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systems; Lyapunov functions. The organization of the paper is as follows. In Section 2 we

describe the class of systems considered and recall some basic
Abstract notions. In Section 3, we state and prove our main results.

Finally, Section 4 gives conclusions.
In this paper, the problem of stabilization of systems with de- Y g

lays is addressed. By using the Lyapunov approach, we deduce

general conditions for stabilizing the closed-loop system akd System description and preliminaries

derive stabilizing state feedback control laws. We first consider systems of the form :

1 Introduction {w'(t) = f(x(t) + ug(z(t),z(t — h))

Several control processes encountered in practice, for example o(t) = ¢(t), te[-h0]

in biology, mechanic or chemistry (see [10, 14]) involve delayghere f andg are smooth vector fields witfi(0) = g(0,0) =
Their presence may affect the performances of control lawsr|n the following, z(t) € IR™ is the state vector and € R
even be a source of instability. During the last decades, #ethe input vector./ is a positive scalar and represents the
problem of stabilizability of control systems and the design @felay. The function(t) € C = C([—h,0],IR") represents
stabilizing feedback has been the subject of many papers, §g€initial condition. C([—%,0],IR") is the banach space of
([1,2,3,4,78,09, 13,16, 17, 18, 19, 20]), and the referencgsntinuous function mapping-£, 0] into IR"™, with the norm
therein. The problems of stabilization and controller design fﬂw = sup |¢(t)]. The euclidean norm op(¢t) € R" is
linear systems with delays has been extensively studied and is te[—h,0]

still under investigation. Very few works, however, have begtenoted by¢(t)|.

performed to deal with the stabilization of nonlinear SYSteMBa assume that there exists a Lvapunov f nctiosuch that
with delays. It is due to the difficulty derived by the infinite di- . X yaptnov funcligsu
mensionality of the state combined with the nonlinear structure (f(4(0)), VV (¢(0))) < 0 V¢ € C([-h,0],R")  (2)
of the differential equations.

1)

_ ) whereV denotes the gradient anld .) designates the scalar
The purpose of this paper is to present results on the stghigqyct.

lizability problem of equilibrium positions of nonlinear sys- _ ] i _

tems with delays by means of state feedback. Specifically, ¥¥& denote by, the Lyapunov functional defined dy(¢) =

present a rigorous developement of sufficient conditions aHd?(0)).

propose feedback controllers for these systems. The appro@@hintroduces, the delay operator defined for any functiaf)

developed is inspired by the classical result, well-known as tB?:

Jurdjevic and Quinn method [8], dedicated to the problem o

stabilization of nonlinear systems. One of the main features

of the proposed approach concerns the use of an extensioggfset

the usual Lie derivative. Such extensions have been consid- §%l(t) = a(t)

ered for example in [15] in order to investigate the input-output

linearization problem for retarded nonlinear systems involvir‘f’d1

time-delays in the state. For the same type of problem, in [5, 6] sFa(t) = 6(6F ta(t)), Vk> 1.

the authors propose to overcome the difficulties generated by

fthe presence of the dglay by introducing a'suitabl'e mat.hemrglé—r any function? : R” x R" — ", we set :

ical formalism and by introducing an associated Lie derivative

definition. In order to simplify the presentation, we will first Fs(z(t)) = F(x(t),0x(t))

treat the single delay case before to consider the case of multi- (4)
= F(a(t),z(t - h))

Sa(t) = a(t — h). 3)

d recursively :



For a functionG : R™ x R" — IR", we define the Lie deriva- Definition

tive of G5 along the vector field’s as : LetU : R x B(0,6) — IR be a continuous functional such
that U(¢,0) = 0. The functional(t,¢) — U(t,¢) is said
9Gs(x(t)) to be positive definite, if there is a functienin A such that
Lp G t — F(x(t t—nh !
£ Go((1)) ou(p) L@@t =h) U(t, o) > a(|6(0)]), forall t € R, ¢ € B(0,5).
9Gs(x(t)) OF (x(t), z(t — h)). Theorem 2.1 (see[11])
9oz (t) If there exists a continuous positive definite functional
((t,9) — U(t,¢)) : R x B(0,6) — R whose derivativé/
This can be rewritten as : is negative orR x B(0,d). Then the trivial solution of (5) is
) stable.
IGs(x(t ,
LeGate(0) = 3 2] i oy, |
i—o (t) Now, we state and prove our main result.
By recurrence, we define : 3 Main results
L}, Gs(x(t)) = Ly, (L}, 'Gs(2(t),  Vk>1. Theorem 3.1 If the set
_ W ={peC/LEV(6(0)) = LiLe,V(6(0) = 0;
Note that when there is no delay, we recover the usual Lie ' (6)
derivative. We can also remark that with this notation, the con- ke N}

dition (2) can be rewritten as
is reduced to the origin, then the system (1) is globally asymp-
LiV((0)) <0, V¢ eC([—h,0,R"). totically stabilizable at the origin.

