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1 Introduction

In this paper we suggest a brief survey of some results on stability of continuous, discrete
and retarded control systems which are based on recent estimates for the norms of operator-
valued functions.

As it is well-known, one of the basic methods for investigation of solution stability is the
Lyapunov functions (functionals) method [1, 6, 7]. By that method, many strong results
are obtained. But �nding Lyapunov functions is usually diÆcult. At the same time, by
the combined usage estimates for norms of operator-valued functions with the method of
linearization and the freezing method we establish explicit stability criteria. They make it
possible to avoid the construction of Lyapunov's functions in appropriate situations. Some
of the results presented below are new, and some of them are taken from [3, 5]. Moreover,
as it is shown in [4], our results can be extended to distributed parameters systems.

2 Estimates for the norm of matrix functions

Throughout Sections 2-5 of the present paper, k:k means the Euclidean norm.
Let A = (ajk) be an n� n-matrix (a linear operator in Cn) and I be the unit matrix,.
The following quantity plays a key role in the sequel:

g(A) = (N2(A)�
nX

k=1

j�k(A)j2)1=2; (2:1)

where N(A) is the Frobenius (Hilbert-Schmidt) norm of A, and �k(A) (k = 1; :::; n) are the
eigenvalues taken with their multiplicities. The relations

g2(A) � N2(A)� jTrace A2j;
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g2(A) � 1

2
N2(A� � A)

and
g(ei�A+ zI) = g(A)

are true for all � 2 R and z 2 C. To formulate the results, for a natural n > 1 introduce
the numbers

n;k =

vuut Ck
n�1

(n� 1)k
(k = 1; :::; n� 1) and n;0 = 1:

Here

Ck
n�1 =

(n� 1)!

(n� k � 1)!k!

are binomial coeÆcients. Evidently, for n > 2

2n;k =
(n� 2)(n� 3) : : : (n� k)

(n� 1)k�1k!
� 1

k!
(k = 1; 2; :::; n� 1): (2:2)

Let A be a matrix and let f(�) be a scalar-valued function which is analytical on a neigh-
borhood D of all the eigenvalues of A. We de�ne the function f(A) of A by

f(A) =
1

2�i

Z
L
f(�)(�I � A)�1d�;

where L � D is a closed smooth contour surrounding �(A)

Theorem 2.1 Let A be a linear operator in Cn and let f be a function regular on a neigh-
borhood of the closed convex hull co(A) of the eigenvalues of A. Then

kf(A)k �
n�1X
k=0

sup
�2co(A)

jf (k)(�)jgk(A)n;k
k!

:

For the proof see [2, 3]. This theorem and inequalities (2.2) yield

Corollary 2.2 Let A be a linear operator in Cn and let f be a function regular on a neigh-
borhood of the closed convex hull co(A) of the eigenvalues of A. Then

kf(A)k �
n�1X
k=0

sup
�2co(A)

jf (k)(�)j g
k(A)

(k!)3=2
:

Theorem 2.3 Let A be a linear operator in Cn. Then its resolvent R�(A) = (A � �I)�1

satis�es the inequality

kR�(A)k �
n�1X
k=0

gk(A)n;k
�k+1(A; �)

for all regular points � of A;

where
�(A; �) = min

k=1;:::;n
j�� �k(A)j:
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For the proof see [2, 3]. The latter theorem and inequalities (2.2) yield

Corollary 2.4 Let A be a linear operator in Cn. Then

kR�(A)k �
n�1X
k=0

gk(A)p
k!�k+1(A; �)

for all regular points � of A:

Example 2.5 Let A be a linear operator in Cn. Then

kAmk �
n�1X
k=0

m!rm�ks (A)gk(A)n;k
(m� k)!k!

for every integer m. Here rs(A) = maxk j�k(A)j is the spectral radius of A. Corollary 2.2
gives us the inequality

kAmk �
n�1X
k=0

m!rm�ks (A)gk(A)

(m� k)!(k!)3=2
:

Example 2.6 For a linear operator A in Cn, Theorem 2.1 gives us the estimate

kexp(At)k � e�(A)t
n�1X
k=0

gk(A)tk
n;k
k!

(t � 0)

where �(A) = maxk=1;:::;nRe �k(A). According to (2.2)

kexp(At)k � e�(A)t
n�1X
k=0

gk(A)tk

(k!)3=2
for all t � 0:

3 Nonlinear continuous systems with autonomous lin-

ear parts

Put 
r = fh 2 Cn : khk � rg and consider in Cn the equation

_x = Ax+ F (x; t) (t � 0); (3:1)

where A is a constant n� n-matrix, and F maps 
r � [0;1) into Cn with the property

kF (h; t)k � �khk for all h 2 
r and t � 0: (3:2)

Here � = const > 0. Introduce the algebraic equation

zn = �
n�1X
j=0

gj(A)p
j!

zn�j�1; (3:3)

and denote by z(�; A) the extreme right-hand (unique positive and simple) zero of that
equation. Let

�(A) =
n�1X
j=0

gj(A)

j�(A)jj+1
p
j!
;

and

�(A) = max
t�0

exp[�(A)t]
n�1X
j=0

gj(A)tjp
j!

