
STABILITY MARGIN VIA REFLECTION VECTORS
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Abstract

A new stability margin for discrete-time systems is proposed in
the system characteristic polynomial coefficient space making
use of, so-called, reflection vectors of monic Schur polynomi-
als. Reflection vector margins give the distance to the stability
boundary in directions of2n reflection vectors of ann-th de-
gree polynomial. The relations between the reflection vectors
and its roots on the unit circle are obtained. An iterative proce-
dure for stability radius determination is proposed.

1 Introduction

Some serious problems of so-called robust stability arise when
the parameters of systems are not exactly known [1,3].That is
why several stability margins are defined in different domains:
gain and phase margin in frequency domain, minimal distance
from imaginary axis (or unit circle) in pole domain, stability
radius in system parameter domain.

For interval or polytopic type of parametric uncertainties some
kind of stability margin can be obtained by the Kharitonov the-
orem [4] or edge theorem[2].

An alternative approach is to use the boundary crossing the-
orem to define the stability radius in polynomial coefficient
space. You need to determine the distances to the real pole
boundary and to complex poles boundary and select the min-
imal of them. The first task is simple but the second one is
quite complicated for high order systems because the sweeping
over the frequency range [1] or over the complex poles phase
domain [3] is needed.

In this paper the reflection coefficient stability criteria [7] for
discrete-time systems is used to define a Schur stability mar-
gin in polynomial coefficient space. The reflection vectors of
ann-th order system will be introduced as2n specific points
on the stability boundary. The line segments between an ar-
bitrary Schur polynomial (a point in coefficient space) and its
reflection vectors will be Schur stable. So the minimal distance
between a polynomial and its reflection vectors can be used
as a stability margin for linear discrete-time systems. Starting
from the crucial reflection vector by the use of line segments
on the stability boundary the stability radius in the polynomial
coefficients space can be found. By this procedure the nearest
point on the stability boundary and the critical direction will be
determined too.

The paper is organized as follows. In section 2 we recall the
stability condition via reflection coefficients and introduce re-

flection vectors of a monic Schur polynomial. In section 3 the
relations between the number (and sign) of the reflection vec-
tor and its roots will be studied. Section 4 is devoted to the the
stability radius determination by an iterative procedure.

2 Reflection coefficients of Schur polynomials

A polynomiala(z) of degreen with real coefficientsai 2 R ,
i = 0; :::; n

a(z) = anz
n + :::+ a1z + a0

is said to be Schur if all its roots are placed inside the unit
circle. A linear discrete-time dynamical system is stable if its
characteristic polynomial is Schur, i.e. if all its poles lie inside
the unit circle.

Besides the unit circle criterion some other criteria are known
for checking the stability of a linear system. It is interesting to
mention that the well-known Jury’s stability test leads precisely
to the stability hypercube of reflection coefficients . In the fol-
lowing we use the stability criterion via reflection coefficients.

Let us recall the recursive definition of reflection coefficients
ki 2 R of a polynomiala(z) [7]:

ki = �a
(i)
i ; (1)

a
(n)
i =

an�i
an

; i = 1; :::; n; (2)

a
(i�1)
j =

a
(i)
j + kia

(i)
i�j

1� k2i
; j = 1; :::; i� 1: (3)

Reflection coefficients are well-known in signal processing and
digital filters. The stability criterion via reflection coefficient is
as follows [7].

Lemma 1. A polynomial a(z) will be Schur if and only if
its reflection coefficientski; i = 1; :::; n lie within the interval
�1 < ki < 1.

A polynomiala(z) lies on the stability boundary if someki =
�1; i = 1; :::; n. For monic Schur polynomials,an = 1,
there is a one-to-one correspondence between the vectorsa =
(a0; :::; an�1)

T andk = (k1; :::; kn)
T .

The transformation from reflection coefficientski to polyno-
mial coefficientsai�1; i = 1; :::; n is multilinear. For monic
polynomials we obtain from (1)-(3)

ai = a
(n)
n�i;

a
(i)
i = �ki;

a
(i)
j = a

(i�1)
j � kia

(i�1)
i�j ; i = 1; :::; n; j = 1; :::; i� 1:



Lemma 2.[6] Through an arbitrary stable pointa =
[a0; a1; :::; an�1] in polynomial coefficient space you can put
n stable line segments

conv[ai(�1)] = fajki 2 (�1; 1)g

whereconv[ai(�1)] denotes the convex hull obtained by vary-
ing the reflection coefficientki between�1 and1 , i = 1; :::; n.

Now let us introduce the reflection vectors of a monic polyno-
mial a(z). They will be useful for introducing a new stability
margin in the polynomial coefficient space.

