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Abstract

It is shown how noisy closed-loop frequency response mea-
surements may be used to obtain pointwise in frequency
bounds on the possible difference between an unknown
closed-loop system and a nominal model of the closed-
loop. To this end, the ν-gap metric framework for robust-
ness analysis plays a central role.
Keywords: ν-gap metric, robust performance, controller
validation

1 Preliminaries and Notation

Let R and C denote the fields of real and complex
numbers, Cn the space of n × 1 complex vectors and
Dρ := {z ∈ C : |z| < ρ} the open disc of radius
ρ > 0. The symbol Dρ is used to denote the closure
of Dρ and for convenience, the sets D1 and D1 are de-
noted by D and D, respectively. Given ρ ≥ 1, let
H∞,ρ := {f : C 7→ C | f is analytic in Dρ and ‖f‖∞,ρ :=
supz∈Dρ |f(z)| < ∞} and for convenience, denote H∞,1
and ‖f‖∞,1 by H∞ and ‖f‖∞ respectively. The ball
of radius γ > 0 in H∞,ρ is denoted by BH∞,ρ(γ) :=
{ f | f is analytic in Dρ and ‖f‖∞,ρ := supz∈Dρ |f(z)| ≤
γ} . Given an f ∈ BH∞,ρ(γ) it can be shown that each
term fk of the impulse response of the system correspond-
ing to multiplication by the frequency domain symbol f ,
is bounded as |fk| ≤ γρ−k. Given a matrix Q, the nota-
tion QT , Q∗ and σ̄(Q) is used to represent the transpose,
complex conjugate transpose and maximum singular value
of Q, respectively. Finally, diag (xi) denotes a diagonal
matrix with xi (i = 1, 2, . . . , n) along its diagonal.

2 Introduction

As many modern techniques for control system design are
model based, it is of practical interest to know in what
sense a system model should be accurate. Indeed, signif-
icant research effort has been devoted to answering such
questions over the last few decades. Within the context
of feedback compensator design, the gap and ν-gap met-
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ric frameworks for robustness analysis [1, 2] are partic-
ularly useful. In fact, these metrics induce the coarsest
topology with respect to which both feedback stability
and closed-loop performance are robust properties. This
is established within a general linear setting in [3], using
the following inequalities:

Given linear systems P1, P2 and C such that
the standard feedback configurations [P1, C] and
[P2, C] are both stable, let

H(Pi, C) :=
[

(I − CPi)−1 −C(I − PiC)−1

Pi(I − CPi)−1 −PiC(I − PiC)−1

]
.

Then

gap(P1, P2)≤‖H(P1, C)−H(P2, C)‖
≤‖H(P1, C)‖ ‖H(P2, C)‖ gap(P1, P2), (1)

where gap(P1, P2) denotes the gap metric dis-
tance between P1 and P2, and ‖ · ‖ denotes the
`2 induced norm.

For linear time-invariant (LTI) systems the bounds in (1)
hold pointwise in frequency ϕ := ejω, with gap(P1, P2)
replaced by the chordal distance κ(P1(ϕ), P2(ϕ)) between
the stereographic projection of the frequency responses
Pi(ϕ) onto the Riemann sphere [2, 4] – i.e.

κ(P1(ϕ), P2(ϕ)) ≤ σ̄ (H(P1(ϕ), C(ϕ))−H(P2(ϕ), C(ϕ)))

≤ κ(P1(ϕ), P2(ϕ))
ρ(P1(ϕ), C(ϕ)) · ρ(P2(ϕ), C(ϕ))

, (2)

where ρ(Pi(ϕ), C(ϕ)) := 1/σ̄ (H(Pi(ϕ), C(ϕ))) ≤ 1. Fur-
thermore,

arcsin ρ(P2(ϕ), C(ϕ)) ≥ arcsin ρ(P1(ϕ), C(ϕ))
− arcsinκ(P1(ϕ), P2(ϕ)) (3)

for all ϕ = ejω and ω ∈ [0, 2π). Also note that
supω∈[0,2π) ρ(Pi(ejω), C(ejω)) =: b(Pi, C) is the generic
performance measure employed in the H∞ loop-shaping
paradigm for design [5, 4]. The bounds in (1), (2) and (3)
clearly indicate that gap-like metrics capture the impor-
tant difference between open-loop systems from the per-
spective of closed-loop behaviour.



