau} \in$ $\mathbb{R}^{n \times n}$ is a non-singular transform [5], so that we have $\Lambda_{k}=C A^{k-1} B, k=1,2, \cdots, 2 \tau-1$. The triplet (A, B, C) obtained above is a finite-interval stochastically balanced realization which is minimal and dependent on τ [5].

3.3 LQ decomposition in a Hilbert space

We describe a stochastic realization in terms of a (transient) innovation process [4,5], and then provide an "LQ decomposition" of a data matrix in a Hilbert space.
Define the variables for $t=1, \cdots, 2 \tau-1$

$$
\begin{equation*}
\hat{\boldsymbol{v}}_{t}:=\boldsymbol{y}_{t}-\hat{\mathrm{E}}_{\frac{I}{\infty}}\left(\boldsymbol{y}_{t} \mid Y_{t}^{-}\right) \tag{12}
\end{equation*}
$$

with the initial condition $\hat{\boldsymbol{v}}_{0}:=\boldsymbol{y}_{0}$.

Lemma 1 The process $\hat{\boldsymbol{v}}_{j}$ defined by (12) is a white noise satisfying

$$
\begin{equation*}
\left\langle\hat{\boldsymbol{v}}_{i}, \hat{\boldsymbol{v}}_{j}\right\rangle_{\frac{I}{\infty}}=\hat{R}_{j} \delta_{i j}, \quad i, j=0,1, \cdots, 2 \tau-1 \tag{13}
\end{equation*}
$$

where $\hat{R}_{j}>0, j=0,1, \cdots, 2 \tau-1$, and

$$
\begin{equation*}
\left\langle\boldsymbol{y}_{i}, \hat{\boldsymbol{v}}_{j}\right\rangle_{\frac{I}{\infty}}=0, \quad 0 \leq i<j \leq 2 \tau-1 \tag{14}
\end{equation*}
$$

Define $\hat{L}_{i, j}$ as

$$
\begin{equation*}
\hat{L}_{i, j}:=\left\langle\boldsymbol{y}_{i}, \hat{\boldsymbol{v}}_{j}\right\rangle_{\frac{I}{\infty}} \hat{R}_{j}^{-1}, \quad 0 \leq j \leq i \leq 2 \tau-1 \tag{15}
\end{equation*}
$$

An explicit form of $\hat{L}_{i, j} \in \mathbb{R}^{p \times p}$ for $j \leq i \leq 2 \tau-$ $1,0 \leq j \leq \tau-1$ is provided later in (24).
In terms of $\hat{L}_{i, j}$ of (15), we define

$$
\begin{aligned}
\hat{\mathcal{L}}_{\tau}^{-}: & =\left[\begin{array}{cccc}
\hat{L}_{\tau-1, \tau-1} & \hat{L}_{\tau-1, \tau-2} & \cdots & \hat{L}_{\tau-1,0} \\
& \hat{L}_{\tau-2, \tau-2} & \cdots & \hat{L}_{\tau-2,0} \\
& & \ddots & \vdots \\
0 & & & \hat{L}_{0,0}
\end{array}\right], \\
\hat{\mathcal{L}}_{\tau}^{+}: & =\left[\begin{array}{cccc}
\hat{L}_{\tau, \tau} & \hat{L}_{\tau+1, \tau+1} & & \\
\hat{L}_{\tau+1, \tau} & \vdots & \ddots & \\
\vdots & \hat{L}_{2 \tau-1, \tau+1} & \cdots & \hat{L}_{2 \tau-1,2 \tau-1}
\end{array}\right] \\
\hat{\mathcal{S}}_{\tau}: & =\left[\begin{array}{cccc}
\hat{L}_{\tau, \tau-1} & \hat{L}_{\tau, \tau-2} & \cdots & \hat{L}_{\tau, 0} \\
\hat{L}_{\tau+1, \tau-1} & \hat{L}_{\tau+1, \tau-2} & \cdots & \hat{L}_{\tau+1,0} \\
\vdots & \vdots & \vdots & \vdots \\
\hat{L}_{2 \tau-1, \tau-1} & \hat{L}_{2 \tau-1, \tau-2} & \cdots & \hat{L}_{2 \tau-1,0}
\end{array}\right],
\end{aligned}
$$

