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Abstract with p, = S°F_ 7, representing the order of the LFT-represen-

; ; : tion ). The well-posednesd] of the LFT-representation
In th trod | descriptor-type LFT repfgton @ essi] of | :
IS PApET RS BoTLes 8 SRS Peseip o Wb rep§)_ requires that! — M;;A) is invertible for alld € II, with

sentation of rational parametric matrices. This generalized r ) X

resentation allows to represent arbitrary rationally depend gs the uncertain parameter set defined as

multivariate functions in LFT-form. As applications, we de- = {8:0; € [0 mins Oimac]si = 1,... k). (4)
velop explicit LFT realizations of the transfer-function matrix ’ ’

of a linear descriptor system whose state space matrices depend ) ) )
rationally on a set of uncertain parameters. The resulting qa2te that representing parameter dependent matrices in an
scriptor LFT-based uncertainty models generally have smalldr |-1orm is basically equivalent to a multi-dimensional real-
orders than those obtained by using the standard LFT-bal&dfion problem ].

modelling approach. There is a basic limitation of realizing arbitrary rational matri-
ces via upper LFTs. Consider the simple cas&'0d) = 0,

1 Introduction which can be immediately realized as

In modelling parametric uncertainties in linear systemdithe C(8) = Fu <[0 1} A) ®)

ear fractional transformation(LFT) plays an important role. 10}~

LFT-based representations are useful to model real paramet-

ric uncertainties entering rationally in the system matrice ,'th A = 5. However, the expressiafi(d) = 1/4 can not be

These models are ready to be used in robust control tools | éectly represented as an upper LFT withof the _form ©). .
the structured singular value (also callgyl[1]. LFT-based Ne way to represeu(d) N 1/4 as an upper LFT s to use n
models are also useful in representing and manipulating mu‘ﬁ) A = 1/4. However, this approach can not be employed in
dimensional systemg[. the case whet(9) = 0 +1/6.

g practice, to overcome the above difficultynarmalization

The main problem of LFT-based uncertainty modelling is tH D .
uncertainties is performed. Assuming, for example, that

generation of low order LFT-representations. Recall that foroé o ,
partitioned matriX mz'n757r1,a:1:] and anom - (57na,ac + amin)/Q 7£ O; then Wlth

[
0st := (Omaz — Omin)/2 ONe obtains

My | Mo (p1-+p2) X (m1+ms) 5
M = € Riprrp2)ximirrms 0 = Opom + 0510
[Mm Mas ] !
] ] wheres € [—1,1]. With this normalization, we can represent
andA € R™*P1 theupper LFTis defined as G(3) = 1/(8pom + 540) as
.7:u<M7 A) = M22 + MQIA(I - MIIA)_1M12- (1) G(E) - F <|:_5Sl(inolm_535 nol'm:| 6)
“ 67:0771 57:077’7, ’
Given ap, xms real matrixG(d) depending rationally ok
parameters grouped into the real veaior (d1,d,...,d; ), Note that this approach is not recommended to be used if
one wants to represe6i(d) as 0 € [0min, Omaz |, because the well-posedness condition is vi-

olated. One negative aspect of this approach is that the nor-
G(8) = Fu (M, A) (2) malization must be performed as a preliminary operation of the



LFT-based model generation. Since the resulting LFT-modélsmma 2.1. Let My, M>, and M be the partitioned matrices
are generated by using symbolic manipulation tools (€3}),, [

they often tend to have larger orders than those which typi- M, = {ﬂ‘ﬁ‘ﬁ} , My = {@‘ﬁ’&] 7

cally would result when normalization is not performed as the Ci|Ds C2|D2

first step. This is why, ideally, the normalization has to be per- M= [E A B]

formed as the last step in any LFT-model generation. o C|D|’

In this paper we introduce a generalized LFT-representatignd letA, A, and A be the corresponding uncertainty matri-
which allows to overcome the above difficulties. Tiener- ces. Then, the following results hold:
alizedupper-LFT is defined with

(I) ]:u(Mh Al) + fu(M% AQ) = ﬁu(Mpara Apar)