Given a nominal model Pm of a true plant Pt, suppose
that a feedback compensator C is known to stabilise both
Pm and Pt. In addition to this, a handle on the actual
behaviour of Pt in closed-loop with C is typically of in-
terest. To this end, two approaches could be taken: (i)
One could try to identify H(Pt, C) at frequencies of in-
terest from closed-loop measurements; or (ii) since the
nominal closed-loop [Pm, C] is known, one could try to
determine κ(Pm(ϕ), Pt(ϕ)) at frequencies of interest and
then use the bounds in (2) and (3). The problem with
approach (i) is that any sensible technique for identify-
ing H(Pt, C) should involve constraints to reflect the re-
lationships between the blockwise elements of H(Pt, C);
for example, the quotient of the 21-block and the 11-
block, which is known a priori to be C. Such con-
straints are difficult to deal with numerically. Further-
more, identifying H(Pt, C) only yields information perti-
nent to closed-loop behaviour of Pt with the particular
controller C. Approach (ii) on the other hand, can be
handled numerically (as will be shown shortly) and more-
over, if κ(Pm(ϕ), Pt(ϕ)) were determined to be large at
a particular frequency, the following conclusion could be
made: For any controller C1 that stabilises both the true
plant and model, the closed-loop [Pt, C1] would differ sig-
nificantly from the nominal [Pm, C1]. Such a situation
would suggest that a better nominal model of the plant
may be required for model-based feedback compensator
design. Motivated by all this, the remainder of this paper
is dedicated to outlining a numerical technique for deter-
mining a sensible estimate of κ(Pm(ϕ), Pt(ϕ)) from noisy
closed-loop frequency response measurements. Work that
is related in terms of assessing closed-loop performance
from measured-data/identified-sets, but distinct in terms
of the approach taken, can be found in [6, 7] and the ref-
erences therein.

3 Determining κ(Pm(ϕ), Pt(ϕ))

For the sake of notational simplicity, the SISO case is dis-
cussed here. The MIMO case follows similarly with ap-
propriate notational modifications.

For the problem introduced above the a priori informa-
tion is a model Pm of an unknown true system Pt, and a
controller C which stabilises both Pm and Pt. Since it is
assumed that C stabilises Pt, frequency response samples
of

Xt =
[
I
Pt

]
(I − CPt)−1

can be measured at any frequencies of interest. Techniques
for achieving this are discussed in [8, 9]. Note that, unless
C is itself stable, Xt is not necessarily a coprime factori-
sation of Pt over H∞. However, at any frequency ωi that
does not correspond to a pole of C on the unit circle, Xt

is left-invertible by [ I −C(ejωi ) ] and hence, the range of
Xt(ejωi) is the graph of Pt(ejωi). Correspondingly, at any

such frequency ωi, the chordal distance

κ(Pm(ejωi), Pt(ejωi)) = inf
Q∈C

σ̄(Gm(ejωi)−Xt(ejωi)Q), (4)

where Gm(ejωi) denotes the value of any normalised right
graph symbol for Pm at the frequency ωi. Such a graph
symbol can be constructed from any normalised right co-
prime factorisation Pm = NmD

−1
m as follows: Gm = [DmNm ].

See [4] for further details.

Now, the a posteriori information is a vector of (not neces-
sarily uniformly spaced) noisy frequency response samples

X =
[
X1 X2 . . . Xn

]T
,

where Xi = Xt(ejωi) + vi, Xt ∈ BH∞,ρ(γ), ωi ∈ [0, π)
and ‖vi‖ ≤ ε for i = 1, 2, . . . , n and some specified ε, ρ
and γ. Note that the measured data is to be explained
in terms of two components – noise vi and true system
behaviour Xt. The value ε bounds the level of data one
is prepared to attribute to noise. Since parameters ρ > 1
and γ > 0 such that Xt ∈ BH∞,ρ(γ) can be determined
from additional measured data,1 it is also sensible to con-
strain the partitioning of data into noise and true system
behaviour in these terms. In light of this, and bearing
in mind the objective of estimating κ(Pm(ϕ), Pt(ϕ)), con-
sider the following constrained optimisation problem:

min
X̂t

max
i

(
inf
Qi ∈C

σ(Gm(ejωi)− X̂t(ejωi)Qi)
)