where $\hat{\mathcal{L}}_{\tau}^{-}, \hat{\mathcal{L}}_{\tau}^{+}, \hat{\mathcal{S}}_{\tau} \in \mathbb{R}^{\tau p \times \tau p}$. Moreover, we define

$$
\hat{V}_{t}^{-}=\left[\begin{array}{c}
\hat{\boldsymbol{v}}_{t-1} \\
\hat{\boldsymbol{v}}_{t-2} \\
\vdots \\
\hat{\boldsymbol{v}}_{1} \\
\hat{\boldsymbol{v}}_{0}
\end{array}\right], \quad \hat{V}_{t}^{+}=\left[\begin{array}{c}
\hat{\boldsymbol{v}}_{t} \\
\boldsymbol{v}_{t+1} \\
\vdots \\
\hat{\boldsymbol{v}}_{2 \tau-2} \\
\hat{\boldsymbol{v}}_{2 \tau-1}
\end{array}\right]
$$

and covariance matrices:

$$
\hat{\mathcal{R}}_{\tau}^{-}:=\left\langle\hat{V}_{\tau}^{-}, \hat{V}_{\tau}^{-}\right\rangle_{\frac{I}{\infty}}, \quad \hat{\mathcal{R}}_{\tau}^{+}:=\left\langle\hat{V}_{\tau}^{+}, \hat{V}_{\tau}^{+}\right\rangle_{\frac{I}{\infty}}
$$

Theorem 1 The past Y_{τ}^{-}and the future Y_{τ}^{+}of (5) are decomposed as

$$
\left[\begin{array}{c}
Y_{\tau}^{-} \tag{17}\\
Y_{\tau}^{+}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\mathcal{L}}_{\tau}^{-} & 0 \\
\hat{\mathcal{S}}_{\tau} & \hat{\mathcal{L}}_{\tau}^{+}
\end{array}\right]\left[\begin{array}{c}
\hat{V}_{\tau}^{-} \\
\hat{V}_{\tau}^{+}
\end{array}\right]
$$

where \hat{V}_{τ}^{-}and \hat{V}_{τ}^{+}are given by (16) and satisfy

$$
\left\langle\left[\begin{array}{c}
\hat{V}_{\tau}^{-} \tag{18}\\
\hat{V}_{\tau}^{+}
\end{array}\right],\left[\begin{array}{c}
\hat{V}_{\tau}^{-} \\
\hat{V}_{\tau}^{+}
\end{array}\right]\right\rangle_{\frac{I}{\infty}}=\left[\begin{array}{cc}
\hat{\mathcal{R}}_{\tau}^{-} & 0 \\
0 & \hat{\mathcal{R}}_{\tau}^{+}
\end{array}\right]
$$

Moreover, the orthogonal projection of the future onto the past is written as

$$
\hat{\mathrm{E}}_{\frac{I}{\infty}}\left(Y_{\tau}^{+} \mid Y_{\tau}^{-}\right)=\hat{\mathcal{S}}_{\tau} \hat{V}_{\tau}^{-}
$$

It can be shown that the decomposition of (17) is performed by an "LQ decomposition" in the Hilbert space.
Now we evaluate the terms $\hat{\mathcal{L}}_{\tau}^{-}$and $\hat{\mathcal{S}}_{\tau}$ in (17) ${ }^{2}$. To this end, we define [8]

$$
\begin{equation*}
\hat{P}_{t}:=\mathcal{C}_{t} \Phi_{t}^{-1} \mathcal{C}_{t}^{T}, \quad t=1, \cdots, \tau \tag{19}
\end{equation*}
$$

[^0]with $\hat{P}_{0}:=0$, where it should be noted that \mathcal{C}_{t} in (19) is a truncated extended reachability matrix defined as
\[

