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Abstract

This paper is inspired by a recent contribution by Rao and Gar-
nier about identification of continuous time models. They show
examples where methods that directly estimate continuous time
models, based on smoothed differentiated input-output data
outperform methods that are based on discrete time model es-
timation. The reasons for that situation are investigated in this
contribution. It turns out that the key problem is that ARX-type
models are very biased for the example in that study, which
leads to problems for initializations for output error models
both based on ARX/IV techniques and on subspace (CVA es-
timation techniques). The remedy is to decrease the ARX-bias
via low pass data filtering, which in turn also explains why
the direct continuous-time estimation techniques (with inher-
ent data smoothing) do not suffer from this problem.

1 Introduction

A recent paper, [5] shows comparisons between two ways of
estimating continuous time models:

1. Directly fitting smoothed derivative approximations of in-
put and outputs to continuous-time models, e.g. [1], [9]

2. Estimating discrete time models from the data, which are
then transformed to continuous time.

The results show, for the chosen example, that approach (1) is
much better than approach (2). This is intriguing, since theo-
retically the route via discrete time models cannot be inferior
to direct fitting. In this paper we confirm that the selected sys-
tem in [5] indeed gives severe problems for the basic discrete
time identification techniques, including both prediction-error,
output error and subspace (CVA/MOESP/N4SID) techniques.

We will investigate the reasons for these problems, and show
that they can be traced to extreme sensitivity of the ARX-model
for data from this system. ARX-models are behind many ini-
tialization techniques for methods based on minimization of
model fits. They can also be seen as a basis for the subspace-
techniques. This will explain the difficulties associated with
the selected test system.

It also turns out that the remedy is to move the focus in the
model fit to lower frequencies by proper pre-filtering. Since

pre-filtering is inherent in the direct continuous-time tech-
niques this also explains why such initialization problems do
not occur for those techniques.

The calculations in MATLAB given in teletype font below are
all done in [4]. This version has some features (frequency do-
main data and easy focus definition) that are not present in pre-
vious versions.

2 The Rao-Garnier test system

In [5] a continuous time system is tested with various inputs
and noise levels. The system is

G0 =
−4s + 1

(s2/400 + 0.01s + 1)(s2/4 + 0.25s + 1)
(1)

It has two resonance frequencies, 20 and 2 rad/sec, with damp-
ing ratios 0.01 and 0.25 respectively. The settling time of the
system’s impulse response is about 10 seconds.

The system is sampled with a sampling intervalTs=0.01 sec,
and the input is chosen as

u(t) = sin(t) + sin(1.9t) + sin(2.1t) (2)

+ sin(18t) + sin(22t)

This sampling time is not unrealistic, in view of the resonance
frequency of 22 rad/sec. The sampling frequency will be about
10 times the bandwidth of the system, an often given rule-of-
thumb. On the other hand, the settling time of system will be
about 1000 samples, quite a high figure.

The system is simulated (with a zero order hold input) with this
input and sampling interval, and white measurement noise cor-
responding to a SNR of 10 dB was added. All this corresponds
to “trial2” in [5], except that in that paper, the input is not sub-
jected to a zero-order-hold block. A portion of the data set is
shown in Figure 1. With the relatively fast sampling used here,
there is no major difference between sampled models and con-
tinuous time models, so we can check out discrete time models
estimated from the data to start with.

2.1 Time-domain data

A sampled version of (1) will have 4 poles, of course, an in
general 3 zeros (4 parameters in the numerator). Possible prior
knowledge that there is only one zero in the continuous time
model, is not so easy to accommodate in discrete time model-
ing.

A direct estimation of an output error model (in input/output
polynomial form) gives
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Figure 1: A portion of the generated data set.

m1 = oe(data,[4 4 1]);

and a general 4th order state space model is obtained by

m2 = pem(data,4);

(this model is obtained by initialization of a CVA-type sub-
space method, and then minimizing the prediction error of the
state-space model in a free parameterization for the measured
data.) Fifty data sets with different realizations of the additive
noise were tested. The bode plots of these models are shown
together with the true system in Figures 2 and 3. These models
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Figure 2: The Bode plots of the identified OE-models together
with the true system. The true system is the thicker line.

are not good, a fact that was noticed also in [5].

2.2 Frequency-domain data

One may convert the data to the frequency domain and esti-
mate data using the Fourier transforms of the sampled data;
still building discrete-time models:

df = fft(data);
m1f = oe(df,[4 4 1]);
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Figure 3: The Bode plots of the identified PEM-models to-
gether with the true system. The true system is the thicker line.

m2f = pem(df,4);

This gives models of basically the same quality as those in Fig-
ure 2.

Viewing the data sequence as a vector, the transformation to the
Fourier domain is just an orthonormal change of basis. There-
fore no major changes in the resulting models should be ex-
pected. This was consequently confirmed in the estimation
above.

