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Abstract

The focal point of this paper is to develop a measure of closed-
loop nonlinearity. In this work, the Vinnicombe metric and
the quasi-linear parameter varying (quasi-LPV) representation
of nonlinear systems are exploited for this purpose. The pro-
posed measure can serve as a decision making tool for control
engineers when deciding whether a linear or nonlinear control
strategy should be employed to solve their control problems. A
continuous stirred tank reactor (CSTR) simulation example is
used to illustrate the proposed measure.

1 Introduction

In model-based control design, it is often desirable to check
the adequacy of a linear model before any attempts to use a
nonlinear controller are made. To achieve this in a systematic
manner, linearity tests are required to ascertain whether a non-
linear controller is really needed. Over the past few decades,
various linearity tests were proposed. Among them, the statis-
tical approach [3, 4, 12, 13, 20, 22], the norm-bounded error
approach [18, 19] and the geometrical approach [8] are often
encountered in the literature.

In general, the statistical approach is normally based on the test
of a hypothesis using statistical inference. For example, the re-
gression error specification test (RESET) [20] checks the hy-
pothesis of a signal-to-noise ratio admitting an asymptoticχ2

distribution. On another hand, the Brock-Dechert-Sheinkman
test (BDS) [4] exploits the concept of correlation dimension
arising from chaos theory and statistical properties of an inde-
pendent and identically distributed (i.i.d.) noise sequence. If
the nonlinearity exists, the null hypothesis of the correlation
dimension being an i.i.d. sequence is rejected.

The second class of nonlinearity tests involves measures of
norm-bounded deviation of a nonlinear plant from its ideal lin-
ear counterpart in the vicinity of a particular operating point
[5, 18]. A slightly different approach, which also falls into this
class, is proposed by Ogunnaike et al. [19]. In this approach,
the changes in the local gain are obtained over a specific op-
erating region. However, this method is known to suffer from
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sensitivity to the choice of perturbation directions.

The third class consists of geometrical approaches proposed by
Guay et al. [7, 8, 9, 10]. Unlike the methods mentioned in
the first two classes, which measure the open-loop nonlinear-
ity, methods in this class are establishing measures for closed-
loop nonlinearity, particularly for systems with a unity feed-
back. It is noted that since feedback control is known to mod-
ify system’s open-loop nonlinearity, the closed-loop nonlinear-
ity measure is found to be more appropriate from the control
design perspective. In [10], differential geometry interpreta-
tion of the relative gain array was used to assess the degree of
closed-loop nonlinearity for a given plant. Unfortunately, the
accuracy of this method deteriorates due to process noise.

Since its debut, the Vinnicombe (orν-gap) metric notion devel-
oped by Vinnicombe [23] has attracted much attention partic-
ularly in robust control and system identification. In principle,
the ν-gap metric measures the aperture of two closed Hilbert
sub-spaces representing the bounded input-output pairs (i.e. the
plant model graph) of two linear (possibly unbounded) opera-
tors. Together with a homotopy condition, theν-gap metric
gives the least conservative robust stability results [23]. This
means that if theν-gap between two plants is large, then a con-
troller that gives satisfactory robust stability for one plant will
show poor robust stability or even destabilize the other plant.
Like wise, if theν-gap between two plants is small, then a con-
troller which guarantees robust stability of one plant implying
that it robustly stabilizes the other.

Recently, several attempts have been made to extend the idea of
theν-gap metric to nonlinear systems. For instance, in [24, 25]
a set of integral quadratic constraints (IQCs) [17] was used to
describe the system’s nonlinearity. Then, conditions to which
the linear controller fails to stabilize the nonlinear plant were
established in terms of IQCs and theν-gap metric. Other non-
linear extensions of theν-gap metric include [1, 2, 6, 14, 25].
In general, the distance between a nonlinear plant and its linear
model can be obtained using the above measures. To do so,
the gap between the graphs of a nonlinear plant and a defined
linear model is computed. The computed gap is then compared
against what a linear controller can handle. If the gap is small in
the sense ofν-gap metric, then any linear controller designed
for the identified linear plant is also claimed to maintain the
closed-loop stability of the nonlinear plant. This also implies
indirectly that the degree of closed-loop nonlinearity is man-
ageable by the aforementioned linear controller. Of course any



statements about performance would be still conservative. Un-
equivocally,ν-gap metric can be seen as a potential powerful
tool to assess the degree of closed-loop nonlinearity indirectly.
At the best knowledge of the authors, none of the metrics men-
tioned above are exploited to provide a reliable closed-loop
nonlinearity measure. Hence, theν-gap metric is used in a
completely different context in this work.