Definition. Let us call the vectors

ai(1) = (ajki = 1); i = 1; :::; n

positive reflection vectorsand

ai(�1) = (ajki = �1); i = 1; :::; n

negative reflection vectorsof a monic polynomiala(z).

It means, reflection vectors are the extreme points of the Schur
stable line segmentconv[ai(�1)] through the pointa defined
by Lemma 2. Due to the definition and the Lemmas 1 and 2 the
following assertions hold:

1) every Schur polynomial has2n reflection vectorsai(1) and
ai(�1), i = 1; :::; n;

2) all the reflection vectors lie on the stability boundary (ki =
�1);

3) the line segments between reflection vectorsai(1) and
ai(�1) are Schur stable.

3 Roots of reflection vectors

In this section we study the reflection vectors placement on the
stability boundary. It means that every reflection vector has
one or more roots on the unit circle. The question is: how
many roots and of what type (real or complex)? The following
theorem gives the answer to these questions.

Theorem 1.Reflection vectorsai(�1) , i = 1; :::; n of a monic
Schur polynomiala(z) havei roots on the unit circle. The type
of rootsr(j), j = 1; ::; i is as follows:

1) the positive reflection vectorai(1) has

� for i evenr(1) = 1,
r(2) = �1
and(i� 2)=2 pairs of complex rootsr(j),
j = 3; ::; i on the unit circle,

� for i oddr(1) = 1,
and(i� 1)=2 pairs of complex rootsr(j),
j = 2; ::; i on the unit circle,

2) the negative reflection vectorai(�1) has

� for i eveni=2 pairs of complex rootsr(j),
j = 1; ::; i on the unit circle,

� for i oddr(1) = �1,
and(i� 1)=2 pairs of complex rootsr(j),
j = 2; ::; i on the unit circle.

The proof is given in [6].

4 Stability radius via reflection vectors

Now we can introduce some kind of a stability margin via re-
flection vectors of a Schur polynomial.

Definition : Let us call the distance between a Schur stable
polynomiala(z) and its reflection vectorai(�1) , i = 1; :::; n
the stability margin in coefficient space in direction ofi-th
reflection vector or simplyi-th reflection vector marginand
denote it bydi(�1).

Taking into account the background of reflection vectors (ac-
cording to Theorem 1) we can claim that the most attractive
reflection vectors are the first of them. Indeed:

� the first positive reflection vector margind1(1) gives us
the distance to the real positive root boundary,

� the first negative reflection vector margind1(�1) gives us
the distance to the real negative root boundary,

� the second negative reflection vector margind2(�1) gives
us the distance to the complex root boundary,

� the second positive reflection vector margind2(1) gives us
the distance to the two different real root boundary (r1 =
1, r2 = �1),

� the third positive reflection vector margind3(1) gives us
the distance to the real positive and complex root bound-
ary (r1 = 1, r2;3 = �� 1�i; �2 + �2 = 1),

� etc.

As a matter of course the reflection vector margins do not give
the minimal distances to real and complex root boundaries, i.e.

dmin � �;

d1(1) � �+1;

d1(�1) � ��1

where�, �+1 and��1 are the stability radius and the minimal
distances to the positive and negative real root boundaries of
a(z). However, the minimal distances to real and complex root
boundaries can be easily found by a simple search procedure in
directions of reflection vectors.

1. For a given Schur polynomiala(z) find the reflection vec-
torsa1(1) , a1(�1) anda2(�1).

2. Choose one of these reflection vectors as a starting point
for iterative procedureb(0) = ai

�

(j�), i� 2 f1; 2g, j� 2
f�1; 1g.



3. Find the reflection vectorsbi(l)(�1), i = 1; :::; n; i 6= i�.

4. Put n � 1 line segmentsBi(l) = convf[b(l)]i(�1)g,
i = 1; :::; n; i 6= i� through the pointb(l). All the line
segmentsBi(l) lie on the stability boundary.

5. Findb(l+1) as the nearest point of all line segmentsBi(l),
i = 1; :::; n; i 6= i� to the pointa.

6. If jb(l + 1)� b(l)j > � for some given small� > 0 return
to step 4.

7. If jb(l+1)� b(l)j � � put�i�(j�) = ja� b(l)j and return
to step 2.

8. The stability radius of the pointa is

� = mini;j�i�(j
�)

and the nearest point on the stability boundary is
bi
�

(j�)(l).

Remark : The above procedure gives an alternative way for the
stability radius determination. The convergence rate is not high
because the search directions are determined by reflection vec-
tors and the stability region is approximated by straight lines.
But in addition to the stability radius we get by this procedure
some useful information about the stability region (distances
to the stability boundary in several directions, many points and
line segments on the stability boundary). This information can
be used for robust controller design via pole placement.