\mathcal{C}_{t}=\left[$$
\begin{array}{llll}
B & A B & \cdots & A^{t-1} B
\end{array}
$$\right], \quad t=1, \cdots, \tau
\]

by using A and B [see (11)].
Proposition 1 ([8]) The matrix \hat{P}_{t} satisfies the following discrete-time Riccati equation with $\hat{P}_{0}=0$

$$
\begin{aligned}
& \hat{P}_{t+1}=A \hat{P}_{t} A^{T} \\
& +\left(B-A \hat{P}_{t} C^{T}\right)\left(\Lambda_{0}-C \hat{P}_{t} C^{T}\right)^{-1}\left(B-A \hat{P}_{t} C^{T}\right)^{T}
\end{aligned}
$$

for $t=0,1,2, \cdots, \tau-1$.
In terms of the solution \hat{P}_{t} of Riccati equation, we define matrices

$$
\begin{align*}
\hat{R}_{t} & :=\Lambda_{0}-C \hat{P}_{t} C^{T} \tag{20}\\
\hat{K}_{t} & :=\left(B-A \hat{P}_{t} C^{T}\right)\left(\Lambda_{0}-C \hat{P}_{t} C^{T}\right)^{-1} \tag{21}
\end{align*}
$$

for $t=0,1, \cdots, \tau-1$. Also, define ([8])

$$
\begin{equation*}
\hat{\boldsymbol{x}}_{t}:=\mathcal{C}_{t} \Phi_{t}^{-1} Y_{t}^{-} \tag{22}
\end{equation*}
$$

Then, we can prove the following lemma.
Proposition 2 ([4, 5]) The tail matrix $\boldsymbol{y}_{t} \in \mathcal{Y}^{p \times \infty}$ ($t=0,1, \cdots, \tau-1$) is realized by the following timevarying system

$$
\left[\begin{array}{c}
\hat{\boldsymbol{x}}_{t+1} \tag{23}\\
\boldsymbol{y}_{t}
\end{array}\right]=\left[\begin{array}{cc}
A & \hat{K}_{t} \\
C & I
\end{array}\right]\left[\begin{array}{c}
\hat{\boldsymbol{x}}_{t} \\
\hat{\boldsymbol{v}}_{t}
\end{array}\right], \quad \hat{\boldsymbol{x}}_{0}=0
$$

where

$$
\left\langle\hat{\boldsymbol{v}}_{t}, \hat{\boldsymbol{v}}_{s}\right\rangle_{\frac{I}{\infty}}=\hat{R}_{t} \delta_{t s}, \quad t, s=0,1, \cdots, \tau-1
$$

and where $\left\langle\hat{\boldsymbol{v}}_{t}, \hat{\boldsymbol{x}}_{s}\right\rangle_{\frac{I}{\infty}}=0, t \geq s$. Moreover, the orthogonal projection of Y_{τ}^{+}onto Y_{τ}^{-}is given by the state matrix $\hat{\boldsymbol{x}}_{\tau}$ as follows

$$
\hat{\mathrm{E}}_{\frac{I}{\infty}}\left(Y_{\tau}^{+} \mid Y_{\tau}^{-}\right)=\mathcal{O}_{\tau} \hat{\boldsymbol{x}}_{\tau}
$$

By using the above finite-interval realization, we compute the matrices $\hat{L}_{i j}$ defined in (15).

Theorem 2 The matrices $\hat{L}_{i j} \in \mathbb{R}^{p \times p}$ defined in (15) are given by

$$
\hat{L}_{i, j}:= \begin{cases}I_{p} & (i=j=0,1, \cdots, \tau-1) \tag{24}\\ C A^{i-j-1} \hat{K}_{j} & \binom{j<i \leq 2 \tau-1}{0 \leq j \leq \tau-1}\end{cases}
$$

and where \hat{K}_{j} is defined by (21).

4 Finite-Interval Realization

We show that the system matrices A, C and \hat{K}_{t} in (23) are derived by the decomposition of the matrix $\hat{\mathcal{S}}_{\tau}$ in Theorem 1.