:
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Theorem 3.1 Under condition (3.2), let the matrix A + z(�; A)I be a Hurwitz one. Then
the zero solution of equation (2.1) is asymptotically stable. Moreover, the inequality

��(A) < 1 (3:4)

is valid, and any vector x0 satisfying the condition

(1� ��(A))�1 �(A)kx0k < r;

belongs to a region of attraction of the zero solution. Additionally, the solution x(t) of (2.1)
with x(0) = x0 subordinates the estimate

kx(t)k � �(A)kx0k
1� ��(A)

(t � 0):

In particular, let (3.2) hold with 
r = Cn (i.e. r = 1). Then the zero solution of (3.1) is
globally stable provided A + z(�; A)I is a Hurwitz matrix.

For the proof see [3].
Certainly, we can use various estimates for the algebraic root z(�; A), cf. Lemma 1.6.1

or Corollary 1.6.2 from [3].

4 Stability of continuous systems with time-variant lin-

ear parts

Let us consider in Cn the equation

_x = A(t)x + F (x; t) (t � 0); (4:1)

where A(t) is a piecewise continuous n�n-matrix, and F maps 
r� [0;1) into Cn with the
following property: there exists a non-negative continuous function �(t) bounded on [0;1),
such that

kF (h; t)k � �(t)khk for all h 2 
r and t � 0: (4:2)

Recall that 
r = fh 2 Cn : khk � rg, and for any n� n-matrix A denote

p(t; A) � exp[�(A)t]
n�1X
k=0

gk(A)tk

(k!)3=2

Put
q(t; s) � kA(t)� A(s)k (t; s � 0); and �0 � sup

t�0
p(t; A(t)):

Theorem 4.1 Let the conditions (4.2), �0 <1, and

�(A(:); F ) � sup
t�0

Z t

0
p(t� s; A(t))[q(t; s) + �(s)]ds < 1 (4:3)
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be ful�lled. Then the zero solution of equation (4.1) is asymptotically stable. In addition,
any initial vector x0 satisfying the inequality

�0kx0k
1� �(A(:); F )

< r; (4:4)

belongs to the region of attraction of the zero solution. Moreover, under (4.4) the estimate

kx(t)k � �0kx0k
1� �(A(:); F )

(t � 0)

is true for a solution x(t) with the initial vector x0.
In particular, let inequality (4.2) hold with 
r = Cn, i.e. r =1. Then under condition

(4.3), the zero solution of (4.1) is globally asymptotically stable.

Proof: As follows from Example 2.6, the inequality

kexp[A(�)t]k � p(t; A(�)) (t; � � 0) (4:5)

is valid. We rewrite equation (4.1) in the form

dx=dt� A(�)x = [A(t)� A(�)]x + F (x; t);

regarding an arbitrary � � 0 as �xed. This equation is equivalent to the following one:

x(t) = exp[A(�)t]x(0)+
Z t

0
exp[(A(�)(t� s)][(A(s)� A(�))x(s) + F (x(s); s)]ds: (4:6)

Since the solutions continuously depend on the initial vector, the inequality

kx(t)k � r (0 � t � t0)

is true for a suÆciently small t0. Due to (4.2) and (4.5), the latter inequality implies the
relation

kx(t)k � p(t; A(�))kx(0)k +
Z t

0
p(t� s; A(�))[q(�; s) + �(s)]kx(s)kds (t � t0):

Taking � = t, we get

kx(t)k � p(t; A(t))kx(0)k+
Z t

0
p(t� s; A(t))[q(t; s) + �(s)]kx(s)kds (t � t0):

This relation according to the de�nitions of �(A(:); F ) and �0 yields

sup
s�t0

kx(s)k < �0kx(0)k+ sup
s�t0

kx(s)k�(A(:); F ):

Consequently, due to (4.3)

sup
s�t0

kx(s)k � �0kx(0)k(1� �(A(:); F ))�1

for a suÆciently small t0. But condition (4.4) ensures this bound for all t � 0. That
bound provides the Lyapunov stability. The asymptotic stability can be proved by a small
perturbation of system (4.1) as claimed. 2
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5 Nonlinear discrete systems

Again put 
r = fh 2 Cn : khk � rg. Let A be an n�n-matrix. Consider in Cn the equation

xk+1 = Axk + Fk(xk) (5:1)

where
Fk : C

n ! Cn (k = 0; 1; 2; :::)

are functions satisfying for a positive r � 1 the conditions

kFk(h)k � qkhk (q = const > 0; h 2 
r): (5:2)

For example, if
kFk(h)k � mkhkp (m = const > 0; h 2 Cn)

for a p > 1, then we have (5.2) with q = mrp�1. Let the spectral radius rs(A) of A is less
that one:

rs(A) < 1: (5:3)

Furthermore, recall that g(A) and n;k are de�ned in Section 2.1. Put

�2 �
n�1X
k=0

gk(A)n;k
(1� rs(A))k+1

and

M2 � sup
m=0;1;:::

n�1X
k=0

Cm
k g

k(A)n;kr
m�k
s (A)

where

Cm
k =

m!

