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Abstract

In this paper we introduce a general descriptor-type LFT repre-
sentation of rational parametric matrices. This generalized rep-
resentation allows to represent arbitrary rationally dependent
multivariate functions in LFT-form. As applications, we de-
velop explicit LFT realizations of the transfer-function matrix
of a linear descriptor system whose state space matrices depend
rationally on a set of uncertain parameters. The resulting de-
scriptor LFT-based uncertainty models generally have smaller
orders than those obtained by using the standard LFT-based
modelling approach.

1 Introduction

In modelling parametric uncertainties in linear systems thelin-
ear fractional transformation(LFT) plays an important role.
LFT-based representations are useful to model real paramet-
ric uncertainties entering rationally in the system matrices.
These models are ready to be used in robust control tools like
the structured singular value (also calledµ) [1]. LFT-based
models are also useful in representing and manipulating multi-
dimensional systems [2].

The main problem of LFT-based uncertainty modelling is the
generation of low order LFT-representations. Recall that for a
partitioned matrix

M =
[

M11 M12

M21 M22

]
∈ R(p1+p2)×(m1+m2)

and∆ ∈ Rm1×p1 , theupper LFTis defined as

Fu(M,∆) = M22 + M21∆(I −M11∆)−1M12. (1)

Given ap2×m2 real matrixG(δ) depending rationally onk
parameters grouped into the real vectorδ = ( δ1, δ2, . . . , δk ),
one wants to representG(δ) as

G(δ) = Fu(M,∆) (2)

whereM ∈ R(p1+p2)×(p1+m2) and

∆ = diag(δ1Ir1 , δ2Ir2 , . . . , δkIrk
) (3)

with p1 =
∑k

i=1 ri representing the order of the LFT-represen-
tation (2). The well-posedness [1] of the LFT-representation
(1) requires that(I − M11∆) is invertible for allδ ∈ Π, with
Π as the uncertain parameter set defined as

Π = {δ : δi ∈ [δi,min, δi,max], i = 1, . . . , k}. (4)

Note that representing parameter dependent matrices in an
LFT-form is basically equivalent to a multi-dimensional real-
ization problem [2].

There is a basic limitation of realizing arbitrary rational matri-
ces via upper LFTs. Consider the simple case ofG(δ) = δ,
which can be immediately realized as

G(δ) = Fu

([
0 1
1 0

]
,∆
)

(5)

with ∆ = δ. However, the expressionG(δ) = 1/δ can not be
directly represented as an upper LFT with∆ of the form (3).
One way to representG(δ) = 1/δ as an upper LFT is to use in
(5) ∆ = 1/δ. However, this approach can not be employed in
the case whenG(δ) = δ + 1/δ.

In practice, to overcome the above difficulty, anormalization
of uncertainties is performed. Assuming, for example, thatδ ∈
[ δmin, δmax ] andδnom := (δmax + δmin)/2 6= 0, then with
δsl := (δmax − δmin)/2 one obtains

δ = δnom + δslδ

whereδ ∈ [−1, 1 ]. With this normalization, we can represent
G(δ) := 1/(δnom + δslδ) as

G(δ) = Fu

([
−δslδ

−1
nom −δslδ

−1
nom

δ−1
nom δ−1

nom

]
, δ

)
Note that this approach is not recommended to be used if
0 ∈ [ δmin, δmax ], because the well-posedness condition is vi-
olated. One negative aspect of this approach is that the nor-
malization must be performed as a preliminary operation of the



LFT-based model generation. Since the resulting LFT-models
are generated by using symbolic manipulation tools (e.g., [3]),
they often tend to have larger orders than those which typi-
cally would result when normalization is not performed as the
first step. This is why, ideally, the normalization has to be per-
formed as the last step in any LFT-model generation.

In this paper we introduce a generalized LFT-representation
which allows to overcome the above difficulties. Thegener-
alizedupper-LFT is defined with

M =
[

M10 M11 M12

M21 M22

]
as

Fu(M,∆) = M22 + M21∆(M10 −M11∆)−1M12 (6)

where the submatrixM10 is allowed to be generally singular.
We call (6) adescriptor LFT, in analogy to the generalized state
space realizations via descriptor systems [4]. For∆ we assume
the more general structure

∆ = diag(δ0Ir0 , δ1Ir1 , . . . , δkIrk
) (7)

whereδ0 is a nonzero constant (usually set to 1). Note that the
standardupper LFT (1) corresponds toM10 = I andr0 = 0.