Lemma 2 The block matrix $\hat{\mathcal{S}}_{\tau}$ has rank n, and satisfies

$$
\hat{\mathcal{S}}_{\tau}=\mathcal{O}_{\tau} \hat{\mathcal{F}}_{\tau}
$$

where \mathcal{O}_{τ} is the extended observability matrix, and \mathcal{F}_{τ} is defined by

$$
\hat{\mathcal{F}}_{\tau}:=\left[\begin{array}{llll}
\hat{K}_{\tau-1} & A \hat{K}_{\tau-2} & \cdots & A^{\tau-1} \hat{K}_{0}
\end{array}\right] .
$$

Theorem 3 Given $\hat{\mathcal{S}}_{\tau}, \hat{\mathcal{R}}_{\tau}^{-}$and $\Phi_{-\tau}$, we compute the weighted SVD:

$$
\begin{equation*}
\Psi_{-\tau}^{-\frac{1}{2}} \hat{\mathcal{S}}_{\tau}\left(\hat{\mathcal{R}}_{\tau}^{-}\right)^{\frac{1}{2}}=\dot{U} \Sigma \Sigma^{\prime} \dot{V}^{T}, \quad \dot{\Sigma} \in \mathbb{R}^{n \times n} \tag{25}
\end{equation*}
$$

Then, the matrix \mathcal{O}_{τ} and $\hat{\mathcal{F}}_{\tau}$ are given by

$$
\begin{equation*}
\mathcal{O}_{\tau}=\Psi_{-\tau}^{\frac{1}{2}} \dot{U}^{\prime} \Sigma^{\frac{1}{2}}, \quad \hat{\mathcal{F}}_{\tau}=\Sigma^{\frac{1}{2}} \hat{V}^{T}\left(\hat{\mathcal{R}}_{\tau}^{-}\right)^{-\frac{1}{2}} \tag{26}
\end{equation*}
$$

where $\Sigma^{\frac{1}{2}}=\Sigma^{\frac{T}{2}}$ is diagonal.

Lemma 2 and Theorem 3 provide the desired decomposition of $\Lambda_{k}=C A^{k-1} B$ where the extended observability matrix \mathcal{O}_{k} in (10) is calculated in (26). The SVD of (25) yields a desired decomposition of $\hat{\mathcal{S}}_{\tau}$, however it is not a block Hankel matrix.

In terms of $\hat{L}_{i, j}$ of (24), define the matrix

$$
\hat{\mathcal{T}}_{\tau}:=\left[\begin{array}{cccc}
\hat{L}_{\tau, \tau-1} & \hat{L}_{\tau-1, \tau-2} & \cdots & \hat{L}_{1,0} \\
\hat{L}_{\tau+1, \tau-1} & \hat{L}_{\tau, \tau-2} & \cdots & \hat{L}_{2,0} \\
\vdots & \vdots & \vdots & \vdots \\
\hat{L}_{2 \tau-1, \tau-1} & \hat{L}_{2 \tau-2, \tau-2} & \cdots & \hat{L}_{\tau, 0}
\end{array}\right]
$$

where $\hat{\mathcal{T}}_{\tau} \in \mathbb{R}^{\tau p \times \tau p}$. We obtain \hat{K}_{t} in (23) as follows.

Lemma 3 Define the non-stationary gains as

$$
\hat{\mathcal{K}}_{\tau}:=\left[\begin{array}{llll}
\hat{K}_{\tau-1} & \hat{K}_{\tau-2} & \cdots & \hat{K}_{0} \tag{27}
\end{array}\right] .
$$

Then, we have the decomposition $\hat{\mathcal{T}}_{\tau}=\mathcal{O}_{\tau} \hat{\mathcal{K}}_{\tau}$, and hence the non-stationary gains are computed by

$$
\begin{equation*}
\hat{\mathcal{K}}_{\tau}=\mathcal{O}_{\tau}^{\dagger} \hat{\mathcal{I}}_{\tau} \tag{28}
\end{equation*}
$$

where $(\cdot)^{\dagger}$ denotes the pseudo-inverse.

