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Abstract

In this paper, we consider a stochastic realization prob-
lem with finite covariance data based on “LQ decompo-
sition” in a Hilbert space, and re-derive a non-stationary
finite-interval realization ([4, 5]). We develop a new
algorithm of computing system matrices of the finite-
interval realization by LQ decomposition, followed by
the SVD of a certain block matrix. Also, a stochastic
subspace identification based on a finite time-series data
is briefly discussed.

1 Introduction

Stochastic realization problem is to find a set of Markov
models that generate a given covariance matrices of a
stationary random process [3, 1]. It is well known that
stochastic realization theory is an underlying principle
for stochastic subspace identification methods [7, 8], in
which Van Overschee and De Moor developed a sub-
space algorithm based on the non-stationary Kalman fil-
ter.

Lindquist and Picci [4, 5] have analyzed state space
identification algorithms in the light of geometric theory
of stochastic realization. In fact, they have discussed the
state space modeling of the time-series data by separat-
ing three different cases: (i) an infinite complete covari-
ance sequence is available, (ii) a finite complete covari-
ance data is available, and (iii) a finite string of time-
series data is available; especially, for the second case,
they have derived a non-stationary finite-interval real-
ization of a stationary process.

Recently, in [6], we have re-derived a balanced stochas-
tic realization of Desai et al. [2] based on “LQ de-
composition” in a Hilbert space generated by a station-
ary second order process under the assumption (i), and
briefly discussed a subspace identification method. In

this paper, along the line of [6], we consider a stochas-
tic realization problem on a finite interval [4, 5], thereby
extending the result of [6] to the case where (ii) finite co-
variance data are available; we derive a non-stationary
finite-interval realization of a stationary process by us-
ing “LQ decomposition” in a Hilbert space. The result
is useful for studying a subspace identification method
that estimates system matrices that produce a positive
covariance sequence.

Due to space limitation, proofs of theorems and lemmas
are omitted.

2 Problem Statement

Consider a second-order stationary process {yt, t = 0,
±1, · · · }, where yt is a p-dimensional non-deterministic
process with mean zero and covariance matrices

Λk = E
(

yt+kyT
t

)

, k = 0,±1,±2, · · · (1)

where a set of covariance matrices {Λk , k = 0,
±1, · · · } is a positive real sequence in the sense that
∑

i,j uT
i Λi−juj > 0, ui 6≡ 0. We assume that

there exists a finite dimensional realization for y, so
that the covariance matrix has a decomposition Λk =
HF k−1G, k = 1, 2, · · · , where (F , G, H) is a mini-
mal realization with F ∈ R

n×n.

According to [4, 5], we define the tail matrix by

yt :=
[

yt yt+1 yt+2 · · ·
]

∈ R
p×∞.

We also define a vector space spanned by all finite linear
combinations of {yt} as

Y∞ :=
{

∑

aT
k yk | ak ∈ R

p, k = 0, ±1, · · ·
}

.

For the elements aT yi and bT yj ∈ Y∞, we define an
inner product by

〈aT yi, b
Tyj〉 I

∞

:= lim
ν→∞

1

ν

t0+ν−1
∑

k=t0

aT yk+iy
T
k+jb

= aT Λi−jb (2)



where the right hand side is independent of t0, because
y is stationary. By completing the vector space Y∞ with
respect to convergence in the norm induced by the inner
product (2), we get a Hilbert space, which is also written
as Y∞.

Let U be a Hilbert subspace of Y∞, and the orthogonal
projection of η ∈ Y∞ onto the space U be denoted by
Ê I

∞

(η | U). Also, let the row space spanned by a matrix
U be expressed as span(U). If 〈U, U〉 I

∞

has an inverse,
the orthogonal projection is written as

Ê I
∞

(η | U) := Ê I
∞

(η | span(U))

= 〈η, U〉 I
∞

〈U, U〉−1
I
∞

U. (3)

We extend Y∞ to Y•×∞ so that matrices are included
as its elements1.

We assume that the data are generated by a linear system
and described by

[

xt+1

yt

]

=

[

F

H

]

xt +

[

wt

vt

]

where F ∈ R
n×n and H ∈ R

p×n satisfy a decom-
position Λk = HF k−1G, xt ∈ Yn×∞ is a state ma-
trix, and the elements of tail matrices, wt ∈ Yn×∞ and
vt ∈ Yp×∞ are white noises satisfying

〈[

ws

vs

]

,

[

wt

vt

]〉

I
∞

=

[

Q S

ST R

]

δst

with R > 0.

