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Abstract

A new lower bound is derived for the level of performance
achieved by a given feedback compensator with a plant
that is not known completely. The bound involves quan-
tities reflecting the performance of the controller with a
nominal model of the plant, quantities that can be com-
puted from a finite number of frequency response sam-
ples of the unknown plant, and quantities related to the
complexity (in the sense of Vinnicombe) of all systems in-
volved.
Keywords: ν-gap metric, robust performance, controller
validation

Notation

Let D := {z ∈ C : |z| < 1 } and ∂D denote the bound-
ary of D. The symbol L∞ is used to denote the space of
all (possibly matrix valued) functions F (z) that are es-
sentially bounded on ∂D and have finite norm ‖F‖L∞ :=
ess supω σ(F (ejω)), where σ(·) represents the maximum
singular value. The symbol H∞ denotes the space of func-
tions F (z) that are analytic in D and have finite norm
‖F‖∞ := supz∈D |f(z)| < ∞. Given a system transfer
function F (z), the transfer function of the adjoint system
is denoted by F ∗(z) := F ( 1

z )T , where the superscript ‘T ’
denotes matrix transpose. Note that for a real rational
transfer function F ∗(ejω) = F (ejω)

T
, where the overline

denotes complex conjugate.

Recall that any linear, time invariant discrete-time system
P that is stabilisable, can be expressed as P = NM−1 =
M̃−1Ñ with

1. GP :=
[
N
M

]
inner (i.e. G∗PGP = I) and left invertible

in H∞; and

2. G̃P :=
[
−M̃ Ñ

]
co-inner (i.e. G̃P G̃

∗
P = I) and right

invertible in H∞.

GP (resp. G̃P ) is called the normalised right (resp. nor-
∗Corresponding author. Fax:+61 3 8344 6678

Email addresses: paresh.date@brunel.ac.uk (Paresh Date) and
m.cantoni@ee.mu.oz.au (Michael Cantoni)

malised left) graph symbol of plant P .

1 Introduction

Feedback can reduce the sensitivity of a designed system
to uncertainty arising, for example, from the inevitable
mismatch between open-loop models used in the design
process and the physical systems that these models rep-
resent. Indeed, significant research has been dedicated to
understanding, both quantitatively and qualitatively, the
uncertainty that the feedback mechanism can handle. For
general linear systems, gap-like metrics are known to cap-
ture the difference between open-loop systems from the
perspective of their behaviour in closed-loop [1, 2, 3, 4].

In this paper, the ν-gap metric [5] and an associated mea-
sure of system complexity [6] are used to obtain a new
tractable bound on the level of performance achieved by
a given feedback compensator C with a plant Pt that is
not known completely. Here, closed-loop performance is
taken to mean the generic performance/stability measure
b(Pt, C), which is central the H∞ loop-shaping paradigm
of McFarlane and Glover [7]. The a priori information
required to compute the bound includes a nominal model
Pm of the true plant, a model of the compensator, which
is assumed to stabilise both the plant model and the true
plant, and a bound on the complexity (in the sense of
Vinnicombe [6]) of Pt. The a posteriori information is a
finite set of frequency response samples of the true plant.
Work that is related in terms of assessing closed-loop per-
formance from measured-data/identified-sets, but distinct
in terms of the approach taken, can be found in [8] and
the references therein.

The paper is structured as follows. First some ν-gap met-
ric robustness results are reviewed. Then in a subsequent
section, the new lower bound on achieved performance is
derived and discussed.



2 Review of ν−gap -metric robustness results

The ν−gap between two linear time-invariant plants P1

and P2 is defined as

δν(P1, P2) = inf
Q,Q−1∈L∞

‖G1 −G2Q ‖∞ if I(P1, P2) = 0

= 1 otherwise (1)

where I(P1, P2) := wno det (G∗P2
GP1) and wno (g) de-

notes the winding number of g(z) evaluated on the stan-
dard Nyquist contour indented around any poles and zeros
on ∂D [5]. For a real rational transfer matrix X satisfy-
ing X,X−1 ∈ L∞ the winding number wno det (X) =
η(X−1)− η(X) where η(x) denotes the number of unsta-
ble poles of x. When the winding number condition is
satisfied, δν(P1, P2) equals the L2 -gap:

δL2(P1, P2) := ‖G̃P2GP1‖∞ = sup
ω
κ(P1, P2)(ejω), (2)

where κ(P1, P2)(ejω) is the pointwise chordal distance be-
tween the stereographic projections of the frequency re-
sponses of P1 and P2 onto the Riemann sphere, as defined
by

κ(P1, P2)(jω) :=σ
(
(I+P2P

∗
2 )−

1
2 (P2−P1)(I+P ∗1 P1)−

1
2

)
(jω)

Note that, κ(·, ·) can be computed from purely frequency
response data.