Before proceeding further, we will give some preliminary rés )
X : roof :
sults. Consider the nonlinear delay systems of the general form
Letd € C>*(IR" x R™;]0, 00)). We defineu by

@(t) = f(t, ) ®) u=—0(¢(0), o(=h)) Ly, V(6(0)). ()

where f : R x C([~h, 0], R") — R" is continuous with re- Then the closed-loop system(1) with (7) has the following form
spect to the first argument, lipschitzian with respect to the sec-

ond and satisfyf (¢,0) = 0 for all t € IR. z(t) = z(z(t),z(t — h)) = f(z(?))

: : : ®
Fort > o — h, we denote by (o, ¢)(¢), its solution at time
with initial datae, specified at timer, i.e., (o, ¢)(o + 1) — —0((®), 2(t = 1)L, V(2(t)) g(x(2), 2(t — h)).
¢(n), Vn € [—h,0]. Forn € [—h,0], Along trajectories of the system (1)(7) :

w¢(n) = x(t + ) V(¢) = V(6(0)) = LyV(6(0))
and represents the state of the delay system. Faér:all, let —0(4(0), ¢(—h)) Ly, V(6(0))2 <0, VYocC ®
9 gs =Y .

us denote by3(0, §), the ball3(0, ) = {¢ € C([—h, 0], R"™) :
o[l < &}. Awill designate in the following, the class of scalarhen the system (1) (7) is stable.

non decreasing functiorsof C([0, 00), R), satisfyinga(s) >
0for s > 0 anda(0) = 0. Let z:(¢), be the flow of the closed-loop system (1) (7). By

LaSalle’s invariance principle for differential delay systems
(see [12]),z:(¢) converges to the largest invariant deton-
Definition tained inQ = {¢ € C /V(¢) = 0}.
The equilibrium solutiong = 0 of the delay differential equa-

tion (5) is said to be : Let¢ & 1. Using (9) we get
LV (9(0)) = Lg;V(¢(0)) = 0.

1. stable, ifforany € IR,e > 0, thereis @ = d(e, o) such
thatg € B(0,0) impliesz¢ (o, ¢) € B(0,¢) fort > o. For any t, for whichz, (¢) is defined, we have :

2. asymptotically stable, if it is stable and there exigts= 2(0) = 24(9), VE>0
bo(co) > 0 such thaw € B(0, by) impliesz (o, ¢) — 0 as
t — oo. wherez,(¢) is the flow associated to the vector figld



By invariance off :

LyV(@@)(0)) = Ly, V(w(¢)(0) =0, Vi >0
Then:
L3V(6(0) = 5LV @(0)) =0
t=0
and
LLyV(60) = Lo Vir(9)0)| =0
By recurrence, one can show that :
LEV(6(0) = STV @)0)] =0
t=0
and forallk > 1
L VO(0) = S IE Lo V(o)) =0.
t=0

Finally, we obtain
LTV (6(0)) =0 and LiLg V(4(0)) =0, VkeN.

Thereforeg is an element ofV. SinceWV = {0}, the attrac-
tivity of the origin is proved.

This finishes the proof of the theorem .

In the same manner, for a functién mapping]R”X(qH) into
IR"™, we define a functiol,, by:

Gr,(z(t) =

= G(z(t), 7y(2(t))).

G(z(t),z(t —h),...,x(t — qh))

For a functionG : R"*(@*t) — R", we define the Lie deriva-
tive of G, along the vector field”,, as:

G, (x(t))

Lr,, Gr(2(0) = =34 o5

Fr, (2(1))

0G,, (x(t))
961z (t)

q
i=1

5iFy (x(t)).

By recurrence, we define :

Ly, Gr,(2(t)) = Lp,, (L |Gy, (2(1)), VE>1.
Therefore we have the following result.

Theorem 3.2 If the set
W ={¢€C/LE"'V(¢(0)) = LEL, V($(0)) = 0;

ke IN}
(11)
with 7 = (41, .., 6, ), is reduced to the origin, then the system
(10) can be made globally asymptotically stable at the origin.

The previous result can be extended to the case of multiple

commensurate delays as follows.

We consider the system of the form :
z(t) = f(a(t)) + ug(x(t), z(t — h),...,z(t —mh))
z(t) = o(t), t€[-mh,0]

(10)
wheref andg are smooth vector fields with

We introduce the following delay operatafs (i € IN) given
by :
0;x(t) = x(t — ih)

and we define the vector of delay operatoysis :

Tp = ((51, 7(Sm)

Let ' be a function mappin®"* " into R"™ and F,, (x(t))
defined by :
F, (x(t)) = F(x(t),z(t —h),...,z(t — ph))

= F(at), mp(x(t)).