Given finite data yt ∈ Yp×∞, t = 0, 1, · · · , 2τ − 1
with τ > n, Lindquist and Picci [4, 5] have derived a
finite-interval realization for yt, which is given by the

1We defineYp×∞ as

Yp×∞ :=
���

ηT
1 ηT

2 · · · ηT
p � T ���� k ∈ Y∞ � .

For given � =
�

αT
1 · · · αT

p � T

∈ Yp×∞ , we define the

orthogonal projection of � onto the space span(U ) as

Ê I
∞

( � |U ) :=

	


� Ê I
∞

(α1 | U)

..

.
Ê I

∞

(αp |U)

� � .

It should be noted that a bilinear form 〈·, ·〉∞ is described as

〈 � , � 〉 I
∞

:=

	


� 〈α1, β1〉 I
∞

· · · 〈α1, βq〉 I
∞

.

..
.
..

〈αp, β1〉 I
∞

· · · 〈αp, βq〉 I
∞

� �
for � ∈ Yp×∞ and � =

�
βT

1
· · · βT

q � T

∈ Yq×∞ , and the

orthogonal projection � ∈ Y•×∞ onto span(U ) is also calculated
as in (3).

following (transient) Kalman filter with zero initial con-
ditions

x̂t+1 = F x̂t + Γ̂t(yt − Hx̂t), x̂0 = 0

where x̂t ∈ Yn×∞ is the estimation of the state matrix
xt ∈ Yn×∞, Γ̂t is the forward non-stationary Kalman
gain.

By using the non-stationary forward Kalman filter, it has
been shown that the tail matrices yt, t = 0, 1, · · · , τ−1,
satisfy the following time-varying system
[

x̂t+1

yt

]

=

[

F Γ̂t

H I

] [

x̂t

v̂t

]

, x̂0 = 0 (4)

where v̂t is the forward (transient) innovation process
defined by v̂t := yt − Cx̂t.

In this paper, we assume that a set of exact but finite co-
variance data {Λ0, Λ1, Λ2, · · · , Λ2τ−1} is available with
τ > n; this is equivalent to the fact that a finite number
of tail matrices yt ∈ Yp×∞, t = 0, 1, · · · , 2τ − 1 are
given. Under this assumption, the problem is to give a
finite-interval realization of yt by “LQ decomposition”
in a Hilbert space and provide a method of computing
the system matrices F , H , Γ̂t and R̂t in (4) for t = 0, 1,
· · · , τ − 1.

3 LQ Decomposition of Data Matrix

In this section, after providing some notations, we re-
view a finite-interval realization derived from the CCA,
and then compute the LQ decomposition of a given data
matrix with the help of the finite-interval realization.

3.1 Covariance matrices

In terms of tail matrices yt ∈ Yp×∞, t = 0, 1, · · · ,
2τ − 1, we define data matrices as

Y −
t :=















yt−1

yt−2

...
y1

y0















, Y +
t :=















yt

yt+1

...
y2τ−2

y2τ−1















(5)

for t = 1, · · · , 2τ − 1. For notational convenience, we
define the reversed tail matrices by ζ−s := y−s+2τ−1

for s = 0, 1, · · · , 2τ − 1, and

Z−
−s :=















ζ−s

ζ−s−1

...
ζ−2τ+2

ζ−2τ+1















, Z+
−s :=















ζ−s+1

ζ−s+2

...
ζ−1

ζ0















(6)



for s = 1, · · · , 2τ − 1. It may be noted that for t = s =
τ , all the data matrices have the same number of rows
with Y −

τ = Z−
−τ and Y +

τ = Z+
−τ , where the former are

termed the past data matrices, while the latter the future
data matrices.

Moreover, we define covariance matrices

Φt := 〈Y −
t , Y −

t 〉 I
∞

=

������
�

Λ0 Λ1 Λ2 · · · Λt−1

Λ
T
1 Λ0 Λ1 · · · Λt−2

Λ
T
2 Λ

T
1 Λ0 · · · Λt−3

...
...

...
. . .