Example 1: Let n = 2. Then the stability region in the poly-
nomial coefficient spacea = (a1; a0) is the triangle AGH
(Fig.1). Let us find the stability margins for the polynomial
a(z) = z2 + 0:75z + 0:5 (point F in Fig.1). According to
Lemma 2 we can put 2 stable line segments through the point
F. By varying the first reflection coefficientk1, �1 < k1 < 1 ,
we get the line segment AB and by varying the second reflec-
tion coefficientk2,�1 < k2 < 1 , we get the line segment CD.
By definition the second order polynomiala(z) has 4 reflection
vectors :

a1(1) = [ �1:5 0:5 ]; (point C);
a1(�1) = [ 1:5 0:5 ]; (point D);
a2(1) = [ 0 �1 ]; (point A);
a2(�1) = [ 1 1 ]; (point B)

and the stability margins in the directions of reflection vectors
are determined by the line segments FC , FD , FA and FB re-
spectively.
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Fig.1 Stability region and stability margins in directions of
reflection vectors (n = 2)

To find the minimal distance to the negative real root bound-
ary we start from the first negative reflection vector (point D),
b(0) = [1:5 0:5]. By varying the second reflection coef-
ficient k2, �1 < k2 < 1 , we get the line segment AH.
The pointK = [1:125 0:125] with reflection coefficients
kK = [�1 � 0:125] is the nearest point on the negative real
root boundary and the distance to the negative real root bound-
ary is�� = 0:53:

Similarly, starting from the first positive reflection vector
(pointC) we can find the minimal distance to the positive real
root boundary (line segment AG)�+ = 1:591:

Starting from the second negative reflection vector (point B)
we get the minimal distance to the complex root boundary (line
segment GH)�c = 0:5: So the stability radius is

� = min(�+; ��; �c) = 0:5:

Example 2: Let us now consider the example of Bhattacharyya
[3, pp.136-138] forn = 4

a(z) = z4 + 0:3z3 + 0:4z2 + 0:2z + 0:1:

The reflection coefficients ofa(z) are

ka = [�0:1714� 0:3246� 0:1717� 0:1]:

Becausejkai j < 1 , i = 1; :::; 4 , a(z) is a Schur polynomial and
we can find its reflection vectorsai(�1) and reflection vector
marginsdi(�1) as follows:

a1(1) = [ �1:2516 0:1069 0:0448 0:1 ];
a1(�1) = [ 1:3974 0:6073 0:3097 0:1 ];
a2(1) = [ �1:1545 �1:0999 0:1545 0:1 ];
a2(�1) = [ 0:5317 1:1646 0:2232 0:1 ];
a3(1) = [ �0:1975 0:1073 �1:0097 0:1 ];
a3(�1) = [ 0:6517 0:6069 1:0551 0:1 ];
a4(1) = [ 0:1111 0 �0:1111 �1 ];
a4(�1) = [ 0:4545 0:7272 0:4545 1 ]:



d1(1) = 1:5866;
d1(�1) = 1:1222;
d2(1) = 1:5679;
d2(�1) = 0:7993;
d3(1) = 1:3403;
d3(�1) = 0:9474;
d4(1) = 1:2256;
d4(�1) = 1:0028:

Starting from the reflection vectorsa1(1) , a1(�1) anda2(�1)
the following minimal distances to real positive, real negative
and complex pole boundary have been found after 5 iterations
�+1 = 1:0, ��1 = 0:5, �c = 0:4987. It confirms the result
given in [3]. The stability radius is

� = 0:4987

and the critical pointb on the stability boundary is

b = [ 0:2335 0:746 0:2818 �0:2434 ] :

The reflection coefficients of b(z) are
kb = [ 0:0194 �1:0 �0:36 0:2434 ] : By

Theorem 1b(z) has a pair of complex roots on the unit circle.
Indeed, the roots ofb(z) are

r1 = 0:3756;
r2 = �0:648;
r3;4 = 0:0194� 0:9998i:

5 Conclusions

A new kind of stability margin for discrete-time systems is pro-
posed in the system characteristic polynomial coefficient space
making use of, so-called, reflection vectors of monic Schur
polynomials. It is shown, first, that reflection vectors are placed
on the stability boundary with specific roots placement depend-
ing on the reflection vector number and the argument sign and,
second, that the line segments between an arbitrary Schur poly-
nomial and its reflection vectors are Schur stable.

Even though the reflection vector margins do not give the min-
imal distance to the stability boundary nevertheless they are
quite informative: in addition to distances they give also the
directions of crucial points. An iterative procedure is given for
stability radius determination via reflection vectors.
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