M= {Mlo My Ml?} (parallel connection), with\,,, = diag(Aq, Az) and
Moy | Moo

E1 0 Al 0 Bl
as My = | 0 Ey| 0 Ayl +B,
|C1 C3|Dy £ Dy

Fu(M,A) = Myy + Myy A(M1g — M1 A)" "My, (6)

where the submatridf,, is allowed to be generally singular. (if) 7:u(M1> Al)fu(,M% A%) = fu(Mse“ Aser)
We call ) adescriptor LFT in analogy to the generalized state  (S€ries connection), with., = diag(A;, Az) and

space realizations via descriptor systedjsifor A we assume By 0 |A; B.Cy|BiDy
the more general structure Moo —| 0 B0 Ay | B
ser —
A = diag(osy, 611, 6110, ) ) |C1 D1C2[ D1 D

whered, is a honzero constant (usually set to 1). Note that théi) [Fu(Mi, Ay) ]:“(MQZ Aa)] - f"(MCC.’ Acc)
standardupper LFT () corresponds td/;o = I andry = 0. (column concatenation), with.. = diag(A1, Az) and

With the generalized upper LFT we can represgd) = 1/0 Ey 01A1 0B 0
in a descriptor LFT form as Me=| 0 FE3| 0 A2| 0 By
|C1 C3| Dy Dy
G(CS) = fu (IV) []:u(Mla Al)Tfu(M% AQ)T]T = ]:u(Mrcv Arc)
(row concatenation), with\,.. = diag(A;, As) and
: : ' . . E, 0|4, 0B
In this paper we discuss first some algebraic properties of the 0 E,| 0 Ay|B,
generalized LFT representations and give explicit formulas for M. =
. . . . C: 0|D;
basic operations with LFT-models. We present results showing 0 Cy|Ds

that after normalization, the descriptor LFT representations can

be converted into standard LFT representations. As an app (7) SupposeF, (M, A) is ap x p invertible matrix. Then
cation of our approach, we develop explicit LFT realizations ’

for the transfer-function matrix of a linear descriptor system (Fu(M, A))_1 = FuMiny, Diny)
whose matrices depend rationally on a set of uncertain param- )
eters. Our result extends those reportedsing], where only with A, = diag(I,, A)
polynomial dependency of the system matrices on a set of un- 00l D ClI

. . p
certain parameters is allowed. M,,=|0El B 4|0

2 Algebraic properties
9 prop If D is invertible, then we can also choose

Since LFT-based representations are similar to transfer-func- 4 4
. . ) . E\A —BD~'C \ —BD
tion matrix representation of linear state-space systems, the ba- A, = HTE =1
sic matrix operations like addition/subtraction, multiplication, ‘ ‘

transposition, inversion as well as column/row concatenation

e : vi) Let@ andZ be invertible matrices such thatA = AZ.
correspond to similar operations performed on the transfer-

:| 7A7an =A.

. ) . . Then
function matrices of linear systems. These operations underly Fu(M,A) = F. (J\NJ A)
the methods used to generate LFT-representations of paramet- w A
ric matrices ¥]. The following results for descriptor LFT- where
representations (given without proofs) generalize similar re- M= {QEZQAZQB]
sults for standard LFT-representations. ‘ ¢z ‘ D



(vii) Consider

with

0 E|Cy Di1|Dss
‘02 D21‘D22

E0|A B |B, ~
M =

We now apply a similarity transformation tt/;,, yielding a
transformed matri¥/,,. Consider the transformation matrices

Q andZ given by
I,00 00
011, Z= I-I
0

001
with the identity matrix/ of the same size aA. It is easy to
see thatZ Ay, = Ay Z, thus applyingvi) of Lemma2.1, we
obtain

Q=

o o5

000
0F 0
00 FE

Dp C 0
Bp A0 |By
0 0 A|By
-1, 0 0] ©

Dy
M]\,{ =

By evaluatingF, (]\7 M, A M) directly, we see that this expres-
sion reduces toF, (M;r, A;r), with M, A;y as defined in

Note that by using a descriptor LFT representation, the inverde).

