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Abstract

In this paper, the problem of stabilization of systems with de-
lays is addressed. By using the Lyapunov approach, we deduce
general conditions for stabilizing the closed-loop system and
derive stabilizing state feedback control laws.

1 Introduction

Several control processes encountered in practice, for example
in biology, mechanic or chemistry (see [10, 14]) involve delays.
Their presence may affect the performances of control laws or
even be a source of instability. During the last decades, the
problem of stabilizability of control systems and the design of
stabilizing feedback has been the subject of many papers, see
([1, 2, 3, 4, 7, 8, 9, 13, 16, 17, 18, 19, 20]), and the references
therein. The problems of stabilization and controller design for
linear systems with delays has been extensively studied and is
still under investigation. Very few works, however, have been
performed to deal with the stabilization of nonlinear systems
with delays. It is due to the difficulty derived by the infinite di-
mensionality of the state combined with the nonlinear structure
of the differential equations.

The purpose of this paper is to present results on the stabi-
lizability problem of equilibrium positions of nonlinear sys-
tems with delays by means of state feedback. Specifically, we
present a rigorous developement of sufficient conditions and
propose feedback controllers for these systems. The approach
developed is inspired by the classical result, well-known as the
Jurdjevic and Quinn method [8], dedicated to the problem of
stabilization of nonlinear systems. One of the main features
of the proposed approach concerns the use of an extension of
the usual Lie derivative. Such extensions have been consid-
ered for example in [15] in order to investigate the input-output
linearization problem for retarded nonlinear systems involving
time-delays in the state. For the same type of problem, in [5, 6]
the authors propose to overcome the difficulties generated by
the presence of the delay by introducing a suitable mathemat-
ical formalism and by introducing an associated Lie derivative
definition. In order to simplify the presentation, we will first
treat the single delay case before to consider the case of multi-

ple delays.

The organization of the paper is as follows. In Section 2 we
describe the class of systems considered and recall some basic
notions. In Section 3, we state and prove our main results.
Finally, Section 4 gives conclusions.

2 System description and preliminaries

We first consider systems of the form :{
ẋ(t) = f(x(t)) + ug(x(t), x(t− h))

x(t) = φ(t), t ∈ [−h, 0]
(1)

wheref andg are smooth vector fields withf(0) = g(0, 0) =
0. In the following,x(t) ∈ IRn is the state vector andu ∈ IR
is the input vector.h is a positive scalar and represents the
delay. The functionφ(t) ∈ C = C([−h, 0], IRn) represents
the initial condition. C([−h, 0], IRn) is the banach space of
continuous function mapping[−h, 0] into IRn, with the norm
‖φ‖ = sup

t∈[−h,0]

|φ(t)|. The euclidean norm ofφ(t) ∈ IRn is

denoted by|φ(t)|.

We assume that there exists a Lyapunov functionV , such that

〈f(φ(0)),∇V (φ(0))〉 ≤ 0 ∀φ ∈ C([−h, 0], IRn) (2)

where∇ denotes the gradient and〈., .〉 designates the scalar
product.

We denote byV , the Lyapunov functional defined byV (φ) =
V (φ(0)).

We introduceδ, the delay operator defined for any functiona(.)
by :

δa(t) = a(t− h). (3)

We set :
δ0a(t) = a(t)

and recursively :

δka(t) = δ(δk−1a(t)), ∀k ≥ 1.

For any functionF : IRn × IRn → IRn, we set :

Fδ(x(t)) = F (x(t), δx(t))

= F (x(t), x(t− h))
(4)



For a functionG : IRn × IRn → IRn, we define the Lie deriva-
tive of Gδ along the vector fieldFδ as :

LFδ
Gδ(x(t)) =

∂Gδ(x(t))
∂x(t)

F (x(t), x(t− h))

+
∂Gδ(x(t))

∂δx(t)
δF (x(t), x(t− h)).