...
Λ

T
t−1 Λ

T
t−2 Λ

T
t−3 · · · Λ0

�������
� , (7)

Ψ−t := 〈Z+
−t, Z

+
−t〉 I

∞

=

������
�

Λ0 Λ
T
1 Λ

T
2 · · · Λ

T
t−1

Λ1 Λ0 Λ
T
1 · · · Λ

T
t−2

Λ2 Λ1 Λ0 · · · Λ
T
t−3

...
...

...
. . .

...
Λt−1 Λt−2 Λt−3 · · · Λ0

�������
� , (8)

for t = 1, · · · , 2τ and the block Hankel matrix

Hτ = 〈Y +
τ , Y −

τ 〉 I
∞

=

������
�

Λ1 Λ2 Λ3 · · · Λτ

Λ2 Λ3 Λ4 · · · Λτ+1

Λ3 Λ4 Λ5 · · · Λτ+2

...
...

...
...

...
Λτ Λτ+1 Λτ+2 · · · Λ2τ−1

�������
� (9)

= 〈Z+
−τ , Z−

−τ 〉 I
∞

.

It should be noted that the covariance matrices of (7)
and (8) are defined for t = 1, · · · , 2τ , but the block
Hankel matrix (9), the covariance matrix of the future
and the past, is defined for Hτ only.

3.2 Canonical correlation analysis

As usual, we compute the canonical decomposition, or
the weighted SVD, of the block Hankel matrix Hτ as
([4, 5])

Ψ
− 1

2

−τ HτΦ
−T

2
τ = [Ūτ Ũτ ]

[

Σ̄τ 0

0 Σ̃τ

] [

V̄ T
τ

Ṽ T
τ

]

= Ūτ Σ̄τ V̄ T
τ , Σ̄τ ∈ R

n×n

where rank Σ̄τ = n, and ŪT
τ Ūτ = In, V̄ T

τ V̄τ = In.
Hence, we get

Hτ = Ψ
1
2

−τ Ūτ Σ̄τ V̄ T
τ Φ

T
2
τ .

It therefore follows that the extended observability ma-
trix Oτ and the extended reachability matrix Cτ are re-

spectively given by

Oτ := Ψ
1
2

−τ Ūτ Σ̄
1
2
τ ,

Cτ := Σ̄
1
2
τ V̄ T

τ Φ
T
2
τ

with rankOτ = n, rankCτ = n, and hence we have
Hτ = OτCτ .

From the assumption about the covariance data, there
exist matrices A ∈ R

n×n, B ∈ R
n×p and C ∈ R

p×n

such that

Oτ =











C

CA
...

CAτ−1











, (10)

Cτ =
[

B AB · · · Aτ−1B
]

(11)

where it should be noted that matrices A, B and C are
dependent on τ .

Let (Ā, B̄, C̄) be a stochastically balanced realiza-
tion obtained by the infinite covariance data [2, 5],
namely with τ → ∞. Then, it follows that (A,
B, C) in (10) and (11) satisfies the relation Ā =
Q−1

τ AQτ , B̄ = Q−1
τ B and C̄ = CQτ where Qτ ∈

R
n×n is a non-singular transform [5], so that we have

Λk = CAk−1B, k = 1, 2, · · · , 2τ − 1. The triplet
(A, B, C) obtained above is a finite-interval stochasti-
cally balanced realization which is minimal and depen-
dent on τ [5].

3.3 LQ decomposition in a Hilbert space

We describe a stochastic realization in terms of a (tran-
sient) innovation process [4, 5], and then provide an
“LQ decomposition” of a data matrix in a Hilbert space.

Define the variables for t = 1, · · · , 2τ − 1

v̂t := yt − Ê I
∞

(yt | Y
−
t ) (12)

with the initial condition v̂0 := y0.

Lemma 1 The process v̂j defined by (12) is a white
noise satisfying

〈v̂i, v̂j〉 I
∞

= R̂jδij , i, j = 0, 1, · · · , 2τ − 1 (13)

where R̂j > 0, j = 0, 1, · · · , 2τ − 1, and

〈yi, v̂j〉 I
∞

= 0, 0 ≤ i < j ≤ 2τ − 1. (14)

Define L̂i,j as

L̂i,j := 〈yi, v̂j〉 I
∞

R̂−1
j , 0 ≤ j ≤ i ≤ 2τ − 1. (15)



An explicit form of L̂i,j ∈ R
p×p for j ≤ i ≤ 2τ −

1, 0 ≤ j ≤ τ − 1 is provided later in (24).

