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rejection. convergent system is a system that, being excited by a bounded
signal, has a unique asymptotically stable bounded response.
Abstract In this paper, we modify the approach developed in [13] in or-

der to obtain improved estimation results. This work is also
In this paper, the problem of local output regulation is coriAspired by the results of B.P. Demidovich. More information
sidered. The presented results answer the question: givei¢lated to the notion of convergent systems can be found in
controller solving the local output regulation problem, how tBL6], [13] and in the paper [1] on incremental stability of dy-
estimate the set of admissible initial conditions for which thigamical systems.

controller makes the regulated output converge to zero. Theﬁw’e paper is organized as follows. In Section 2, we recall the
retical estimation results and an estimation procedure eXplaYJ?bblem of local output regulation and formulate the problem
ing the applicatio_n of these res_ults_ in practice are presented._ éfnestimating the set of admissible initial conditions. In Sec-
example of the dlsturbar_wce _reject|on problem _for a mechanufﬁ)ln 3, we describe the ideas that are used to find the estimates
system (TORA system) is given as an illustration. and formulate a technical result supporting these ideas. Sec-
tion 4 contains the main results on the estimation problem as
1 Introduction well as an explanation of their application in practice given in
) ) ) the form of an estimation procedure. In Section 5, the proce-
In this paper, we consider the problem of asymptotic regulgge is applied to a disturbance rejection problem in the TORA
tlgn of the output of a dynamical system, which is s.ubject Q/Stem (see [17], [18], [12] for details about the TORA sys-
disturbances generated by an external system. This problghy conclusions are contained in Section 6. The proofs of all
is known as the output regulation problem. Many problemggits are given in the Appendix.

in control theory can be considered as particular cases of thise notations used in the paper are the followindf! is the
problem: tracking of a class of reference signals, rejecting[,%nspose of matrix4 and A-7 = (A~1)T. The norm of
class of disturbances, partial stabilization and controlled syQ-ector is denoted ds| = (zTx)Y/2. For a positive defi-

chronization. For nonlinear systems, solutions toltiwal out-  nite matrix P = P7 > 0 we define the vector norm- |p

put regulation problem were given in [10, 6]. In [10], neces;q lz|p = VZTPz. An ellipsoid Ep(R) is defined by
sary and sufficient conditions for the solvability of the proble%P(R) .— {z € R" : |z[p < R}. An open ball is denoted
in some neighborhood of the origin were obtained and a prer (r) : (o Jul < o IPl is. e o o ot the

cedure for designing a controller that solves the problem Wﬁ]é:ltl’iXP induced by the vector norin |. By I we denote the
presented. That paper was followed by publications regardi ntity matrix. The largest eigenvalue of a symmetric matrix

the local approximate output regulation problem [7, 8, 15] and _ J7 is denotedA(J). DF,(x) is the Jacobian matrix of
other aspects of the output regulation problem for nonline?r 2). v

systems: regulation in the presence of uncertainties, adaptlvé,

semiglobal and global output regulation (see [2, 3, 11, 14, 9] ) .

and references therein). At the same time, one problem - EStimation problem statement

garding thelocal output regulation problem remained OpenI':irst, we recall the problem of local output regulation. Follow-

given a controller solving the problem someneighborhood . . :
of the origin, how to determine (or estimate) this neighborhoc';%gI [10], consider systems modelled by equations of the form

of admissible initial conditions? Without answering this ques- i = flz,u,w) (1)
tion, solutions to the local output regulation problem may not B T )
be satisfactory from an engineering point of view. e = hlz,w), @)

One answer to that question was given in [13]. In that papemth statex € R", inputu € R”, regulated output € R' and
procedure for estimating the set of admissible initial conditioxogenous inputy € R™ generated by the exosystem

was proposed. That result was based on the notion of conver-
w = s(w). (3)



The exogenous signal(t) can be viewed as a disturbance irfor all w € W.

equation (1) or as a reference signal in (2). It is assumed thatfact, a controller. = (3(x, w) solves the local output reg-
£(0,0,0) = 0, R(0,0) = 0, s(0) = 0; functionsf, h, s are ulation problem if and only if the closed-loop system (7) sat-
C* functions for some largé. We assume that exosystem (3)sfies conditions4) and B) (see [2] for details). So, we as-

is neutrally stable Neutral stability means that the equilibriumsume that these conditions hold and that the mapping) is

w = 0 is Lyapunov stable in forward and backward time [3]known. The last assumption is not restrictive, because in many
An important representative of neutrally stable exosystems is@ses the mapping(w) is required for the construction of the
linear harmonic oscillator. controller.