This can be rewritten as :

LFδ
Gδ(x(t)) =

1∑
i=0

∂Gδ(x(t))
∂δix(t)

δiFδ(x(t)).

By recurrence, we define :

Lk
Fδ

Gδ(x(t)) = LFδ
(Lk−1

Fδ
Gδ(x(t))), ∀k ≥ 1.

Note that when there is no delay, we recover the usual Lie
derivative. We can also remark that with this notation, the con-
dition (2) can be rewritten as

LfV (φ(0)) ≤ 0, ∀φ ∈ C([−h, 0], IRn).

Before proceeding further, we will give some preliminary re-
sults. Consider the nonlinear delay systems of the general form

ẋ(t) = f(t, xt) (5)

wheref : IR × C([−h, 0], IRn) 7→ IRn is continuous with re-
spect to the first argument, lipschitzian with respect to the sec-
ond and satisfyf(t, 0) = 0 for all t ∈ IR.

For t ≥ σ − h, we denote byx(σ, φ)(t), its solution at timet
with initial dataφ, specified at timeσ, i.e., x(σ, φ)(σ + η) =
φ(η), ∀η ∈ [−h, 0]. Forη ∈ [−h, 0],

xt(η) = x(t + η)

and represents the state of the delay system. For allδ > 0, let
us denote byB(0, δ), the ballB(0, δ) = {φ ∈ C([−h, 0], IRn) :
‖φ‖ < δ}. A will designate in the following, the class of scalar
non decreasing functionsα of C([0,∞), IR), satisfyingα(s) >
0 for s > 0 andα(0) = 0.

Definition
The equilibrium solution,x ≡ 0 of the delay differential equa-
tion (5) is said to be :

1. stable, if for anyσ ∈ IR, ε > 0, there is aδ = δ(ε, σ) such
thatφ ∈ B(0, δ) impliesxt(σ, φ) ∈ B(0, ε) for t ≥ σ.

2. asymptotically stable, if it is stable and there existsb0 =
b0(σ) > 0 such thatφ ∈ B(0, b0) impliesxt(σ, φ) → 0 as
t →∞.

Definition
Let U : IR × B(0, δ) → IR be a continuous functional such
that U(t, 0) = 0. The functional(t, φ) → U(t, φ) is said
to be positive definite, if there is a functionα in A such that
U(t, φ) ≥ α(|φ(0)|), for all t ∈ IR, φ ∈ B(0, δ).

Theorem 2.1 (see[11])
If there exists a continuous positive definite functional
((t, φ) → U(t, φ)) : IR × B(0, δ) → IR whose derivativeU̇
is negative onIR × B(0, δ). Then the trivial solution of (5) is
stable.

Now, we state and prove our main result.

3 Main results

Theorem 3.1 If the set

W = {φ ∈ C / Lk+1
f V (φ(0)) = Lk

fLgδ
V (φ(0)) = 0;

k ∈ IN}
(6)

is reduced to the origin, then the system (1) is globally asymp-
totically stabilizable at the origin.

Proof :

Let θ ∈ C∞(IRn × IRn; ]0,∞)). We defineu by

u = −θ(φ(0), φ(−h))Lgδ
V (φ(0)) . (7)

Then the closed-loop system(1) with (7) has the following form

ẋ(t) = z(x(t), x(t− h)) = f(x(t))

−θ(x(t), x(t− h))Lgδ
V (x(t)) g(x(t), x(t− h)).

(8)

Along trajectories of the system (1)(7) :

V̇ (φ) = V̇ (φ(0)) = LfV (φ(0))

−θ(φ(0), φ(−h))Lgδ
V (φ(0))2 ≤ 0, ∀φ ∈ C.

(9)

Then the system (1) (7) is stable.

Let zt(φ), be the flow of the closed-loop system (1) (7). By
LaSalle’s invariance principle for differential delay systems
(see [12]),zt(φ) converges to the largest invariant setI con-

tained inΩ = {φ ∈ C /V̇ (φ) = 0}.

