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Abstract

It is shown how noisy closed-loop frequency response mea-
surements may be used to obtain pointwise in frequency
bounds on the possible difference between an unknown
closed-loop system and a nominal model of the closed-
loop. To this end, the v-gap metric framework for robust-
ness analysis plays a central role.
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1 Preliminaries and Notation

Let R and C denote the fields of real and complex
numbers, C" the space of n x 1 complex vectors and
D, := {# € C : |z] < p} the open disc of radius
p > 0. The symbol ﬁp is used to denote the closure
of D, and for convenience, the sets ID; and D; are de-
noted by D and D, respectively. Given p > 1, let
Hoo,p :={f : C+— C | fis analytic in D, and || f|c,p :=
sup.ep, |f(2)] < oo} and for convenience, denote Hoo,1
and ||fllco,1 by Heo and ||f|lcc respectively. The ball
of radius v > 0 in He,, is denoted by BHeo ,(7) =
{ f | fis analytic in D, and || fllsc,p := sup.ep, |f(2)] <
v} . Given an f € BHso ,(7) it can be shown that each
term f}, of the impulse response of the system correspond-
ing to multiplication by the frequency domain symbol f,
is bounded as |fi| < vp~*. Given a matrix Q, the nota-
tion QT', Q* and &(Q) is used to represent the transpose,
complex conjugate transpose and maximum singular value
of Q, respectively. Finally, diag (x;) denotes a diagonal
matrix with z; (¢ = 1,2,...,n) along its diagonal.

2 Introduction

As many modern techniques for control system design are
model based, it is of practical interest to know in what
sense a system model should be accurate. Indeed, signif-
icant research effort has been devoted to answering such
questions over the last few decades. Within the context
of feedback compensator design, the gap and v-gap met-
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ric frameworks for robustness analysis [1, 2] are partic-
ularly useful. In fact, these metrics induce the coarsest
topology with respect to which both feedback stability
and closed-loop performance are robust properties. This
is established within a general linear setting in [3], using
the following inequalities:

Given linear systems P;, P, and C such that
the standard feedback configurations [Py, C] and
[P, C] are both stable, let

(I-cCp)!
Pl(I — CPi)_l

B -C(I - PC)™!
H(P;,C) = —PC(I - PC)™!
Then

gap(Pr, Po) <|H(Py,C) —
<|[H(Py, C)|| || H (P,

H(P, C
)||gap(P17P2)a (1)

where gap(P;, P2) denotes the gap metric dis-
tance between P; and P, and || - || denotes the
{5 induced norm.

For linear time-invariant (LTT) systems the bounds in (1)
hold pointwise in frequency ¢ := e/“, with gap(Pi, P,)
replaced by the chordal distance k(P (@), P2(¢)) between
the stereographic projection of the frequency responses
P;(¢p) onto the Riemann sphere [2, 4] — i.e.

K(PL(p), Pa(p)) < o (H(Pi(p),C(p)) — H(P
K(PL(p), Pa(#))

p(Pr(#), C(9)) - p(Pa(e),
(

where p(Fi(¢),C(¢)) := 1/5 (H(P,
thermore,

arcsin p(Pa(p), C(¢))

(). C(2))
oy @

(), C(p))) < 1. Fur-

IN

> arcsin p(P1(p), C(v))
— arcsink(P(p), Pa(p)) (3)

for all ¢ = e/ and w € [0,2m). Also note that
SUP,,e(o,2m) P(Pi(€7?),C(e¥)) =: b(P;,C) is the generic
performance measure employed in the H., loop-shaping
paradigm for design [5, 4]. The bounds in (1), (2) and (3)
clearly indicate that gap-like metrics capture the impor-
tant difference between open-loop systems from the per-
spective of closed-loop behaviour.



Given a nominal model P,, of a true plant P;, suppose
that a feedback compensator C' is known to stabilise both
P,, and P;. In addition to this, a handle on the actual
behaviour of P; in closed-loop with C' is typically of in-
terest. To this end, two approaches could be taken: (i)
One could try to identify H(P;,C) at frequencies of in-
terest from closed-loop measurements; or (i) since the
nominal closed-loop [P, C] is known, one could try to
determine (P, (¢), P:(p)) at frequencies of interest and
then use the bounds in (2) and (3). The problem with
approach (i) is that any sensible technique for identify-
ing H(P;, C) should involve constraints to reflect the re-
lationships between the blockwise elements of H(P;, C);
for example, the quotient of the 21-block and the 11-
block, which is known a priori to be C. Such con-
straints are difficult to deal with numerically. Further-
more, identifying H(P;, C) only yields information perti-
nent to closed-loop behaviour of P, with the particular
controller C. Approach (i) on the other hand, can be
handled numerically (as will be shown shortly) and more-
over, if k(P (p), Pi(¢)) were determined to be large at
a particular frequency, the following conclusion could be
made: For any controller C; that stabilises both the true
plant and model, the closed-loop [P;, C;] would differ sig-
nificantly from the nominal [P,,,C]. Such a situation
would suggest that a better nominal model of the plant
may be required for model-based feedback compensator
design. Motivated by all this, the remainder of this paper
is dedicated to outlining a numerical technique for deter-
mining a sensible estimate of k(P (), P:(¢)) from noisy
closed-loop frequency response measurements. Work that
is related in terms of assessing closed-loop performance
from measured-data/identified-sets, but distinct in terms
of the approach taken, can be found in [6, 7] and the ref-
erences therein.

3 Determining k(P (), Pi(¢))

For the sake of notational simplicity, the SISO case is dis-
cussed here. The MIMO case follows similarly with ap-
propriate notational modifications.