(see (v) of Lemma&.1) can be determined in terms of origina

matrices, without any explicit matrix inversion.

It is possible to express the result of a left fractional factor-
ization in terms of the underlying LFT-representations. The

LI'he result for invertibleD , can be proven similarly (see also
(8]).

following result is particularly useful when realizing rationall he following lemma (given without proof) gives the dual re-

parametric matrices in terms of polynomial factorizations.

Lemma 2.2. Let[N(d) D(d)] = F. (M, A) be defined with

_ [E|A|Bx Bp

and assume thab () isp x p and invertible. Then

(D(8))"'N(8) = Fu (Mg, Aiy) 9
with

0 0|Dp C|Dyn I 0

My;=|0E|Bp A|By |, Alf_[P ] (10)
0 A
=1, 0] 0

If Dp is invertible we can also choosgk;; = A and

_ [E|A-BpD,'C|By — BpDp' Dy
M““‘{ Dp’C [ Dp'Dy ]

Proof. Using(v) and(ii) of Lemma2.1, we have
(D(8))"'N(8) = Fu (Mar, Anr)

whereA, = diag1,, A, A) and

00 0|Dp C C|Dy
Ao — [Ba|Au|By] _ |0E 0[Bp A0| 0
M= CulDu | — |00 E|l 0 0 A|Bnx

=1, 0 0] ©

sult for a right fractional factorization.

Lemma 2.3. Let [N (8)” D(6)T)T = F, (M, A) be defined

with

E|A|B
Cn|Dn
Cp|Dp

and assume thab(d) isp x p and invertible. Then

M=

)

N(6)(D(8))™" = Fu (Myy, Ary)

with
0 0|Dp Cp|—1I, o
M,;=|0E|B A 0], Arf[é’A].
Dy Cn| 0

If Dp is invertible we can also choose

E| A-BD,'Cp | BD}'
|Cn — DnDy,'Cp| Dy Dy}

My = | | ay=-a

3 LFT-realization procedure

Using the results of sectioB, we can directly build LFT-
representations of arbitrary rational parametric matrices along
the lines of the procedure suggested T [ The advantage

of using generalized LFT-representations is that the obliga-
tory normalization of parameters (see next section) can be per-
formed at the end of the realization, thus the order of the LFT-
representation is not artificially increased by intrinsically more
complicated symbolic manipulations.

An alternative way to avoid the preliminary normalization has
been proposed ing[, where we build an LFT-representation



for a rational parametric matric(d) by starting from a frac- Corollary 4.1. LetG(d) = F,,(M, A) with M and A given in
tional representatiot’(§) = (D(8)) 1N (d), with D(§) and (13) and (14), respectively, and leh = A,,,,,, + Ay A, where
N(6) as multivariate polynomial matrices. After realizing),,,,, and A have the forms in1(1) and (L2), respectively.
[N(8) D(8)] as a standard LFT-representation, we can pé&thenG(8) = F, (M, A) with

form the normalization (without increasing the order) and em-

ploy Lemma2.2to obtain a realization of/(§). Although this M= I ij Ej

approach is well-suited to realize individual parametric ma- Cy|D |’

trices, it has some limitation when solving more complicated A = diag(3, I 5l
T19 * Tk

problems (as for example that presented in Sed&)on
where A,,, By, andCy, are submatrices of the resulting nor-
4 Normalization malized model

To obtain at the end a standard LFT-representation ready

to be used inu-analysis, anormalizationof the parameters _ I|A1B
must be usually performed. This amounts to replécwith M = [ el D]
i nom + 0i,510:, Whered; ..o, andd; 4 are such thap,| <1, - (15)
fori =1,...,k. The normalized parameter vector is given by I, 0141 A1z| By
§ = (01,...,0;). To perform the normalization, we have to - 1Az Axn|Bs |,
replaceA by A, + AgA in the final LFT-representation, ‘ C1 Cs ‘ D
where A =diagl,,,011,,...,011,). (16)
Ano7n = diaqlrm 61,no’m]r1 P 76k,nomlrk) (11)
Ay = diag0,,, 61,5 Lr,, - - - Ok.stlny)- (12) Proof: FoII_ows easily by observi_ng that as a consequence
' _ of the particular structure of\,; in (12), the submatrices
The following result provides formulas to expre§&d) i “4,, A,,,C, in (15) are null. -