3 An initialization problem?

One may ask if the bad results are consequences of some in-
herent problem in the output error and state-space-prediction
error methods. Trying to initialize the iterative search at mod-
els closer to the true system, however gives good models. The
problem is thus one of poor initialization of the iterative search
method. We can confirm that also by looking at the models,
where the search is initialized:

m10 = oe(data,[4 4 1],’maxiter’,0)
m20 = n4sid(data,4)

These models show the same behavior as those in Figure 2. The
models from the PEM initialization are shown in Figure 4. We
see that also the initial models are bad, and obviously lie in the
domain of attraction of the bad models shown in Figure 2.

Both initializations have as a root ARX-models of the type

y(t) + a1y(t − 1) + . . . + any(t − n) = (3)

b1u(t − 1) + . . . + bmu(t − m)

The output error methodoe usesn = m = 4 to get a first
model, which is then used to generate instruments for an in-
strumental variable model. The subspace methodn4sid , can
be seen, somewhat simplified, ([3], Section 8.4) as model re-
duction of an ARX model, wheren andm are the “horizons”
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Figure 4: The Bode plots of the initial models for PEM (ob-
tained by a CVA subspace methodN4SID) together with the
true system. The true system is the thicker line.
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Figure 5: The Bode plots of the 50 identified fourth order ARX
models, together with the true system (the thicker line).

or auxiliary orders. Figure 5 also shows the ARX-estimate
(n = m = 4) for the the 50 different data sets.

It confirms that the characteristics of the first ARX-model
looms over both the initial estimate and the resulting output
error and PEM estimates.

The fact the the subspace/CVA estimate is so bad for this partic-
ular system should deserve an analysis of its own, since CVA
is known to be very reliable in general. The basic reason in
this particular case is probably that only 5 sinusoids are excit-
ing the system, so the higher order ARX-models employed by
CVA/subspace are not reliable.

4 A bias analysis of ARX-models

Let us therefore more closely analyze the ARX-method for this
system. Suppose that the true system can be represented by

y(t) + a1y(t − 1) + . . . + a4y(t − 4) =
b1u(t − 1) + . . . + b4u(t − 4) + v(t)

The limiting model is obtained as

θ∗ = R−1f = θ0 + R−1g (4a)

R = Eϕ(t)ϕT (t); f = Eϕ(t)y(t) (4b)

g = Eϕ(t)v(t) (4c)

ϕT (t) =
[−y(t − 1) . . . −y(t − n) . . . u(t − m)

]
(4d)

Let us first consider noise free data (v = 0). If the input is
white noise with unit variance, the matrixR can be calculated
exactly using the Lyapunov-equation. The upper 4-by-4 block
is 


1.6304 1.6238 1.6040 1.5720
1.6238 1.6304 1.6238 1.6040
1.6040 1.6238 1.6304 1.6238
1.5720 1.6040 1.6238 1.6304


 (5)

The condition number of the full matrix is1.4 · 108. The noise
free-data thus has a very ill-conditioned regression matrix.
Even if we have a small disturbance we may still have a non-
trivial bias. Suppose that there is white measurement noise in
the data with varianceδ, that isv(t) = A(q)e(t), Ee2(t) = δ.
Then the bias can be expressed exactly as

θBIAS = δ(R + δD)−1




a1

...
an

0
...
0




(6)

D =
[
I 0
0 0

]
(7)

It is interesting to investigate this expression as a function ofδ.
Figure 6 shows norm(θBIAS) as a function ofδ. Note that the
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Figure 6: Norm(θBIAS) as a function ofδ for the system (1),
with a white noise, unit variance input and white measurement
noise with varianceδ.

bias is quite substantial even for very small noise levels. Con-
trary to what one may think, it does not grow very much with
the noise level. The reason is that the regression matrixR+δD
becomes better conditioned for largerδ. Note from Figure 5
that the bias dominates in the obtained ARX-models. Despite
the bad conditioning of the regression matrix, and the associ-
ated noise sensitivity, there is not so much variation between
the different realizations. It is important to realize that the bias
effect illustrated in Figure 5 isan input-output property, that
does not depend in the internal model parameterization. It is
thus not a case of numerical errors.

Another way to see this bias problem is as follows. It is known,
e.g. [8], that ARX-model fitting uses a frequency weighting
that is |A0(eiω)|2. This function is shown in Figure 7. It can
be seen that high frequencies have a weight that is1012 times
larger than low frequencies. Note the relationship to the con-
dition number of the regression matrix: For high orders of the
estimatedA-polynomial, the “A-part” of the regression matrix
has a condition number which is the ratio of the largest to the
smallest value of the curve in Figure 7.
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Figure 7: The Bode plot of|A0(eiω)|2.

4.1 A remedy: prefiltering

It is clear that if the equation error was white, there would be no
bias problems, even if the regression matrix is ill-conditioned.
That should mean that prefiltering the data byA0(q) which
transforms white measurement error into white equation error
noise, should be helpful.

md = c2d(m0,0.01)
maff = arx(data,[4 4 1],’focus’,{1,md.f});
mnff = n4sid(data,4,’focus’,{1,md.f})

The resulting Bode plots are shown in Figures 8 and 9.
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Figure 8: The Bode plots of the identified models using filtered
ARX together with the true system.
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Figure 9: The Bode plots of the identified models using filtered
N4SID together with the true system.