A nonlinear model (or operator), which captures system’s non-
linearity, is crucial to the success of the proposed algorithm.
In this development, a Quasi-Linear Parameter Varying (quasi-
LPV) representation [21] is an appealing candidate owing to
the following reasons: (i) plant’s nonlinearity can be captured
by selecting appropriate scheduling parameters; (ii) it is not a
linearized version of the nonlinear plant, instead it is derived
through a state transformation; (iii) a family of local linear
models can be easily obtained by merely freezing the schedul-
ing parameters. In summary, the focal point of this paper is
to develop an indirect closed-loop nonlinearity measure by ex-
ploiting the ν-gap metric notion and the special structure of
systems which admit a quasi-LPV transformation.

This paper is organized as follows. Section 2 gives a brief re-
view on the quasi-LPV representation, theH∞ loop-shaping
controller design procedure and the linearν-gap metric notion.
Next, a computational algorithm is presented in Section 3. In
Section 4, an example involving the control of a continuous
stirred tank reactor (CSTR) is used to illustrate the proposed
measure in Section 4. Finally, some concluding remarks are
drawn in Section 5.

2 Briefing on Quasi-LPV, Vinnicombe Metric
and H∞ Loop-Shaping

2.1 Quasi-LPV Transformation

Any plant exhibiting output nonlinearity such as the one in
Equation (1)

d

dt
[ y
xr

] = φ(y) +
[

Ã11 Ã12

Ã21 Ã22

]
[ y
xr

] +
[

B̃1(y)

B̃2(y)

]
u, (1)

can be easily recast into a quasi-LPV representation as shown
in Equation (2) provided thatxr,eq is differentiable with respect
to the scheduling parametery:

d

dt

[ y
xr−xr,eq(y)

]
=

[
0 Ã12(y)

0 Ã22(y)− dxr,eq(y)
dy Ã12(y)

] [ y
xr−xr,eq(y)

]

+
[

B̃1(y)

B̃2(y)− dxr,eq(y)
dy B̃1(y)

]
(u−ueq(y)) (2)

In the above,xr,eq(y) denotes a family of the equilibrium
points obtained by setting the derivatives in Equation (1) to
zero. Note that for plants that do not exhibit output nonlinear-
ity, the quasi-LPV representation approximates the actual plant
up to the first order approximation of all other states except the
scheduling state.

In order to use Equation (2) for feedback control purposes, the
state dependentueq(y) needs to be known. Any incorrect es-
timation of ueq(y) may jeopardize the robust property of the
closed-loop system. To avoid this problem, an integrator at the
plant input, which stores the trim input valueueq(y), can be
added as suggested in [21]. As a consequence Equation (2) can
be rewritten as follows:

d

dt

[
y

xr−xr,eq(y)
u−ueq(y)

]
= A(y)

[
y

xr−xr,eq(y)
u−ueq(y)

]
+

[
0
0
1

]
v (3)

where

A(y) =




0 Ã12(y) B̃1(y)

0 Ã22(y)− dxr,eq(y)
dy Ã12(y) B̃2(y)− dxeq(y)

dy B̃1(y)

0 − dueq(y)
dy Ã12(y) − dueq(y)

dy B̃1(y)




2.2 H∞ Loop-Shaping

Proposed by [16], the H∞ loop-shaping controller design
method is based on theH∞ robust stabilization and classical
loop-shaping technique. TheH∞ loop-shaping consists of two
major steps:

1. The open-loop plant is shaped using pre- and post-
compensators to give a desired open-loop shape. Nor-
mally, it is desirable to shape the plant such that the max-
imum singular value frequency plot has a -20dB/decade
slope at the crossover frequency.

2. Denoted byPs = W2PW1, the shaped plant is then
robustly stabilized with respect to coprime factor uncer-
tainty using a controller synthesis method based on an
H∞ optimization.

It is noted that theH∞ norm of the closed-loop transfer func-
tion is minimized in the aboveH∞ robust stabilization synthe-
sis. Denoted bybP,C , the reciprocal of Equation (4) is often
called the generalized stability margin which has a close rela-
tionship with theν-gap metric. Mathematically, the general-
ized stability margin is defined as:

bP,C ,





‖[ P
I ] (I−CP )−1 [−C I ]‖−1

∞ if [ I P
C I ]−1 ∈ H∞

0, otherwise.
(4)

For a more detail treatment of theH∞ loop-shaping, see [16].

2.3 Vinnicombe Metric

Given two (possibly unbounded) linear operators, theν-gap
metric is defined in terms ofP1 andP2 as [23]:

δν(P1,P2),





‖ (I+P2P∗2 )−
1
2 (P1−P2)(I+P1P∗1 )−

1
2 ‖∞,

if Index (P1,P2)=0

1, otherwise

(5)



where,P ∗ = PT (−s) and Index(P1, P2) , η(P1, P ∗2 ) −
deg(P2). In the above,η anddegdenote the number of open
RHP poles and McMillan degree, respectively.