Given a controller C and a (possibly frequency weighted)
plant Pi, a useful measure of closed-loop performance,
which is central to the H∞ loop-shaping paradigm for de-
sign, is

b(Pi, C) = ‖H(Pi, C)‖−1
∞

= inf
ω
ρ(Pi, C)(ejω) if C stabilises P

= 0 otherwise. (3)

where
ρ(Pi, C)(ejω) := σ(H(Pi, C))(ejω),

σ(·) denotes the minimum singular value and the closed-
loop transfer function H(Pi, C) is defined by

H(Pi, C) :=
[
Pi
I

]
(I − CPi)−1

[
−C I

]
It is known that any controller that stabilises a plant P1

and achieves b(P1, C) > β, also stabilises all plants in the
set {P2 : δν(P1, P2) ≤ β} [5]. Furthermore, the difference
between the level of closed-loop performance achieved by
a feedback compensator C with a nominal plant P1 and
with a perturbed plant P2 can be quantified in terms of
δν(P1, P2):

b(P2, C) ≥ b(P1, C)− δν(P1, P2). (4)

A pointwise-in-frequency version of this performance
bound also holds:

ρ(P2, C)(ejω) ≥ ρ(P1, C)(ejω)− κ(P1, P2)(ejω). (5)

Indeed (4) follows from this since

inf
ω

(
ρ(P1, C)− κ(P1, P2)

)
≥ inf

ω
ρ(P1, C)− sup

ω
κ(P1, P2).

Here, the argument (ejω) is omitted for brevity. Note,
however, that the pointwise bound in (5) is useful only if
C is known to stabilise both P1 and P2. To this end the
following result is easily inferred from the development
in [5] (see also [9]):

Lemma 1 Suppose, a true plant Pt, a model Pm and a
nominal controller Cn satisfy the following conditions:

1. H(Pt, Cn) and H(Pm, Cn) are stable;

2. κ(Pt, Pm)(ejω) < ρ(Pm, Cn)(ejω) ∀ ω.

Then any other controller C which stabilises Pm and sat-
isfies κ(Pt, Pm)(ejω) < ρ(Pm, C)(ejω) ∀ ω is guaranteed
to stabilise Pt with closed-loop performance

b(Pt, C) ≥ inf
ω

(
ρ(Pm, C)(ejω)− κ(Pm, Pt)(ejω)

)
. (6)

Note that the lower bound in (6) is tighter than that in
(4). However, no computationally tractable characterisa-
tion for this is known.

Suppose, though, that the true plant frequency response
Pt(ejωi) is known to lie within a known chordal distance
from the frequency response of the model Pm(ejωi) at a
finite number of frequencies {ω0, ω1, ω2, . . . , ωm}. Then
provided the frequency responses of Pm, Pt and Cn are
‘sufficiently smooth’ and the frequency grid is ‘sufficiently
dense’, the infimum over the continuum of frequencies in
the lower bound of (6) may be approximated by an mini-
mum over the finite set {ωi}:

inf
ω

(ρ(Pm, C)− κ(Pt, Pm))≈min
i

(ρi(Pm, C)− κi(Pt, Pm))

where ρi(Pm, C) = ρ(Pm, C)(ejωi) and κi(Pt, Pm) =
κ(Pt, Pm)(ejωi). In the next section, a lower bound on
the right-hand side of (6) is derived by using an appro-
priate notion of smoothness and a finite set of frequency
response data. The quantity used to capture the smooth-
ness of frequency responses, in terms of the variation in
chordal distance, is defined by

VP = ‖G̃PG
′
P‖∞, (7)

where G′P = dGP
dz . As shown in [6], given two frequencies

ω1 and ω2,

κ(P (ejω1), P (ejω2)) ≤ VP |ω1 − ω2|.

Given P , it is not difficult to compute VP . First, GP , G̃P

can be computed using by well-known techniques which
are available in standard software such as MATLAB. Then



given GP = H(zI−A)−1F+D (where {A,F,H,D} is any
state space realisation of GP ), it follows that G′P = S1S2

where S1 = −H(zI − A)−1I and S2 = I(zI − A)−1F .
That is, VP is simply the infinity norm of a product of
three transfer functions all of which may be easily derived
from P .

3 A bound on achieved performance

Below, a lower bound on ρ(Pt, C) at any intermediate fre-
quency ω? ∈ [ωi, ωi+1] is obtained using the definition of
VP .