Summarizing above results, a finite-interval realization of a stationary process is obtained by the following steps.

Finite-Interval Realization of a Stationary Process

Step 1: Given Y_{τ}^{-}and Y_{τ}^{+}, we compute $\hat{V}_{\tau}^{-}, \hat{V}_{\tau}^{+}$and $\hat{\mathcal{S}}_{\tau}$ by (17), and then compute the covariance matrix

$$
\begin{equation*}
\hat{\mathcal{R}}_{\tau}^{-}=\operatorname{block-diag}\left(\hat{R}_{\tau-1}, \hat{R}_{\tau-2}, \cdots, \hat{R}_{0}\right) \tag{29}
\end{equation*}
$$

Step 2: Compute the weighted SVD of (25) and obtain \mathcal{O}_{τ} from (26).

Step 3: Compute A and C by

$$
\begin{aligned}
& \mathcal{O}_{\tau}(1: p(\tau-1),:) A=\mathcal{O}_{\tau}(p+1: p \tau,:) \\
& C=\mathcal{O}_{\tau}(1: p,:)
\end{aligned}
$$

Step 4: Compute the gain matrices \hat{K}_{t} and the covariance matrices $\hat{R}_{t}, t=0,1, \cdots, \tau-1$ by (28) and (29), respectively.

The system (23) with matrices A, C, \hat{K}_{t} and $\hat{R}_{t}(t=$ $0,1, \cdots, \tau-1$) given above is a forward non-stationary realization of \boldsymbol{y}_{t} for $t=0,1, \cdots, \tau-1$.

5 Subspace Identification Method

We observe that a triplet $\{A, B, C\}$ derived in Section 4 is a finite-interval stochastically balanced realization at time τ, and that $\hat{R}_{\tau-1}$ and $\hat{K}_{\tau-1}$ in (20) and (21) converge to \hat{R}_{∞} and \hat{K}_{∞} for $\tau \rightarrow \infty$, respectively. Thus, we see that the use of quadruple $\left(A, C, \hat{K}_{\tau-1}, \hat{R}_{\tau-1}\right)$ is most natural for approximating a stationary process y_{t} instead of $\left(A, C, \hat{K}_{\infty}, \hat{R}_{\infty}\right)$.
Usually, in real system identification, we have a finite string of observed time series $\left\{y_{0}, y_{1}, \cdots, y_{\nu+2 \tau-2}\right\}$ with ν and τ sufficiently large, where we approximate covariance matrices as $\Lambda_{i-j} \approx \frac{1}{\nu} \sum_{t=k}^{k+\nu-1} y_{t+i} y_{t+j}^{T}$.
For $t=0,1, \cdots, 2 \tau-1$, define

$$
\boldsymbol{y}_{t}:=\left[\begin{array}{llll}
y_{t} & y_{t+1} & \cdots & y_{t+\nu-1}
\end{array}\right] \in \mathbb{R}^{p \times \nu}
$$

Define bilinear form as $\left\langle\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right\rangle_{\frac{I}{\nu}}:=\frac{1}{\nu} \boldsymbol{y}_{i} \boldsymbol{y}_{j}^{T}$ so that we approximate Λ_{i-j} by $\left\langle\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right\rangle_{\frac{I}{\nu}}$. Also define Y_{τ}^{-}and Y_{τ}^{+}as in (5) where we assume that the positivity condition is satisfied for observed data:

$$
\left\langle\left[\begin{array}{c}
Y_{\tau}^{-} \\
Y_{\tau}^{+}
\end{array}\right],\left[\begin{array}{c}
Y_{\tau}^{-} \\
Y_{\tau}^{+}
\end{array}\right]\right\rangle_{\frac{I}{\nu}}>0
$$