With the generalized upper LFT we can representG(δ) = 1/δ
in a descriptor LFT form as

G(δ) = Fu

 0 0 0 1 1
0 1 1 0 0

−1 0 0

 ,

[
1 0
0 δ

] .

In this paper we discuss first some algebraic properties of the
generalized LFT representations and give explicit formulas for
basic operations with LFT-models. We present results showing
that after normalization, the descriptor LFT representations can
be converted into standard LFT representations. As an appli-
cation of our approach, we develop explicit LFT realizations
for the transfer-function matrix of a linear descriptor system
whose matrices depend rationally on a set of uncertain param-
eters. Our result extends those reported in [5, 6], where only
polynomial dependency of the system matrices on a set of un-
certain parameters is allowed.

2 Algebraic properties

Since LFT-based representations are similar to transfer-func-
tion matrix representation of linear state-space systems, the ba-
sic matrix operations like addition/subtraction, multiplication,
transposition, inversion as well as column/row concatenation
correspond to similar operations performed on the transfer-
function matrices of linear systems. These operations underly
the methods used to generate LFT-representations of paramet-
ric matrices [7]. The following results for descriptor LFT-
representations (given without proofs) generalize similar re-
sults for standard LFT-representations.

Lemma 2.1. LetM1, M2, andM be the partitioned matrices

M1 =
[

E1 A1 B1

C1 D1

]
, M2 =

[
E2 A2 B2

C2 D2

]
,

M =
[

E A B
C D

]
,

and let∆1, ∆2 and∆ be the corresponding uncertainty matri-
ces. Then, the following results hold:

(i) Fu(M1,∆1)±Fu(M2,∆2) = Fu(Mpar,∆par)
(parallel connection), with∆par = diag(∆1,∆2) and

Mpar =

E1 0 A1 0 B1

0 E2 0 A2 ±B2

C1 C2 D1 ±D2

 .

(ii) Fu(M1,∆1)Fu(M2,∆2) = Fu(Mser,∆ser)
(series connection), with∆ser = diag(∆1,∆2) and

Mser =

E1 0 A1 B1C2 B1D2

0 E2 0 A2 B2

C1 D1C2 D1D2

 .

(iii) [Fu(M1,∆1)Fu(M2,∆2)] = Fu(Mcc,∆cc)
(column concatenation), with∆cc = diag(∆1,∆2) and

Mcc =

E1 0 A1 0 B1 0
0 E2 0 A2 0 B2

C1 C2 D1 D2

 .

(iv) [Fu(M1,∆1)T Fu(M2,∆2)T ]T = Fu(Mrc,∆rc)
(row concatenation), with∆rc = diag(∆1,∆2) and

Mrc =


E1 0 A1 0 B1

0 E2 0 A2 B2

C1 0 D1

0 C2 D2

 .

(v) SupposeFu(M,∆) is ap× p invertible matrix. Then

(Fu(M,∆))−1 = Fu(Minv,∆inv)

with ∆inv = diag(Ip,∆)

Minv =

 0 0 D C Ip

0 E B A 0
−Ip 0 0

 .

If D is invertible, then we can also choose

Minv =
[

E A−BD−1C −BD−1

D−1C D−1

]
, ∆inv = ∆.

(vi) LetQ andZ be invertible matrices such thatZ∆ = ∆Z.
Then

Fu(M,∆) = Fu(M̃, ∆)

where

M̃ =
[

QEZ QAZ QB
CZ D

]



(vii) Consider

[
A(∆̃) B(∆̃)
C(∆̃) D(∆̃)

]
= Fu


 Ẽ Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21 D̃22

 , ∆̃

 .

Then

Fu

([
E A(∆̃) B(∆̃)

C(∆̃) D(∆̃)

]
,∆

)
= Fu(M,∆),

with

M =

 Ẽ 0 Ã B̃1 B̃2

0 E C̃1 D̃11 D̃12

C̃2 D̃21 D̃22

 ,∆ =
[

∆̃ 0
0 ∆

]
.

Note that by using a descriptor LFT representation, the inverse
(see (v) of Lemma2.1) can be determined in terms of original
matrices, without any explicit matrix inversion.

It is possible to express the result of a left fractional factor-
ization in terms of the underlying LFT-representations. The
following result is particularly useful when realizing rational
parametric matrices in terms of polynomial factorizations.

Lemma 2.2. Let [N(δ)D(δ)] = Fu (M,∆) be defined with

M =
[

E A BN BD

C DN DD

]
, (8)

and assume thatD(δ) is p× p and invertible. Then

(D(δ))−1N(δ) = Fu (Mlf ,∆lf ) (9)

with

Mlf =

 0 0 DD C DN

0 E BD A BN

−Ip 0 0

 , ∆lf =
[

Ip 0
0 ∆

]
. (10)

If DD is invertible we can also choose∆lf = ∆ and

Mlf =
[

E A−BDD−1
D C BN −BDD−1

D DN

D−1
D C D−1

D DN

]
.