(m� k)!k!

are the binomial coeÆcient. Now we are in a position to formulate the main result of the
present section

Theorem 5.1 Let conditions (5.2) and (5.3) be ful�lled. In addition, let

q�2 < 1:

Then any solution of (1.1) is subject to the inequality

kxkk � M2kx0k(1� q�2)
�1 (k = 1; 2; :::);

provided
M2kx0k(1� q�2)

�1 < r: (5:4)

For the proof see [5]. Clearly, this theorem gives us the stability condition and the estimate
for the region of attraction of the zero solution.
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6 Nonlinear retarded systems

In this section the Euclidean norm is denoted by k:kCn The space of all continuous func-
tions de�ned on a segment [a; b] with values in Cn and the sup-norm k:kC[a;b] is denoted by
C([a; b];Cn). In addition, L2([a; b];Cn) is the spaces of functions de�ned on [a; b] with values
in Cn and equipped with the norm

jwjL[a;b] = [
Z b

a
kw(t)k2Cndt]1=2:

Let us consider in Cn the equation

_x(t) =
Z �

0
dR(�)x(t� �) + F (t; xt) (t � 0); (6:1)

where F continuously maps [0;1)�C([��; 0];Cn) into Cn, and R has a bounded variation.
Again take the initial condition

x(t) = �(t) for � � � t � 0: (6:2)

It is assumed that for any u 2 L2([��;1);Cn) \ C([��;1);Cn) the inequality

kF (:; ut)kL[0;1) � [
Z 1
0
kF (t; ut)k2Cndt]1=2 � qkukL[0;1) +M(u) (6:3)

holds whereM(:) is a continuous (generally nonlinear) functional de�ned on space L2([��; 0];Cn).
For instance, let there be constants bj > 0 and qj � 0 (j = 1; :::; m <1), such that the

relation

kF (t; ut)k �
mX
k=1

qjku(t� hj(t))kCn for all u 2 L2([��;1);Cn) (6:4)

holds, where hj(t) are di�erentiable scalar-valued functions with the properties

1� _hj(t) � bj > 0; and 0 � hj(t) � � (t � 0; j = 1; :::; m): (6:5)

Proposition 6.1 Let relations (6.4) and (6.5) be ful�lled. Then condition (6.3) holds with

q =
mX
j=1

qjb
�1=2
j ; (6:6)

and

M(u) = q[
Z 0

��
ku(t)k2Cndt]1=2 = qkukL[��;0] (u 2 L2([��; 0];Cn)):

We need the characteristic matrix of the linear part of (6.1):

K(p) =
Z �

0
exp(�ps)dR(s)� Ip (p 2 C):

Put

�(K(p)) =
n�1X
k=0

gk(B(p))p
k!dk+1(K(p))

(p 2 C) and �0(K) � sup
!2R

�(K(!i));

where d(K(p)) is the smallest modulus of eigenvalues of K(p) (see Sections 10.1 and 10.3
from [3]). Now we are in a position to formulate the main result of this section.
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Theorem 6.2 Let all the zeros of detK(p) lie in the open left half-plane. Let the conditions
(6.3) and

q�0(K) < 1 (6:7)

hold. Then any solution x(t) of equation (6.1) with a continuous initial function � belongs
to L2([0;1);Cn). Moreover, the bound

kxkL[0;1) � (1� �0(K)q)�1(�0(K)M(�) + k�kL[0;1)) (6:8)

is valid, where �(t) is the solution of the equation

_� =
Z �

0
dR(�)�(t� �)

with the initial function �.

De�nition 6.3 We will say that the zero solution of equation (6.1) is absolutely stable in
the class of nonlinearities satisfying the inequality

kF (:; ut)kL[0;1) � [
Z 1
0
kF (t; ut(t))k2Cndt]1=2 � qkukL[��;1)

for any u 2 L2([��;1);Cn) \ C([��;1);Cn), if under (6.3), the zero solution of (6.1) is
globally asymptotically stable. Moreover, there is a positive constant N independent of the
speci�c form of the function F , such that the inequality

kx(t)k � Nk�kC([��;0];Cn) (t � 0)

holds for any solution of (6.1) with the initial condition (6.2).

Corollary 6.4 Let all the zeros of detK(p) lie in the open left half-plane, and condition (6.7)
hold. Then the zero solution of equation (6.1) is absolutely stable in the class of nonlinearities
(6.1).
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