Let φ ∈ I. Using (9) we get :

LfV (φ(0)) = Lgδ
V (φ(0)) = 0.

For any t, for whichzt(φ) is defined, we have :

zt(φ) = xt(φ), ∀t ≥ 0

wherext(φ) is the flow associated to the vector fieldf .



By invariance ofI :

LfV (xt(φ)(0)) = Lgδ
V (xt(φ)(0)) = 0, ∀t ≥ 0.

Then :

L2
fV (φ(0)) =

d

dt
LfV (xt(φ)(0))

∣∣∣∣
t=0

= 0.

and

LfLgδ
V (φ(0)) =

d

dt
Lgδ

V (xt(φ)(0))
∣∣∣∣
t=0

= 0.

By recurrence, one can show that :

Lk+1
f V (φ(0)) =

d

dt
Lk

fV (xt(φ)(0))
∣∣∣∣
t=0

= 0

and for allk ≥ 1

Lk
fLgδ

V (φ(0)) =
d

dt
Lk−1

f Lgδ
V (xt(φ)(0))

∣∣∣∣
t=0

= 0.

Finally, we obtain

Lk+1
f V (φ(0)) = 0 and Lk

fLgδ
V (φ(0)) = 0, ∀ k ∈ IN.

Thereforeφ is an element ofW . SinceW = {0}, the attrac-
tivity of the origin is proved.

This finishes the proof of the theorem .

The previous result can be extended to the case of multiple
commensurate delays as follows.

We consider the system of the form :{
ẋ(t) = f(x(t)) + ug(x(t), x(t− h), . . . , x(t−mh))
x(t) = φ(t), t ∈ [−mh, 0]

(10)
wheref andg are smooth vector fields with

f(0) = g(0, . . . , 0) = 0.

We introduce the following delay operatorsδi, (i ∈ IN) given
by :

δix(t) = x(t− ih)

and we define the vector of delay operatorsτp as :

τp = (δ1, .., δm).

Let F be a function mappingIRn×(p+1) into IRn andFτp
(x(t))

defined by :

Fτp
(x(t)) = F (x(t), x(t− h), . . . , x(t− ph))

= F (x(t), τp(x(t)).

In the same manner, for a functionG mappingIRn×(q+1) into
IRn, we define a functionGτq

by:

Gτq
(x(t)) = G(x(t), x(t− h), . . . , x(t− qh))

= G(x(t), τq(x(t))).

For a functionG : IRn×(q+1) → IRn, we define the Lie deriva-
tive of Gτq

along the vector fieldFτp
as :

LFτp
Gτq

(x(t)) =
∂Gτq (x(t))

∂x(t)
Fτp

(x(t))

+
∑q

i=1

∂Gτq (x(t))
∂δix(t)

δiFτp
(x(t)).

By recurrence, we define :

Lk
Fτp

Gτq
(x(t)) = LFτp

(Lk−1
Fτp

Gτq
(x(t))), ∀k ≥ 1.

Therefore we have the following result.

Theorem 3.2 If the set

W̃ = {φ ∈ C / Lk+1
f V (φ(0)) = Lk

fLgτ
V (φ(0)) = 0;

k ∈ IN}
(11)

with τ = (δ1, .., δm), is reduced to the origin, then the system
(10) can be made globally asymptotically stable at the origin.

Proof :

The proof of this result is analogous to the previous one with
the delay operatorδ given in (3) replaced byτ = (δ1, .., δm).

Remark 3.1 For sake of simplicity our main result is given for
u ∈ IR. It is clear that a similar result, foru ∈ IRp (p > 1),
can be established.

4 Conclusions

In this paper we have considered a problem of stabilization of
nonlinear systems with time delays. We have used the Invari-
ance Principle of LaSalle for differential delay systems, com-
bined with an extension of the usual Lie derivative, in order to
treat this problem. We have obtained sufficient conditions for
guaranteeing the asymptotic stability of the closed-loop system
and derived stabilizing state feedback control laws.
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