terms of the LFT representation 6% 4). ) o o ]
, An important aspect of building LFT realizations is that the
Lemma 4.1. LetG(d) = Fu (M, A) with normalization step is desirable to be performed at the end of
E|A|lB the LFT realization. Otherwise, the resulting realizations can
M= [%} : have orders larger than those resulting without normalization.

o ) Consider the simple example of an expanded normalized prod-
If (E — AA,.m) is invertible, then

uct
6) = Fu (M, Apom + AgA) = F, (M,A), = =
G0) = T (M. Avom + Aud) = Fu (M. B) 182 = (01, + 1) (02, +52)
where L IAlB =01,,,.02,,m + 51mm32 + 5152”0,” + 8102
M= — =
[ ¢ D} By using an object oriented symbolic realization approach, an
with LFT representation of orddr(instead o) could result. Since
A= (E— ADngm) T AAy the standard 1-D or n-D order reduction techniq@a{ssumg
_ . that thed; andd, (seen as operators) do not commute, (i.e.,
B=(E—-Alnom) B 0102 # d201), there is in general no guarantee that an LFT
C = C(Anom(E — ADpom) TA+ 1) Ay representation of lower order can be found for a system with
D = CApom(E — AAnom)’lB D parametric uncertainties, whefed, = 6201 (see B] for such
an example).

The order of the resulting normalized standard LFT representa-

tion is the same as the order of the original descriptor LFT rep- LFT-realization for linear parametric des-
resentation. When applying the LFT-realization procedure of criptor systems

the previous section, the resulting LFT-representatibh A)

has the following particular form Consider a linear parametric system in descriptor form

0, 0[A11 A12| By E(8)i(t) = A(6)x(t) + B(d)u(t)
E|A|\B
M= H?H T | e el 09 y(t) = C(8)a(t) + D(S)ult) 4

A =diag Iy, 011, ..., 0kl,). (14) with u(t) € R™,z(t) € R, y(t) € RP fort > 0. We as-
sume that#'(6), A(d), B(d), C(d), D(d) depend rationally on
For this particular realization, we have the following speciathe components of the parameter vedto'(5) and A(d) are
ization of Lemma4.1, which shows that the normalization carsquare matrices and(d) may be singular, but we assume it
lead to a lower order LFT realization. has constant rank for afl € I1.



The transfer function matri%:(s, §) of the descriptor system and
(17) is given by

A 0 0 0 0|0
_ 0A4 0 0 0[O
8) = C(8)(sE(8) — A(8))'B(8) + D(6 18 A
G(s,8) = C(8)(sE(3) — A(8)) ' B(6) + D(3)  (18) IMu(lMas)] | 0 0 450 0|8y
i i M(s) = |37, 50z 100 0A4c0]0
where the pencé E(d) — A(d) is assumed to be regular for all 21(8)|M22(s) c
values of8 € II. 0 0 0 0ApBp
i 0 0 0 CaoCplDp
We develop a general method to determine an LFT representa-
tion (M, A) such that sBp
—By
G(s,8) = Fu(M,A), - BS (sDg — Da)"L [C Ca—Cp 0 0|~Dp] .
with 0
M:l:EMAM BJM:|7 D¢
Cum|Dnm
A = diag(I,,, 1fmngm Ol (19) 3. C_Zomputez;mﬁimal order dgscriptor realization for the ra-
tional matrix M (s) (e.g. using the methods of(), fol-
whered;,i = 2,....k, are the normalized parameters (i.e. lowed by the elimination of non-dynamic modesl]), as

5; =6

tnom T 01 0)-
In this LFT-representation the integration operatgs (with

zlaj ;r}i Laplace variable) is also includeddnby defining scriptor LFT-representation, i.e.