In terms of L̂i,j of (15), we define

L̂−
τ :=

�����
�

L̂τ−1,τ−1 L̂τ−1,τ−2 · · · L̂τ−1,0

L̂τ−2,τ−2 · · · L̂τ−2,0

. . .
...

0 L̂0,0

������
� ,

L̂+
τ :=

�����
�

L̂τ,τ 0

L̂τ+1,τ L̂τ+1,τ+1

...
...

. . .

L̂2τ−1,τ L̂2τ−1,τ+1 · · · L̂2τ−1,2τ−1

� ����
� ,

Ŝτ :=

�����
�

L̂τ,τ−1 L̂τ,τ−2 · · · L̂τ,0

L̂τ+1,τ−1 L̂τ+1,τ−2 · · · L̂τ+1,0

...
...

...
...

L̂2τ−1,τ−1 L̂2τ−1,τ−2 · · · L̂2τ−1,0

� ����
� ,

where L̂−
τ , L̂+

τ , Ŝτ ∈ R
τp×τp. Moreover, we define

V̂ −
t =

������
�

ˆ
�

t−1

ˆ
�

t−2

...
ˆ

�
1

ˆ
�

0

� �����
� , V̂ +

t =

������
�

ˆ
�

t

ˆ
�

t+1

...
ˆ

�
2τ−2

ˆ
�

2τ−1

� �����
� (16)

and covariance matrices:

R̂−
τ := 〈V̂ −

τ , V̂ −
τ 〉 I

∞

, R̂+
τ := 〈V̂ +

τ , V̂ +
τ 〉 I

∞

.

Theorem 1 The past Y −
τ and the future Y +

τ of (5) are
decomposed as

[

Y −
τ

Y +
τ

]

=

[

L̂−
τ 0

Ŝτ L̂+
τ

] [

V̂ −
τ

V̂ +
τ

]

(17)

where V̂ −
τ and V̂ +

τ are given by (16) and satisfy
〈[

V̂ −
τ

V̂ +
τ

]

,

[

V̂ −
τ

V̂ +
τ

]〉

I
∞

=

[

R̂−
τ 0

0 R̂+
τ

]

. (18)

Moreover, the orthogonal projection of the future onto
the past is written as

Ê I
∞

(Y +
τ | Y −

τ ) = Ŝτ V̂ −
τ .

It can be shown that the decomposition of (17) is per-
formed by an “LQ decomposition” in the Hilbert space.

Now we evaluate the terms L̂−
τ and Ŝτ in (17) 2. To this

end, we define [8]

P̂t := CtΦ
−1
t CT

t , t = 1, · · · , τ (19)

2The matrix L̂+
τ in (17) is irrelevant for the latter development.

with P̂0 := 0, where it should be noted that Ct in (19) is
a truncated extended reachability matrix defined as

Ct =
[

B AB · · · At−1B
]

, t = 1, · · · , τ

by using A and B [see (11)].

Proposition 1 ([8]) The matrix P̂t satisfies the follow-
ing discrete-time Riccati equation with P̂0 = 0

P̂t+1 = AP̂tA
T

+ (B − AP̂tC
T )(Λ0 − CP̂tC

T )−1(B − AP̂tC
T )T

for t = 0, 1, 2, · · · , τ − 1.

In terms of the solution P̂t of Riccati equation, we de-
fine matrices

R̂t := Λ0 − CP̂tC
T , (20)

K̂t := (B − AP̂tC
T )(Λ0 − CP̂tC

T )−1, (21)

for t = 0, 1, · · · , τ − 1. Also, define ([8])

x̂t := CtΦ
−1
t Y −

t . (22)

Then, we can prove the following lemma.

Proposition 2 ([4, 5]) The tail matrix yt ∈ Yp×∞

(t = 0, 1, · · · , τ − 1) is realized by the following time-
varying system
[

x̂t+1

yt

]

=

[

A K̂t

C I

] [

x̂t

v̂t

]

, x̂0 = 0 (23)

where

〈v̂t, v̂s〉 I
∞

= R̂tδts, t, s = 0, 1, · · · , τ − 1

and where 〈v̂t, x̂s〉 I
∞

= 0, t ≥ s. Moreover, the or-

thogonal projection of Y +
τ onto Y −

τ is given by the state
matrix x̂τ as follows

Ê I
∞

(Y +
τ | Y −

τ ) = Oτ x̂τ .