Proof. Using(v) and(ii) of Lemma2.1, we have

(D(δ))−1N(δ) = Fu (MM ,∆M )

where∆M = diag(Ip,∆,∆) and

MM =
[

EM AM BM

CM DM

]
:=


0 0 0 DD C C DN

0 E 0 BD A 0 0
0 0 E 0 0 A BN

−Ip 0 0 0

 .

We now apply a similarity transformation toMM , yielding a
transformed matrix̃MM . Consider the transformation matrices
Q andZ given by

Q =

 Ip 0 0
0 I I
0 0 I

 , Z =

 Ip 0 0
0 I −I
0 0 I


with the identity matrixI of the same size as∆. It is easy to
see thatZ∆M = ∆MZ, thus applying(vi) of Lemma2.1, we
obtain

M̃M =


0 0 0 DD C 0 DN

0 E 0 BD A 0 BN

0 0 E 0 0 A BN

−Ip 0 0 0


By evaluatingFu

(
M̃M ,∆M

)
directly, we see that this expres-

sion reduces toFu (Mlf ,∆lf ), with Mlf , ∆lf as defined in
(10).

The result for invertibleDD can be proven similarly (see also
[8]).

The following lemma (given without proof) gives the dual re-
sult for a right fractional factorization.

Lemma 2.3. Let [N(δ)T
D(δ)T ]T = Fu (M,∆) be defined

with

M =

E A B
CN DN

CD DD

 ,

and assume thatD(δ) is p× p and invertible. Then

N(δ)(D(δ))−1 = Fu (Mrf ,∆rf )

with

Mrf =

 0 0 DD CD −Ip

0 E B A 0
DN CN 0

 , ∆rf =
[

Ip 0
0 ∆

]
.

If DD is invertible we can also choose

Mrf =
[

E A−BD−1
D CD BD−1

D

CN −DND−1
D CD DND−1

D

]
, ∆rf = ∆.

3 LFT-realization procedure

Using the results of section2, we can directly build LFT-
representations of arbitrary rational parametric matrices along
the lines of the procedure suggested in [7]. The advantage
of using generalized LFT-representations is that the obliga-
tory normalization of parameters (see next section) can be per-
formed at the end of the realization, thus the order of the LFT-
representation is not artificially increased by intrinsically more
complicated symbolic manipulations.

An alternative way to avoid the preliminary normalization has
been proposed in [8], where we build an LFT-representation



for a rational parametric matrixG(δ) by starting from a frac-
tional representationG(δ) = (D(δ))−1N(δ), with D(δ) and
N(δ) as multivariate polynomial matrices. After realizing
[N(δ) D(δ)] as a standard LFT-representation, we can per-
form the normalization (without increasing the order) and em-
ploy Lemma2.2to obtain a realization ofG(δ). Although this
approach is well-suited to realize individual parametric ma-
trices, it has some limitation when solving more complicated
problems (as for example that presented in Section5).

4 Normalization

To obtain at the end a standard LFT-representation ready
to be used inµ-analysis, anormalizationof the parameters
must be usually performed. This amounts to replaceδi with
δi,nom + δi,slδi, whereδi,nom andδi,sl are such that|δi| ≤ 1,
for i = 1, . . . , k. The normalized parameter vector is given by
δ = (δ1, . . . , δk). To perform the normalization, we have to
replace∆ by ∆nom + ∆sl∆ in the final LFT-representation,
where

∆nom = diag(Ir0 , δ1,nomIr1 , . . . , δk,nomIrk
) (11)

∆sl = diag(0r0 , δ1,slIr1 , . . . , δk,slIrk
). (12)

The following result provides formulas to expressG(δ) in
terms of the LFT representation ofG(δ).

Lemma 4.1. LetG(δ) = Fu(M,∆) with

M =
[

E A B
C D

]
.