Subspace Identification Method

Step 1: Compute the following decomposition

$$
\left[\begin{array}{c}
Y_{\tau}^{-} \tag{30}\\
Y_{\tau}^{+}
\end{array}\right]=\left[\begin{array}{cc}
\hat{\mathcal{L}}_{\tau}^{-} & 0 \\
\hat{\mathcal{S}}_{\tau} & \hat{\mathcal{L}}_{\tau}^{+}
\end{array}\right]\left[\begin{array}{c}
\hat{V}_{\tau}^{-} \\
\hat{V}_{\tau}^{+}
\end{array}\right]
$$

where $\hat{\mathcal{L}}_{\tau}^{-}, \hat{\mathcal{L}}_{\tau}^{+}$and $\hat{\mathcal{S}}_{\tau}$ are described as

$$
\begin{aligned}
& \hat{\mathcal{L}}_{\tau}^{-}=\left[\begin{array}{cccc}
\hat{L}_{\tau-1, \tau-1} & \hat{L}_{\tau-1, \tau-2} & \cdots & \hat{L}_{\tau-1,0} \\
& \hat{L}_{\tau-2, \tau-2} & \cdots & \hat{L}_{\tau-2,0} \\
& & \ddots & \vdots \\
0 & & & \hat{L}_{0,0}
\end{array}\right], \\
& \hat{\mathcal{L}}_{\tau}^{+}=\left[\begin{array}{cccc}
\hat{L}_{\tau, \tau} & \hat{L}_{\tau+1, \tau+1} & & 0 \\
\vdots & \vdots & \ddots & \\
\hat{L}_{\tau+1, \tau} & \hat{L}_{2 \tau-1, \tau} & \hat{L}_{2 \tau-1, \tau+1} & \cdots \\
\hat{L}_{2 \tau-1,2 \tau-1}
\end{array}\right], \\
& \hat{\mathcal{S}}_{\tau}=\left[\begin{array}{cccc}
\hat{L}_{\tau, \tau-1} & \hat{L}_{\tau, \tau-2} & \cdots & \hat{L}_{\tau, 0} \\
\hat{L}_{\tau+1, \tau-1} & \hat{L}_{\tau+1, \tau-2} & \cdots & \hat{L}_{\tau+1,0} \\
\vdots & \vdots & \vdots & \vdots \\
\hat{L}_{2 \tau-1, \tau-1} & \hat{L}_{2 \tau-1, \tau-2} & \cdots & \hat{L}_{2 \tau-1,0}
\end{array}\right],
\end{aligned}
$$

where $\hat{L}_{i, i}=I$, and where

$$
\begin{aligned}
& \hat{\mathcal{R}}_{\tau}^{-}=\operatorname{block-\operatorname {diag}}\left(\hat{R}_{\tau-1}, \hat{R}_{\tau-2}, \cdots, \hat{R}_{0}\right) \\
& \hat{\mathcal{R}}_{\tau}^{+}=\operatorname{block-\operatorname {diag}}\left(\hat{R}_{\tau}, \hat{R}_{\tau+1}, \cdots, \hat{R}_{2 \tau-1}\right)
\end{aligned}
$$

Step 2: Define $\Psi_{-\tau}:=\left\langle Y_{\tau}^{+}, Y_{\tau}^{+}\right\rangle_{\frac{I}{\nu}}$ and compute the weighted SVD of $\hat{\mathcal{S}}_{\tau}$ as

$$
\begin{aligned}
\Psi_{-\tau}^{-\frac{1}{2}} \hat{\mathcal{S}}_{\tau}\left(\hat{\mathcal{R}}_{\tau}^{-}\right)^{\frac{1}{2}} & =\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]^{T} \\
& =U_{1} \Sigma_{1} V_{1}^{T}
\end{aligned}
$$

Step 3: Define \mathcal{O}_{τ} and $\hat{\mathcal{F}}_{\tau}$ as

$$
\mathcal{O}_{\tau}=\Psi_{-\tau}^{\frac{1}{2}} U_{1} \Sigma_{1}^{\frac{1}{2}}, \quad \hat{\mathcal{F}}_{\tau}=\Sigma_{1}^{\frac{1}{2}} V_{1}^{T}\left(\hat{R}_{\tau}^{-}\right)^{-\frac{1}{2}}
$$