Note that the index can be determined from the“A” state ma-
trix of a state-space realization of[P1, −P ∗2 ] which is given
by:

AP1,P∗2 =
[−(A2−B2WDT

1 C2)
T CT

2 Y C1

B1W T BT
2 A1−B1DT

2 Y C1

]
, (6)

whereW := (I + DT
1 D2)−1, Y := (I + D1D

T
2 )−1 and

(A1, B1, C1, D1) and(A2, B2, C2, D2) are state-space re-
alizations ofP1 andP2, respectively, see [25, 26]. It follows
that

Index(P1, P2) = 0 ⇐⇒ AP1,P∗2 has preciselydeg(P2)
eigenvalues with a positive real part.

Together with thebP,C , the following theorem is one of the
main results arising from theν-gap metric theory.

Theorem 1. Given a nominal plantP1 ∈ Pp×q, a compen-
satorC ∈ Pq×p and a constantβ, then: [P2, C] is stable for
all plantsP2 ∈ Pp×q satisfyingδν(P1, P2) ≤ β iff bP1,C > β.

For a quasi-LPV systemPp×q(y) with a gridding spaceΩ of
a scheduling parametery, the above theorem can be restated as
follows:

Corollary 1. Given a nominal plantPi(y) ∈ Pp×q(y) ob-
tained by freezing the scheduling parametery ∈ Ω at operat-
ing pointyi, a compensatorC ∈ Pq×p and a constantγ, then:
[Pj(y), C] is stable for all plantsPj(y) ∈ Pp×q(y), ∀y ∈ Ω
satisfyingδν(Pi(y), Pj(y)) ≤ γ iff bPi(y),C > γ.

3 Vinnicombe Metric As A Nonlinearity Mea-
sure

In this section, a closed-loop nonlinearity measure algorithm
based on theν-gap metric and a quasi-LPV representation is
proposed. The basic idea behind the proposed approach is that
if the uncertainty ball induced by plant’s nonlinearity is larger
than what the best available linear controller can cope with,
then the degree of closed-loop nonlinearity is not manageable
by the designed linear controller. This means that the designed
controller stabilizes the plant at some operating points where
the nonlinearity is mild and it destabilizes the plant at other
points where the effect of the nonlinearity becomes prominent.
Under such a condition, the control engineer might want to con-
sider a nonlinear controller design approach to address the con-
trol problems. Conversely, if the aforementioned uncertainty
ball is small and within the tolerance of the designed linear
controller, then this controller should be sufficient to tackle the
stabilization problem.

However, to implement this idea, one needs to define how large
the uncertainty ball really is and how best the nominal model is.
In this approach, theν-gap metric is used to quantify the size

of an uncertainty ball and also to justify what is meant by the
best nominal model. A computational algorithm summarizing
the proposed measure can be defined as follows.

3.1 The Computational Algorithm

1. Recast the nonlinear system into a quasi-LPV representa-
tion.

2. Grid the scheduling parameter space. A set of linear mod-
els is then obtained by simply freezing the scheduling pa-
rameter.

3. For each model at operating pointyi ∈ Ω, theν-gaps to all
other models are obtained (i.e.δi = {δν(Pi(y), Pj(y)),
∀ Pj(y) ∈ Pp×q(y), ∀y ∈ Ω}).

4. Denoted byP0(y), the best nominal model for closed-
loop control is the one that has the smallest∞-norm δ∗

in δi, ∀ i.

5. Apply pre- and post-compensators to the best nominal
modelP0(y) (i.e. Ps(y) = W2P0(y)W1) such that the
maximum singular value of the shaped plant has a desired
loop-shape.

6. Since theν-gap metric is sensitive to scaling, the same
compensators obtained from step5 are applied to all
plants inPp×q(y). Repeat steps3 to 5 until the weights
W1 andW2 and the choice of the best nominal model con-
verge.

7. Design a robust linear controller using theH∞ loop-
shaping forPs(y) and computebPC,max, the maximum
uncertainty ball that the resulting linear controller can tol-
erate.

8. If the bPC,max is small (bPC,max < 0.25), go to step5.
(This often indicates that the chosen loop shape is incom-
patible with robust stability requirements – see [15]).

9. Find the farthest pointP ′(y) ∈ {Pp×q(y) ∩ y ∈ Ω} (in
theν gap metric sense) in the polytope centered atP0(y).
Theν-gap betweenP0(y) andP ′(y) is denoted byδ′.

10. By Corollary1, it is obvious that if thebPC,max is greater
than δ′, the nonlinearity is manageable by the designed
linear controller.

11. If thebPC,max < δ′, the nonlinearity is larger than what
the linear controller can cope with and hence a nonlinear
controller becomes mandatory for a stable closed-loop.