Proposition 1 Let C be a controller that stabilises both
the true plant Pt and the model Pm. Then for any ω? ∈
[ωi, ωi+1] the following inequality holds:

ρ(Pt, C)(ejω?) ≥
(

max
{
b(Pm, C),

√
1− x2

i

}
− yi

)
(8)

where

xi := min
{
κ(Pm,−C∗)(ejωi), κ(Pm,−C∗)(ejωi+1)

}
+ (VPm + V−C∗)|ωi+1 − ωi|, (9)

yi := min
{
κ(Pm, Pt)(ejωi), κ(Pm, Pt)(ejωi+1)

}
+ (VPt + VPm)|ωi+1 − ωi| (10)

and VP is as defined in (7).

Proof : Given P , it can be shown that

ρ(P,C)(ejω) =
√

1− κ2(P,−C∗)(ejω) (11)

at all frequencies [5]. Hence, it follows from (5) that

ρ(Pt, C)(ejω?)≥
√

1− κ2(Pm,−C∗)(ejω?)−κ(Pt, Pm)(ejω?)

The lower bound claimed follows by bounding, from
above, each of the two chordal distances terms shown.
Since κ(·, ·) is a metric [3], it follows by the triangle in-
equality,

κ(Pm, Pt)(ejω?) ≤ κ(Pm(ejω?), Pm(ejωi))

+ κ(Pm(ejωi), Pt(ejωi)) + κ(Pt(ejωi), Pt(ejω?))

≤ κ(Pm(ejωi), Pt(ejωi)) + (VPm + VPt) |ω? − ωi|. (12)

Similarly,

κ(Pm, Pt)(ejω?) ≤ κ(Pm(ejωi+1), Pt(ejωi+1))
+ (VPm + VPt) |ω? − ωi+1|. (13)

Note that the upper bound yi on κ(Pm, Pt)(ejω?) in (10)
is simply a consequence of equations (12-13). The upper
bound xi on κ(Pm,−C∗)(ejω?) in (9) follows in a similar
manner. The result now follows by using equation (11)
and the fact that both b(Pm, C) and

√
1− x2

i are lower
bounds on ρ(Pm, C)(ejω?).

When the right hand side in (8) is positive for all i, propo-
sition 1 further suggests that

b(Pt, C) := inf
ω
ρ(Pt, C)(ejω)

= min
i

inf
ω∈[ωi,ωi+1]

ρ(Pt, C)(ejω)

≥ min
i

(
max

{
b(Pm, C),

√
1− x2

i

}
− yi

)
. (14)

Note that the right-hand side of (14) is a lower bound for
the right-hand side of (6), as discussed at the end of the
previous section. Furthermore, observe that all terms in
this lower bound (except VPt) are either known or can be
computed from the measured data. Although the com-
plexity of Pt is unlikely to be known exactly, one may
incorporate an ‘educated guess’ into the a priori infor-
mation; e.g. Pt may be allowed to be at most twice as
complex as its model Pm (i.e. VPt ≤ 2VPm). In addition
to being computationally tractable, the effect of complex-
ity on achieved worst case performance is clearly visible
in this new bound. In particular,

• The frequency separation |ωi+1−ωi| should be small
wherever κ(Pm, Pt)(ejωi) is large and/or ρ(Pm, C) is
small. This will reduce the effect of complexity terms
on the bound.

• An increase in the complexity of plant or model or
controller worsens the lower bound on achieved per-
formance. If this lower bound is poor, one may con-
sider re-designing a controller with lower complexity
(e.g. using the technique suggested in [6]) or obtain-
ing a plant model Pm with lower complexity.

To conclude, it is interesting to consider more closely the
term V−C∗ in (9), which was simply considered to be
a measure of controller complexity, without explanation.
Note that it is not clear that V−C∗ = VC in general. How-
ever, by considering the behaviour of frequency-domain
symbols on the unit circle only (which is all that is done
in this paper), and since in this case G̃∗C and G∗C can be
considered to be normalised graph symbols (now left and
right invertible in L∞) of −C∗, it follows that

V−C∗ = ‖G̃−C∗(G−C∗)
′
‖∞ = ‖G∗C(G̃∗C)

′
‖∞

= ‖G̃
′

CGC‖∞ =: ṼC ,

where the norms here all correspond to the one on L∞,
and the third equality holds because given an X ∈ RL∞,
−z2(X∗)

′
= (X

′
)∗ and ‖−1

z2 X‖∞ = ‖X‖∞ = ‖X∗‖∞.
Hence, mimicking the proof of Lemma 5.4 in [3], it also
follows that

κ(C(ejω1), C(ejω2)) ≤ ṼC |ω1 − ω2|.

That is, ṼC can be thought of as measuring the complex-
ity of C in the same way as VC . In fact, for a single-input
single-output C or a diagonal multiple-input multiple-
output C, it may be easily seen that ṼC = VC .
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