= min
X̂t

max
i
κ(Pm(ejωi),Quot(X̂t(ejωi)) ) (5)

subject to

X̂t(ejωi) = Xi − vi, X̂t ∈ BH∞,ρ(γ) and ‖vi‖ ≤ ε,
(6)

where Quot(
[
XD
XN

]
) := XDX

−1
N and vi are the decision

variables in the optimisation. The purpose and the result
of this optimisation may be explained as follows. Let λ
be the minimum achieved by solving the above problem
(assuming it exists and is unique). Then there exists a
system X̂t ∈ BH∞,ρ(γ) and bounded noise terms vi de-
fined pointwise in frequency with ‖vi‖ ≤ ε, i = 1, 2, . . . , n
such that the measured data can be interpolated as

Xi = X̂t(ejωi) + vi

and
max
i
κ(Pm(ejωi),Quot(X̂t(ejωi)) ) ≤ λ

holds. Put another way, there is no system consistent with
the a priori assumptions (in terms of ε, γ, ρ) and with the
a posteriori data (in terms of X) whose worst case chordal
distance over {ωi} is better than λ.

An approach to solving the optimisation problem along
these lines is outlined below. Note that since the problem

1Recall that the k-th term of the impulse response of a function
in BH∞,ρ(γ) is bounded by γρ−k.



is not simultaneously convex in the vi’s and Qi’s, an iter-
ative approach is taken. The algorithm described here is
closely related to an iterative identification algorithm pro-
posed in [10] and also to Pick interpolation based worst
case identification algorithms in [11] and [12].

Partitioning each Xi = [ x1,i
x2,i ] and vi = [ v1,i

v2,i ]:

1. Set k = 1 and Q?,k−1
i = (X∗m(ejωi)Xm(ejωi))−

1
2 for

each i = 1, 2, . . . , n, where Xm := [ I
Pm

](I −CPm)−1

– this initial value for each Q?i,k−1 is taken because in
the case that Pt were actually Pm, it would make the
argument of the infimum in (4) equal to zero.

2. Solve
min

v1,1,v1,2,...,v1,n∈C
v2,1,v2,2,...,v2,n∈C

λ (7)

subject to the affine matrix inequality constraints

σ

(
Gm(ejωi)−

(
Xi −

[
v1,i

v2,i

])
Q?,k−1
i

)
≤ λ, (8)

diag


 ε

[
v1,i

v2,i

]
[
v1,i

v2,i

]
ε


 ≥ 0, (9)

diag

([
1 x∗1,i−v

∗
1,i

γ
x1,i−v1,i

γ 1

])
≥ 0, (10)

 E−1 diag
(
x∗1,i−v

∗
1,i

γ

)
diag

(
x1,i−v1,i

γ

)
E

 ≥ 0, (11)

diag

([
1 x∗2,i−v

∗
2,i

γ
x2,i−v2,i

γ 1

])
≥ 0, (12)

 E−1 diag
(
x∗2,i−v

∗
2,i

γ

)
diag

(
x2,i−v2,i

γ

)
E

 ≥ 0, (13)

where

E =

 1

1− ej(ωi−ωj)

ρ2

 for i, j = 1, 2, . . . , n,

and denote by λ?k,k−1 the minimum cost and by v?,k1,i

and v?,k2,i for each i = 1, 2, . . . , n the values for each
vi at which this is achieved;

3. Given v?,k1,i and v?,k2,i , solve the linear least squares
problem

min
Qi ∈C

max
i

σ

(
Gm(ejωi)−

(
Xi −

[
v?,k1,i

v?,k2,i

])
Qi

)
at each frequency ωi, denoting by λ?k,k the mini-
mum cost and by Q?,ki the value Qi at which this
is achieved;

4. If |λ?k,k−λ?k−1,k−1| is less than some desired tolerance
then stop otherwise set k = k+ 1 and go back to step
2.

By virtue of Pick’s interpolation theorem the constraints
(10–13) in Step 2 above ensure the existence of analytic
interpolants f1, f2 : D 7→ D such that

f1(
ejωi

ρ
) =

x1,i + v?,k1,i

γ
and f2(

ejωi

ρ
) =

x2,i + v?,k2,i

γ
.

Correspondingly, X̂t =
[
γf1( zρ )
γ f2( zρ )

]
∈ BH∞,ρ(γ) interpo-

lates each Xi −

[
v?,k1,i

v?,k2,i

]
, as required. An attractive prop-

erty of the above procedure is that its cost is always non-
increasing.

Lemma 1 For k ≥ 1,

λ?k,k ≤ λ?k,k−1 ≤ λ?k−1,k−1

Proof : The proof follows from definition of λk,k−1 and
λk,k in Steps 2 and 3 of the above procedure and the fact
that v?,k1,i and v?,k2,i are feasible solutions for the (k + 1)-th
iteration.
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