4 A Continuous Stirred Tank Reactor Example

A schematic diagram of a CSTR is depicted in Figure1. Con-
sider an irreversible, first-order, exothermic reaction from com-
ponentA to componentB that occurs in the reactor. Assuming



constant liquid volume, the following nonlinear ordinary dif-
ferential equations describe the CSTR process dynamics [11].

dCA

dt
=

q

V
(CAf − CA)− ko exp(− E

RT
)CA

dT

dt
=

q

V
(Tf − T ) + k2CA + k1(Tc − T ) (7)

wherek1 = UA
V ρCp

, k2 = (−∆H)
ρCp

k0 exp(− E
RT ), CA, T , andTc

represent reactor effluent concentration of componentA, re-
actor temperature, and coolant temperature, respectively. The
control objective is to maintain reactor temperatureT in the
range of 300 K to 373 K by manipulatingTc.

V

CAf , Tf

CA, CB , T

q, Tc

Figure 1:Continuous stirred tank reactor

To begin, Equation (7) is first recast into a quasi-LPV represen-
tation via a state transformation. In this example, the reactor
temperature is chosen as scheduling parameter. The resulting
quasi-LPV model is

d

dt

[
T

CA−CA,eq

Tc−Tc,eq

]
= A(T )

[
T

CA−CA,eq

Tc−Tc,eq

]
+

[
0
0
1

]
v (8)

where

A(T ) =

[
0 k2 k1

0 −( q
V +k0 exp(− E

RT ))− dCA,eq
dT k2 − dCA,eq

dT k1

0 − dTc,eq
dT k2 − dTc,eq

dT k1

]
(9)

By using a 50 scheduling parameter grid and employing the
computational algorithm proposed in Section 3, the best model
P0(y) is the one corresponding toT = 341 K (see Figure
3). Based on this nominal model, a pre-compensatorW1 =
10 30s+400

s+50 and a unity post-compensator are applied toP0(y)
such that the closed-loop bandwidth is 20 rad/s. As required by
theH∞ loop-shaping procedure, the slope of the loop-shape at
the crossover frequency is -20dB/decade as in Figure2. Since
it is known that theν-gap metric is sensitive to scaling, it is de-
sirable to check how does these compensators affect the choice
of the nominal design model. Figures3 and4 show theν-gap
between a chosen model at temperatureTi and a model at tem-
peratureTj ∀ Ti, Ti ∈ [300 373]K. A significant reduction in
the ν-gap is observed when the compensators are applied to
the quasi-LPV plant at all gridding points. However, it is also
interesting to note that the best model remains the same. In
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Figure 2:Unshaped (dotted) and shaped (solid) loop gains

addition, the modelP ′(y) that was located at the farthest point
(in theν-gap sense) along the scheduling parameter trajectory
also remains unchanged. In this case, that model is the one at
T = 300 K.
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Figure 3: Contour of the unshapedν-gaps over all gridding
space. Black dot: nominal model atT = 341 K

At first glance, Figure3 suggests that theν-gap betweenP0(y)
andP ′(y) is 0.9666. This implies that the uncertainty induced
by the closed-loop nonlinearity is very large and may not be
manageble by a single linear controller. As shown in Figure
5, the servo responses of the CSTR under a unity feedback are
unacceptable (i.e. the process is at the brink of instability).
Note that this observation is consistent with the result obtained
from theν-gap metric calculations.

However, as one can see in Figure4, the aforementionedν-gap
was reduced to 0.1964 after applying the appropriate compen-
sators. Based on the best model and the loop-shape given in
Figure2, a linearH∞ controller is obtained via theH∞ loop-
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shaping design method discussed in Section 2. For this design,
thebPC,max is found to be 0.4440 which is equivalent to 44%
coprime factor uncertainty. This suggests that the designed
controller is sufficient to cope with the closed-loop nonlinear-
ity when the plant is pre- and post-compensated. Simulation
results, as shown in Figure6, confirm this claim.

5 Conclusion

An indirect closed-loop nonlinearity measure using theν-gap
metric and the quasi-LPV representation is proposed. The con-
tribution of this work is two-fold. Firstly, it acts as an effective
decision making tool for the control engineers when they are
faced with the question of deciding whether to employ the cur-
rent linear control strategy or use a nonlinear control approach
in solving the control problems. Secondly, for a certain class of
nonlinear systems, the proposed measure can be used as a way
to design compensators which reduce the closed-loop nonlin-
earity. However, a systematic approach to closed-loop nonlin-
earity reduction needs a more in-depth study. As an alternative
to the gridding of the scheduling parameter space, a coprime
factorization of the quasi-LPV system can produce promising
results. This is the path on which our research is moving onto.
Dealing with non-differentiable nonlinearity such as hysteresis
can be difficult. The proposed method can be extended to han-
dle this type of nonlinearity by embedding such a nonlinearity
using an IQC followed by a quasi-LPV transformation of the
remaining model. This will be an extension of the work by
[24].
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