For the ARX-case, the potential benefit of the filtering is clear:
It corresponds to prewhitening of the (equation error) noise,
and is also the motivation for the Steiglitz-McBride method,
[7]. This should also mean that is is beneficial for subspace
identification methods, since they can be interpreted as model
reduction of higher order ARX-models. This insight is also
behind the suggested preweighting of [2], which is analyzed
there from another starting point.



5 Filtering data

It seems that keeping an eye on the high frequency contents of
the signals will be important to achieve good results. The key
problems apparently is that the ARX-models give a very large
weight to high frequencies, and thus gives starting models for
the output-error type model fits that are not in the domain of
attraction of a good model.

Therefore, let us prefilter the data by a low pass filter. The
following models were calculated for the 50 data sets

mof = oe(data,[4 4 1],’focus’,[0,50]);
mpf = pem(data,4,’focus’,[0,50]);

The 50 models obtained by this filtering and the OE method
are all shown in Figure 10, together with the true system. Per-
forming the same test with frequency domain data (daf =
fft(data) ) gave essentially the same result. Notice that the
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Figure 10: The Bode plots of the identified models using pre-
filtered data and OE, together with the true system.There is one
“outlier”, but the other 49 curves follow the true system quite
well up to ca 40 rad/s.

behavior at frequencies above 30 rad/sec is quite reliable. Re-
call that there is no excitation if the system above the sinusoid
at 22 rad/s. It is important to realize that the model is “aware”
of its uncertainty at hight frequencies. Figure 11 shows the un-
certainty region corresponding to 3 standard deviations for one
of the models.

It is worth stressing again, that the problem is just one of initial-
ization. If we use the filtered data for just computing the initial
model, and estimate the model from the original non-filtered
data,

m_i = oe(data,[4 4 1],’fo’,[0 50],’maxi’,0)
mo = oe(data,m_i,’foc’,’pre’,’maxiter’,20)

a figure just like Figure 10 is obtained.
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Figure 11: The Bode plot of one of the identified models using
pre-filtered data, together with the true system and a 3 standard
deviation uncertainty region.

6 Decimation of Data

An idea that is a variant of focus-filtering is to decimate the
data after proper antialiasing filtering.

dd = decimate(data,10)
% 10 times slower sampling

mod = oe(dd,[4 4 1]);
mpd = pem(dd,4);

Running 50 realizations of the data and plotting all 100 models
in the same Bode diagram gives Figure 12. As expected, the
result as good as prefiltering alone. This confirms that the fast
sampling is part of the problems encountered in this example.
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Figure 12: Bode plot of the 100 identified models using deci-
mated data, together with the true system and.



7 Continuous-time Frequency-domain Data

Let us convert one of the estimated models to continuous time.
With one standard deviation uncertainty regions it gives:

G(s) = B(s)/F (s)

B(s) = −(1.271 ± 0.7081)s3 − (3.368 ± 13.69)s2

− (6294 ± 152.2)s + (1337 ± 139.8)

F (s) = s4 + (4.773 ± 0.2372)s3 + (402.6 ± 4.886)s2

+ (410.1 ± 9.697)s + (1596 ± 33.39)

The true values are

B0(s) = −6400s + 1600

F0(s) = s4 + 5s3 + 408s2 + 416s + 1600

We see that the relative uncertainty in the two leading coeffi-
cients in theB-polynomial (whose true values are zero) will
contribute to uncertain frequency response at higher frequen-
cies. It can be expressed saying that the data do not contain
much information about these coefficients. This no doubt is
related to the poor accuracy and high standard deviation at fre-
quencies above 20 rad/s.

The true continuous system has only one zero. If we know that
for a fact, this obviously has great importance for the model
accuracy at high frequencies. However, this is a difficult con-
straint to handle in the sampled models. To use it, we could
fit directly a continuous time model. Since the data are sam-
pled fast we can treat their Fourier transforms as if they we
computed from continuous time data. This gives the result ac-
cording to Figure 13.

datafc = fft(data)
datafc.ts=0;
mof = oe(datafc,[2 4 1],’focus’,[0 25]);
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Figure 13: The Bode plots of the directly identified continu-
ous time model together with the true system (51 curves). The
Fourier transforms of the inputs and output are treated as ob-
tained by continuous time signals.

8 Conclusions

The system used by [5] deserves special attention by people
who develop discrete-time identification methods. Techniques
such as CVA/subspace methods and prediction error methods
may give quite bad results if not proper data prefiltering is ap-
plied. We have studied some reasons for these difficulties. We
have found that ARX-models are very bias-sensitive to the sys-
tem (especially with sinusoidal inputs). Figure 5 stresses that
the bias is substantial, despite the good signal to noise ratio.
Even though the bad conditioning of the regression matrix is
part of the reason for the bias, it is not a question of numeri-
cal errors. This means that typical initialization routines based
on ARX models will have problems. One should discuss vari-
ous remedies, in addition to pre-filtering, for this initialization
problem. See, e.g. [6].
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