Y _ / N AT / I AN—1 ! /
In[5, 6] an LFT-realization procedure for parametric descriptor M(s) = Fu(M',A') = C'A(E" = AN)" B + D'
systems was proposed. However, it was assumed that the sys- yith
tem matrices depend polynomially on the components of the

/ / !
parameter vectod. Furthermore, in€)] it was assumed, that M = [E A, B/} , A = diag(I,,, I’L). (20)
E(8) is invertible. ¢'\D s

For the realization of+(s, §) as an LFT-representation, we can 4. Apply (vii) of Lemma2.1to obtain

distinguish between two cases: @}d) general (possibly non- =

invertible); (2) E(5) invertible. We discuss building of LFT- G(s,0) = Fu(M, A). (21)
representations for these two cases. with A = diag(A/, A).

M(s)=C'(sE' — A)"'B' + D/,
with E' = diag(0,,, I, ) and build the corresponding de-

5. Reorder(M, A) such thatA is of the form as given in
5.1 E(d) general (19).

The LFT realization of7(s, ) can be built using the following
steps: 5.2 E(9) invertible

In the case of an invertibl&(d) we can derive a simpler pro-
1. Use the LFT-realization procedure of Secti®and apply cedure:

the normalization to determine normalized standard LFT
representations for each system matrixiof)(i.e. realize 1 Construct a descriptor LFT representation, such that

4@ =7 ([P 22428 o). ) DA 2] < (vw) @)

and the same fof'(d), D(4), E(4). Since these matrices 2. Apply (9) and perform the normalization step to obtain the

do not depend og, the size ofl,., within A4,..., Agis standard LFT-representation
zero. _ _ _ _
_ N (E(8))~1A(8) (E(5))B(9)
2. Construct a LFT representati@i(s, d) = F,(M(s),A) C(9) D(6)
with A = diagAg, A, Ap,Ac, Ap) I|A'| B, B,
=F, C1| Dy, Dj Al
I\M M u 11711 Pz |
M(e) = [ Ml c4\Dy, D,

o ‘MQl(S)‘MQQ(S) ’



3. ConstructG(s, §) as

G(s,0) = Fu(M,A)

I, 0|Diy C4[Dix] oy
x| 0 1B 4B [A]
D, C5| Dy, | 1O

4. Reorder(M, A) such thatA is of the form as given in

(19).

(2]

(3]

[4]

The main advantage of this simpler LFT-realization procedurLS]
is, that we can apply the symbolic preprocessing techniques

of [12, 13] to the concatenated symbolic matfi} (6)|D(4)]

(see stefd), which contains all the system matrices. Hence, it
is expected that the resulting LFT-realization is of lower ordeTG]
than an LFT-representation, which is realized using the more

general procedure of subsectidri, where each system matrix

is realized separately.

In [14] we successfully applied the proposed, generalized LF
realization method to build a minimal order LFT-representatio

of a vehicle model.

6 Conclusion

T
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With this approach, we can completely avoid the normalization

of the parameters as a preliminary step of the LFT realizatio9]

Therefore, it is generally expected that the resulting LFT rep-
resentations are of lower order than equivalent representations
generated with standard LFT based realization methods. Since

the proposed overall realization method is based on elementﬁr(y]

LFT manipulations it can easily be automated.

In addition, the descriptor system based LFT realization ap-

proach allows to directly derive LFT representations from li
ear parametric state space systems in descriptor form, w

it

is a usual representation for physical systems. In the proposed

procedure, no preliminary symbolic matrix manipulation, like
explicit inversion of E(§) is necessary and even systems with12]

non-invertibleE(d) can be easily handled.
The existing MATLAB LFR-toolbox[3] for the realization of

standard LFT representations can in principle be extended to
handle also descriptor LFT-representations. Together with rglj-
able numerical tools for handling descriptor systems available

in the MATLAB Descriptor System Toolb¢x5] and with sym-

bolic preprocessing techniques for parametric system matrices

of [12, 13], we have a very promising approach to efficiently14]

generate low order LFT representations of uncertain physical

systems.
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