By using the above finite-interval realization, we com-
pute the matrices L̂ij defined in (15).

Theorem 2 The matrices L̂ij ∈ R
p×p defined in (15)

are given by

L̂i,j :=



















Ip (i = j = 0, 1, · · · , τ − 1)

CAi−j−1K̂j

(

j < i ≤ 2τ − 1

0 ≤ j ≤ τ − 1

)

(24)

and where K̂j is defined by (21).



4 Finite-Interval Realization

We show that the system matrices A, C and K̂t in (23)
are derived by the decomposition of the matrix Ŝτ in
Theorem 1.

Lemma 2 The block matrix Ŝτ has rank n, and satisfies

Ŝτ = Oτ F̂τ

where Oτ is the extended observability matrix, and Fτ

is defined by

F̂τ :=
[

K̂τ−1 AK̂τ−2 · · · Aτ−1K̂0

]

.

Theorem 3 Given Ŝτ , R̂−
τ and Φ−τ , we compute the

weighted SVD:

Ψ
− 1

2

−τ Ŝτ (R̂−
τ )

1
2 = Ú Σ́V́ T , Σ́ ∈ R

n×n. (25)

Then, the matrix Oτ and F̂τ are given by

Oτ = Ψ
1
2

−τ ÚΣ́
1
2 , F̂τ = Σ́

1
2 V́ T (R̂−

τ )−
1
2 (26)

where Σ́
1

2 = Σ́
T
2 is diagonal.

Lemma 2 and Theorem 3 provide the desired decompo-
sition of Λk = CAk−1B where the extended observ-
ability matrix Ok in (10) is calculated in (26). The SVD
of (25) yields a desired decomposition of Ŝτ , however
it is not a block Hankel matrix.

In terms of L̂i,j of (24), define the matrix

T̂τ :=

�����
�

L̂τ,τ−1 L̂τ−1,τ−2 · · · L̂1,0

L̂τ+1,τ−1 L̂τ,τ−2 · · · L̂2,0

...
...

...
...

L̂2τ−1,τ−1 L̂2τ−2,τ−2 · · · L̂τ,0

� ����
� ,

where T̂τ ∈ R
τp×τp. We obtain K̂t in (23) as follows.

Lemma 3 Define the non-stationary gains as

K̂τ := [K̂τ−1 K̂τ−2 · · · K̂0]. (27)

Then, we have the decomposition T̂τ = Oτ K̂τ , and
hence the non-stationary gains are computed by

K̂τ = O†
τ T̂τ (28)

where (·)† denotes the pseudo-inverse.

Summarizing above results, a finite-interval realization
of a stationary process is obtained by the following
steps.

Finite-Interval Realization of a Stationary Process

Step 1: Given Y −
τ and Y +

τ , we compute V̂ −
τ , V̂ +

τ and
Ŝτ by (17), and then compute the covariance ma-
trix

R̂−
τ = block-diag(R̂τ−1, R̂τ−2, · · · , R̂0). (29)

Step 2: Compute the weighted SVD of (25) and obtain
Oτ from (26).

Step 3: Compute A and C by

Oτ (1 : p(τ − 1), :)A = Oτ (p + 1 : pτ, :)

C = Oτ(1 : p, :).

Step 4: Compute the gain matrices K̂t and the covari-
ance matrices R̂t, t = 0, 1, · · · , τ − 1 by (28) and
(29), respectively.

The system (23) with matrices A, C , K̂t and R̂t (t =
0, 1, · · · , τ−1) given above is a forward non-stationary
realization of yt for t = 0, 1, · · · , τ − 1.

5 Subspace Identification Method

We observe that a triplet {A, B, C} derived in Section 4
is a finite-interval stochastically balanced realization at
time τ , and that R̂τ−1 and K̂τ−1 in (20) and (21) con-
verge to R̂∞ and K̂∞ for τ → ∞, respectively. Thus,
we see that the use of quadruple (A, C , K̂τ−1, R̂τ−1) is
most natural for approximating a stationary process yt

instead of (A, C , K̂∞, R̂∞).