If (E −A∆nom) is invertible, then

G(δ) = Fu

(
M,∆nom + ∆sl∆

)
= Fu

(
M, ∆

)
,

where

M =
[

I A B

C D

]
with

A = (E −A∆nom)−1A∆sl

B = (E −A∆nom)−1B

C = C(∆nom(E −A∆nom)−1A + I)∆sl

D = C∆nom(E −A∆nom)−1B + D

The order of the resulting normalized standard LFT representa-
tion is the same as the order of the original descriptor LFT rep-
resentation. When applying the LFT-realization procedure of
the previous section, the resulting LFT-representation(M,∆)
has the following particular form

M =
[

E A B
C D

]
=

 0r0 0 A11 A12 B1

0 I A21 A22 B2

C1 C2 D

 , (13)

∆ = diag(Ir0 , δ1Ir1 , . . . , δkIrk
). (14)

For this particular realization, we have the following special-
ization of Lemma4.1, which shows that the normalization can
lead to a lower order LFT realization.

Corollary 4.1. LetG(δ) = Fu(M,∆) with M and∆ given in
(13) and (14), respectively, and let∆ = ∆nom + ∆sl∆, where
∆nom and ∆sl have the forms in (11) and (12), respectively.
ThenG(δ) = Fu(M, ∆) with

M =
[

I A22 B2

C2 D

]
,

∆̄ = diag(δ1Ir1 , . . . , δkIrk
),

whereA22, B2, andC2 are submatrices of the resulting nor-
malized model

M =
[

I A B

C D

]

=

 Ir0 0 A11 A12 B1

0 I A21 A22 B2

C1 C2 D

 ,

(15)

∆̄ = diag(Ir0 , δ1Ir1 , . . . , δkIrk
). (16)

Proof: Follows easily by observing that as a consequence
of the particular structure of∆sl in (12), the submatrices
A11, A21, C1 in (15) are null.

An important aspect of building LFT realizations is that the
normalization step is desirable to be performed at the end of
the LFT realization. Otherwise, the resulting realizations can
have orders larger than those resulting without normalization.
Consider the simple example of an expanded normalized prod-
uct

δ1δ2 = (δ1nom
+ δ1)(δ2nom

+ δ2)

= δ1nomδ2nom + δ1nomδ2 + δ1δ2nom + δ1δ2

By using an object oriented symbolic realization approach, an
LFT representation of order4 (instead of2) could result. Since
the standard 1-D or n-D order reduction techniques [9] assume
that theδ1 and δ2 (seen as operators) do not commute, (i.e.,
δ1δ2 6= δ2δ1), there is in general no guarantee that an LFT
representation of lower order can be found for a system with
parametric uncertainties, whereδ1δ2 = δ2δ1 (see [3] for such
an example).

5 LFT-realization for linear parametric des-
criptor systems

Consider a linear parametric system in descriptor form

E(δ)ẋ(t) = A(δ)x(t) + B(δ)u(t)
y(t) = C(δ)x(t) + D(δ)u(t)

(17)

with u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp for t ≥ 0. We as-
sume thatE(δ), A(δ), B(δ), C(δ), D(δ) depend rationally on
the components of the parameter vectorδ. E(δ) andA(δ) are
square matrices andE(δ) may be singular, but we assume it
has constant rank for allδ ∈ Π.



The transfer function matrixG(s, δ) of the descriptor system
(17) is given by

G(s, δ) = C(δ)(sE(δ)−A(δ))−1B(δ) + D(δ) (18)

where the pencilsE(δ)−A(δ) is assumed to be regular for all
values ofδ ∈ Π.

We develop a general method to determine an LFT representa-
tion (M,∆) such that

G(s, δ) = Fu(M,∆),

with

M =
[

EM AM BM

CM DM

]
,

∆ = diag(Ir0 ,
1
s
Ir1 , δ2Ir2 , . . . , δkIrk

), (19)

whereδi, i = 2, . . . , k, are the normalized parameters (i.e.
δi = δinom

+ δisl
δ).

In this LFT-representation the integration operator1/s (with
s as the Laplace variable) is also included in∆ by defining
δ1 = 1/s.

In [5, 6] an LFT-realization procedure for parametric descriptor
systems was proposed. However, it was assumed that the sys-
tem matrices depend polynomially on the components of the
parameter vectorδ. Furthermore, in [6] it was assumed, that
E(δ) is invertible.

For the realization ofG(s, δ) as an LFT-representation, we can
distinguish between two cases: (1)E(δ) general (possibly non-
invertible); (2)E(δ) invertible. We discuss building of LFT-
representations for these two cases.

5.1 E(δδδ) general

The LFT realization ofG(s, δ) can be built using the following
steps:

1. Use the LFT-realization procedure of Section3 and apply
the normalization to determine normalized standard LFT
representations for each system matrix of (17), i.e. realize

A(δ) = Fu

([
Ina

AA BA

CA DA

]
,∆A

)
,

B(δ) = Fu

([
Inb

AB BB

CB DB

]
,∆B

)
and the same forC(δ), D(δ), E(δ). Since these matrices
do not depend ons, the size ofIr1 within ∆A, . . . ,∆E is
zero.