Step 4: Compute $\hat{A}, \hat{C}, \hat{K}_{\tau-1}$ and $\hat{R}_{\tau-1}$ as

$$
\begin{aligned}
& \mathcal{O}_{\tau}(1:(\tau-1) p,:) \hat{A}=\mathcal{O}_{\tau}(p+1: \tau p,:) \\
& \hat{C}=\mathcal{O}_{\tau}(1: p,:) \\
& \hat{K}_{\tau-1}=\hat{\mathcal{F}}_{\tau}(:, 1: p) \\
& \hat{R}_{\tau-1}=\hat{\mathcal{R}}_{\tau}^{-}(1: p, 1: p)
\end{aligned}
$$

We see that the system

$$
\left[\begin{array}{c}
\hat{x}(t+1) \\
y(t)
\end{array}\right]=\left[\begin{array}{cc}
\hat{A} & \hat{K}_{\tau-1} \\
\hat{C} & I
\end{array}\right]\left[\begin{array}{c}
\hat{x}(t) \\
\hat{v}(t)
\end{array}\right]
$$

with $\mathrm{E}\left\{\hat{v}(s) \hat{v}(t)^{T}\right\}=\hat{R}_{\tau-1} \delta_{s t}$ is an approximation for the balanced stochastic realization of a stationary process $y(t)$ for observed data $\left\{y_{0}, y_{1}, \cdots, y_{\nu+2 \tau-2}\right\}$.

6 Conclusions

In this paper, along the line of [6], we have considered a stochastic realization problem on a finite interval by using a Hilbert space approach [4, 5]. To this end, we have also employed the representation of the state and
state covariance matrix due to Van Overschee and De Moor [8], which is extended to the present Hilbert space setting.

In summary, given finite covariance data $\left\{\Lambda_{0}, \Lambda_{1}, \cdots\right.$, $\left.\Lambda_{2 \tau-1}\right\}$, we have re-derived a finite-interval realization algorithm for a stationary process due to $[4,5]$ based on the LQ decomposition in a Hilbert space, and developed a new method of computing non-stationary system matrices $\left(A, C, \hat{K}_{t}, \hat{R}_{t}\right), t=0,1, \cdots, \tau-1$ by using the SVD of the matrix obtained by the LQ decomposition. Moreover, we have briefly discussed a stochastic subspace identification method.

Acknowledgments This work was supported by Research Project, Grant-in-Aid for Scientific Research, JSPS.KAKENHI 15760316.

References

[1] H. Akaike, "Markovian representation of stochastic processes by canonical variables," SIAM J. Control, vol. 13, no. 1, pp. 162-173, 1975.
[2] U. B. Desai, D. Pal and R. D. Kirkpatrick, "A realization approach to stochastic model reduction," International J. Control, vol. 42, no. 4, pp. 821838, 1985.
[3] P. L. Faurre, "Stochastic realization algorithms," In System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic, pp. 1-25, 1976.
[4] A. Lindquist and G. Picci, "Geometric methods for state space identification," In Identification, Adaptation, Learning: The Science of Learning Models from Data (S. Bittanti and G. Picci, eds.), Springer, pp. 1-69, 1996.
[5] A. Lindquist and G. Picci, "Canonical correlation analysis, approximate covariance extension, and identification of stationary time series," Automat$i c a$, vol. 32, no. 5, pp. 709-733, 1996.
[6] H. Tanaka and T. Katayama, "A stochastic realization in a Hilbert space based on "LQ decomposition" with application to subspace identification," Proc. 13th IFAC symposium on System Identification (SYSID2003) (to appear).
[7] P. Van Overschee and B. De Moor, "Subspace algorithms for the stochastic identification problem," Automatica, vol. 29, no. 3, pp. 649-660, 1993.
[8] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems, Kluwer Academic Pub., 1996.

[^0]: ${ }^{2}$ The matrix $\hat{\mathcal{L}}_{\tau}^{+}$in (17) is irrelevant for the latter development.