Usually, in real system identification, we have a finite
string of observed time series {y0, y1, · · · , yν+2τ−2}
with ν and τ sufficiently large, where we approximate
covariance matrices as Λi−j ≈ 1

ν

∑k+ν−1
t=k yt+iy

T
t+j .

For t = 0, 1, · · · , 2τ − 1, define

yt :=
[

yt yt+1 · · · yt+ν−1

]

∈ R
p×ν .

Define bilinear form as 〈yi, yj〉 I
ν

:= 1
ν
yiy

T
j so that we

approximate Λi−j by 〈yi, yj〉 I
ν

. Also define Y −
τ and

Y +
τ as in (5) where we assume that the positivity condi-

tion is satisfied for observed data:
〈[

Y −
τ

Y +
τ

]

,

[

Y −
τ

Y +
τ

]〉

I
ν

> 0.

Subspace Identification Method

Step 1: Compute the following decomposition
[

Y −
τ

Y +
τ

]

=

[

L̂−
τ 0

Ŝτ L̂+
τ

] [

V̂ −
τ

V̂ +
τ

]

(30)



where L̂−
τ , L̂+

τ and Ŝτ are described as

L̂−
τ =

	



� L̂τ−1,τ−1 L̂τ−1,τ−2 · · · L̂τ−1,0

L̂τ−2,τ−2 · · · L̂τ−2,0

. . .
..
.

0 L̂0,0

� � ,
L̂+

τ =

	



� L̂τ,τ 0

L̂τ+1,τ L̂τ+1,τ+1

..

.
..
.

. . .

L̂2τ−1,τ L̂2τ−1,τ+1 · · · L̂2τ−1,2τ−1

� � ,
Ŝτ =

	



� L̂τ,τ−1 L̂τ,τ−2 · · · L̂τ,0

L̂τ+1,τ−1 L̂τ+1,τ−2 · · · L̂τ+1,0

.

..
.
..

.

..
.
..

L̂2τ−1,τ−1 L̂2τ−1,τ−2 · · · L̂2τ−1,0

� � ,
where L̂i,i = I, and where

R̂−
τ = block-diag (R̂τ−1, R̂τ−2, · · · , R̂0),

R̂+
τ = block-diag (R̂τ , R̂τ+1, · · · , R̂2τ−1).

Step 2: Define Ψ−τ := 〈Y +
τ , Y +

τ 〉 I
ν

and compute the

weighted SVD of Ŝτ as

Ψ
− 1

2

−τ Ŝτ (R̂−
τ )

1

2 =
�

U1 U2 � �
Σ1 0
0 Σ2 � �

V1

V2 � T

= U1Σ1V
T
1 .

Step 3: Define Oτ and F̂τ as

Oτ = Ψ
1

2

−τU1Σ
1

2

1 , F̂τ = Σ
1

2

1 V T
1 (R̂−

τ )−
1
2 .

Step 4: Compute Â, Ĉ, K̂τ−1 and R̂τ−1 as

Oτ (1 : (τ − 1)p, :)Â = Oτ (p + 1 : τp, :),

Ĉ = Oτ (1 : p, :),

K̂τ−1 = F̂τ(:, 1 : p),

R̂τ−1 = R̂−
τ (1 : p, 1 : p).

We see that the system

[

x̂(t + 1)
y(t)

]

=

[

Â K̂τ−1

Ĉ I

][

x̂(t)
v̂(t)

]

with E {v̂(s)v̂(t)T } = R̂τ−1δst is an approximation for
the balanced stochastic realization of a stationary pro-
cess y(t) for observed data {y0, y1, · · · , yν+2τ−2}.

6 Conclusions

In this paper, along the line of [6], we have considered
a stochastic realization problem on a finite interval by
using a Hilbert space approach [4, 5]. To this end, we
have also employed the representation of the state and

state covariance matrix due to Van Overschee and De
Moor [8], which is extended to the present Hilbert space
setting.

In summary, given finite covariance data {Λ0, Λ1, · · · ,
Λ2τ−1}, we have re-derived a finite-interval realization
algorithm for a stationary process due to [4, 5] based on
the LQ decomposition in a Hilbert space, and developed
a new method of computing non-stationary system ma-
trices (A, C, K̂t, R̂t), t = 0, 1, · · · , τ − 1 by using
the SVD of the matrix obtained by the LQ decomposi-
tion. Moreover, we have briefly discussed a stochastic
subspace identification method.
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