2. Construct a LFT representationG(s, δ) = Fu(M(s), ∆̃)
with ∆̃ = diag(∆E ,∆A,∆B ,∆C ,∆D)

M(s) =
[

I M11(s) M12(s)
M21(s) M22(s)

]
,

and

M̃(s) =
[
M11(s)M12(s)
M21(s)M22(s)

]
=


AE 0 0 0 0 0
0 AA 0 0 0 0
0 0 AB 0 0 BB

0 0 0 AC 0 0
0 0 0 0 AD BD

0 0 0 CC CD DD



−


sBE

−BA

0
BC

0
DC

 (sDE −DA)−1
[
CE CA−CB 0 0 −DB

]
.

3. Compute a minimal order descriptor realization for the ra-
tional matrixM̃(s) (e.g. using the methods of [10], fol-
lowed by the elimination of non-dynamic modes [11]), as

M̃(s) = C ′(sE′ −A′)−1B′ + D′,

with E′ = diag(0r0 , Ir1) and build the corresponding de-
scriptor LFT-representation, i.e.

M̃(s) = Fu(M ′,∆′) = C ′∆′(E′ −A′∆′)−1B′ + D′,

with

M ′ =
[

E′ A′ B′

C ′ D′

]
,∆′ = diag(Ir0 ,

Ir1

s
). (20)

4. Apply (vii) of Lemma2.1to obtain

G(s, δ) = Fu(M,∆). (21)

with ∆ = diag(∆′, ∆̃).

5. Reorder(M,∆) such that∆ is of the form as given in
(19).

5.2 E(δδδ) invertible

In the case of an invertibleE(δ) we can derive a simpler pro-
cedure:

1. Construct a descriptor LFT representation, such that[
A(δ) B(δ) E(δ) 0
C(δ) D(δ) 0 Ip

]
=
[
N(δ) D(δ)

]
= Fu

([
Ẽ Ã B̃N B̃D

C̃ D̃N D̃D

]
,∆

)
.

2. Apply (9) and perform the normalization step to obtain the
standard LFT-representation[

(E(δ))−1A(δ) (E(δ))−1B(δ)
C(δ) D(δ)

]

= Fu

 I A′ B′
1 B′

2

C ′
1 D′

11 D′
12

C ′
2 D′

21 D′
22

 ,∆

 .



3. ConstructG(s, δ) as

G(s, δ) = Fu(M,∆)

= Fu

 Ir1 0 D′
11 C ′

1 D′
12

0 I B′
1 A′ B′

2

D′
21 C ′

2 D′
22

 ,

[ Ir1
s 0
0 ∆

] .

4. Reorder(M,∆) such that∆ is of the form as given in
(19).

The main advantage of this simpler LFT-realization procedure
is, that we can apply the symbolic preprocessing techniques
of [12, 13] to the concatenated symbolic matrix[N(δ)|D(δ)]
(see step1), which contains all the system matrices. Hence, it
is expected that the resulting LFT-realization is of lower order
than an LFT-representation, which is realized using the more
general procedure of subsection5.1, where each system matrix
is realized separately.

In [14] we successfully applied the proposed, generalized LFT-
realization method to build a minimal order LFT-representation
of a vehicle model.

6 Conclusion

We proposed a general descriptor system representation based
LFT realization technique for rational parametric matrices.
With this approach, we can completely avoid the normalization
of the parameters as a preliminary step of the LFT realization.
Therefore, it is generally expected that the resulting LFT rep-
resentations are of lower order than equivalent representations
generated with standard LFT based realization methods. Since
the proposed overall realization method is based on elementary
LFT manipulations it can easily be automated.

In addition, the descriptor system based LFT realization ap-
proach allows to directly derive LFT representations from lin-
ear parametric state space systems in descriptor form, which
is a usual representation for physical systems. In the proposed
procedure, no preliminary symbolic matrix manipulation, like
explicit inversion ofE(δ) is necessary and even systems with
non-invertibleE(δ) can be easily handled.

The existing MATLAB LFR-toolbox[3] for the realization of
standard LFT representations can in principle be extended to
handle also descriptor LFT-representations. Together with reli-
able numerical tools for handling descriptor systems available
in the MATLAB Descriptor System Toolbox[15] and with sym-
bolic preprocessing techniques for parametric system matrices
of [12, 13], we have a very promising approach to efficiently
generate low order LFT representations of uncertain physical
systems.
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