For the problem introduced above the a priori informa-
tion is a model P, of an unknown true system P, and a
controller C' which stabilises both P,, and P;. Since it is
assumed that C stabilises P;, frequency response samples
of

X, = Lﬁj (I-cp)!

can be measured at any frequencies of interest. Techniques
for achieving this are discussed in [8, 9]. Note that, unless
C is itself stable, X} is not necessarily a coprime factori-
sation of P, over H,,. However, at any frequency w; that
does not correspond to a pole of C' on the unit circle, X;
is left-invertible by [1 —c(e’*i)] and hence, the range of
X;(e7%) is the graph of P;(e’“#). Correspondingly, at any

such frequency wj;, the chordal distance

K(Pn(e7), Pi(e?)) = inf 5(Gm(e™) — Xi(e™)Q), (4)
where G, (e/“") denotes the value of any normalised right
graph symbol for P, at the frequency w;. Such a graph
symbol can be constructed from any normalised right co-
prime factorisation P, = N,,,D;.} as follows: G,, = [2; l.
See [4] for further details.

Now, the a posteriori information is a vector of (not neces-
sarily uniformly spaced) noisy frequency response samples
]T

X=[X1Xs... X,

where X; = X;(e7°t) + v;, Xy € BHeoop(7), wi € [0,7)
and |lv;|| < efori=1,2,..., n and some specified €, p
and . Note that the measured data is to be explained
in terms of two components — noise v; and true system
behaviour X;. The value € bounds the level of data one
is prepared to attribute to noise. Since parameters p > 1
and v > 0 such that X; € BHoo »(7) can be determined
from additional measured data,! it is also sensible to con-
strain the partitioning of data into noise and true system
behaviour in these terms. In light of this, and bearing
in mind the objective of estimating x( P, (¢), P:(®)), con-
sider the following constrained optimisation problem:

: nf TG () — Xy (7O,
H)lA(ltIlHl?X <Qline(CJ(G (e7%%) (7R ))
— minmax s(Pa(e), Quot(Xu()))  (5)
X, i
subject to

Xi(e?) = X; —v;, X; € BHoop(7) and |jus]| < e,

(6)
where Quot([?ﬁ]) = XpXy' and v; are the decision
variables in the optimisation. The purpose and the result
of this optimisation may be explained as follows. Let A
be the minimum achieved by solving the above problem
(assuming it exists and is unique). Then there exists a
system X, € E’Hoo,p(’y) and bounded noise terms v; de-
fined pointwise in frequency with ||v;|| < €,i1=1,2,...,n
such that the measured data can be interpolated as

Xi = Xt(ej“”) =+ v;

and
max (P (e77), Quot(X (/7)) ) < A

holds. Put another way, there is no system consistent with
the a priori assumptions (in terms of €, 7, p) and with the
a posteriori data (in terms of X) whose worst case chordal
distance over {w;} is better than A.

An approach to solving the optimisation problem along
these lines is outlined below. Note that since the problem

lRecall that the k-th term of the impulse response of a function
in BHoo,p(7) is bounded by yp~*.



is not simultaneously convex in the v;’s and @;’s, an iter-
ative approach is taken. The algorithm described here is
closely related to an iterative identification algorithm pro-
posed in [10] and also to Pick interpolation based worst
case identification algorithms in [11] and [12].

Partitioning each X; = [537] and v; = [y ]:

1. Set k=1 and Q7" " = (X7, (/%) X, (e7%)) "2 for
eachi=1,2,..., n, where X,,, ;== [ ](I — CPy,)~*
— this initial value for each QZ x_1 is taken because in
the case that P; were actually P,,, it would make the
argument of the infimum in (4) equal to zero.

2. Solve
min A (7)
V1,1,V1,2,.--,01,n €EC
V2,1,02,2;...,V2,, €EC

subject to the affine matrix inequality constraints

7 (G - (- et t) <o @

¢ |:U1,i:| 1
diag Y21 >0, (9)
U1,i ¢
S
1 zyi—vi ]
diag (l S 1 ) >0, (10)
Bt _
Elfl dlag (111 1 z)
T1,i—V1,i ! =0, (11)
diag (T) E
1 ) 17v37‘,
diag (l S 1 D >0, (12)
—=
E-T diag (z; ;’>
— ! >0, (13)
d1ag< ) E
where
1 o
E = ooy | for i,7=1,2,...,n,
1 - gy
p

and denote by A}, the minimum cost and by vff

and v;f for each i =1, 2,..., n the values for each
v; at which this is achieved;

. k k .
3. Given v;7; and v}, solve the linear least squares
problem

*,k
. v
mi m Gm Jei ‘(1 }(ﬂ Qz
Qile% ?XJ< (e ) < [vﬁi) )

at each frequency w;, denoting by Ak the mini-
mum cost and by Q;"k the value @); at which this

is achieved;

4. If |)\;k - A2717k71| is less than some desired tolerance
then stop otherwise set £k = k41 and go back to step
2.

By virtue of Pick’s interpolation theorem the constraints
(10-13) in Step 2 above ensure the existence of analytic
interpolants f1, fo : D — D such that

; k : *,k
evi ATy eIwvi  moi+ vy
fi(—)=—"—"" and fo( =2
P ot P ot
. o ’Yfl(%) .
Correspondingly, X; = N € BHoo,p(7y) interpo-
Y f2(;)
ok
lates each X; — ilk , as required. An attractive prop-
2,i

erty of the above procedure is that its cost is always non-
increasing.

Lemma 1 Fork >1,

* * *
Are S Akk—1 < Aio1 k-1

Proof : The proof follows from definition of Aj j_1 and
Ak,k in Steps 2 and 3 of the above procedure and the fact
that vff and vgzk are feasible solutions for the (k + 1)-th
iteration. m
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