Proof :

The proof of this result is analogous to the previous one with
the delay operataf given in (3) replaced by = (41, .., d,).

Remark 3.1 For sake of simplicity our main result is given for
u € R. Itis clear that a similar result, for. € R” (p > 1),
can be established.

4 Conclusions

In this paper we have considered a problem of stabilization of
nonlinear systems with time delays. We have used the Invari-
ance Principle of LaSalle for differential delay systems, com-

bined with an extension of the usual Lie derivative, in order to

treat this problem. We have obtained sufficient conditions for

guaranteeing the asymptotic stability of the closed-loop system
and derived stabilizing state feedback control laws.

References

[1] A. Baccioti. “The local stabilizability for nonlinear sys-
tems”. IMA Journal of Mathematical Control & Informa-
tion 5, pp. 27-39, (1988).



(2]

3]

[4]

C.l. Byrnes, A. Isidori and J.C. Willems. “Passivity,[15] T. Oguchi, A. Watanabe and T. Nakamizo. “Input-output
feedback equivalence and the global stabilization of min- Linearization of Retarded Nonlinear Systems by an Ex-
imum phase nonlinear systemdEEE Transactions on tended Lie derivative” Proceeding of the 37th IEEE Con-
Automatic ControlAC-36(11), pp. 1228-1240, November  ference on Decision and Contrdtlorida, pp. 1364-1369,

(1991). December (1998).

J.M. Coron. “Linearized control systems and applicatiofi6] R. Outbib and G. Sallet. “Stabilizability of the angular
to smooth stabilization”"SIAM Journal of Control and Op- velocity of a rigid body revisited”Systems & Control Let-
timization 32, pp. 358-386, (1994). ters 18, pp. 93-98, (1992).

J.P. Gauthier and G. Bornard. “Stabilisation desé&ysts [17] E. Ryan and J. Buckingham. “On asymptotically Stabiliz-
non lincaires”, in: |.D.Landau, Ed.Qutils et Moales ing Feedback Control of Bilinear System#£EE Transac-
Mathématiques pour I'Automatique et I'Analyse des tion on Automatic ControRC-28(8), pp. 863-864, August
sysemes (Editions du CNRS, Paris)\ol.1, pp. 307-324, (1983).

(1981). S -
[18] M. Slemrod. *“Stabilization of bilinear control systems

[5] A. Germani, C. Manes and P. Pepe. “Linearization of with applications to nonconservative problems in elastic-

input-output mapping for nonlinear delay systems via ity”. SIAM Journal of Control and Optimizatiob6(81),
static state feedbackProceeding of CESA IMACS Multi- pp. 131-141, January (1978).

conference on Computational Engineering in Systems AR— . .
plications Vol.1, pp. 599-602, Lille, France, (1996). [19] E.D. Sontag. Mathematical Control Theory. Determin-

istic Finite Dimensional System. Springer Verlag, New-

[6] A. Germani, C. Manes and P. Pepe. “Linearization and de- York, (1989).

[7]

coupling of nonlinear delay systemsProceeding of 1998 . e~ s . .
American Control Confereng®hiladelphia, Pennsylvania,[ZO] J. Tsinias. “Sufficient Lyapunov like conditions for sta-
(1998). bilization”. Math. of Control, Signals and Syste@31),

pp. 343-357, (1989).
D.H. Jacobson. “Stabilization and optimal control non-
linear homogeneous-in-inputProceedings of the Con-
ference on Directions in Decentralized Control, Many-
Person Optimazation and Large-Scale Systems,(Boston,
Massachusetts, September 1-3, 197BJenum Press,
(1976).

[8] V. Jurdjevic and J.P. Quinn. “Controllability and stability”.

[9]

J. Differential Equations28, pp. 381-389, (1978).

N. Kalouptsidis and J. Tsinias. “Stability improvement of
nonlinear systems by feedbackEEE Transaction on Au-
tomatic Contro] AC-29(4), pp. 364-367, (1984).

[10] V.B. Kolmanovskii and V.R. Nosov. Stability of Func-

tional Differential Equations, New-York, Academic Press,
(1986).

[11] V.B. Kolmanovskii and A. Myshkis. Applied Theory

of Functional Differential Equations, Dordrecht, Kluwer
Academic Publishers, (1992).

[12] J.P. LaSalle. “The Stability of Dynamical Systems”. Re-

gional Conference Series in Applied Mathematics, Soci-
ety for Industrial and Applied MathematicBhiladelphig
(1976).

[13] K.K. Lee and A. Arapostathis. “Remarks on smooth feed-

back stabilisation of nonlinear systems3ystems & Con-
trol Letters 10, pp. 41-44, (1988).

[14] M. Malek-Zavarei and M. Jamshidi. Time Delay Systems:

Analysis, Optimization and Applications, North-Holland,
(1987).



	Session Index
	Author Index