The chal state-fe(_adback outp_ut regulatpn problem is form1]16 simplify the subsequent analysis, it is assumed that the
lated in the following way. Given a nonlinear system of the

form (1), (2) and a neutrally stable exosystem (3), find, if poglosed—loop system (7) and the mappir(gy) are defined glob-

sible, a feedback = 3(z, w), 5(0,0) = 0, such that ally for qll v € R"andw € R™ (ie. W = R ). If this
A) The system assumption does not hold, one should restrict all the subse-

quent results to the set8 ¢ R™ and W C R™ for which
i = f(z, 8(x,0),0) ) F(z) + a(w) andw(w) are well-defined.

has an asymptotically stable linearization:at 0, 3 ldeasand preliminaries

B) There exists a neighborhoddx W of (0, 0) such that for . o .

each initial condition{z(0), w(0)) € X x W the solution of ~ Before formulating the estimation results, let us first have a
look at the dynamics of the extended closed-loop system (5),

i = f(z,B(z,w),w), (5) (6) near the origin. Under the neutral stability assumption on
W = s(w) ©) the exosystem (6) and propertidg andB3) of the closed-loop
system, the manifold = =(w) is a locally attractive invariant
satisfies:(t) = h(z(t), w(t)) — 0 ast — oo center manifold and on this manifold the regulated outpsit

h(z,w) is equal to zero (see [2] for details). This implies that
A controller solving the local output regulation problem makefsr a small trajectoryw(t) of the exosystem (6), any solution
the outpute tend to zero at least for small initial conditions;(t) of the closed-loop system (5) starting close enough to the
(z(0),w(0)). Without specifying the regiodd x W of ad- origin converges to the solutiai(t) := 7 (w(t)) on the center
missible initial conditions, such solution may not be satisfagnanifold. Thuse(t) = h(z(t), w(t)) — h(r(w(t)), w(t)) =
tory from an engineering point of view. Thus, we come tg (see (8)) and output regulation is attained. This dynamics can
the followingestimation problem: given the closed-loop sys-pe described in a different, yet equivalent way: all solutions of
tem (5) and the exosystem (6), estimate the region of admise closed-loop system (5) starting close enough to the origin
ble initial conditions X x W for which the regulated output converge one to another and among them there is a solution
e(t) = h(z(t),w(t)) tends to zero on solutiong(t), w(t)) z(t) = n(w(t)) on whiche(t) = 0.

starting in X x W. ) .
Such a reformulation suggests a way to estimate the set of

In this paper, we assume that the closed-loop system (5) hasghissible(z(0),w(0)) for which the output regulation oc-
form curs. First, find a sef C R" such that any two solutions
= f(z, B(z,w),w) = F(z)+ a(w). (7) z1(t) andzy(t) of the closed-loop system (7) lying ifi for
. . all ¢ > 0 converge to each othefz;(¢t) — x2(t)] — 0 as
This is the case, for example, for systems of the fam= , _,  \ve call such se€ a convergence set. Second, find
f(2) + Bu+ d(w) in closed-loop with a controller of the form sety c R"*™ of initial conditions ((0), w(0)) such that

u = g(z) + c(w). This assumption is made to simplify thean%trajectory(x(t),w(t)) starting in this set satisfies the con-

subsequent analysis and to make the ideas behind this analaﬁ nsz(t) € C andr(w(t)) € C forall ¢ > 0. Then, by

more transparent. It should be noted that the results preseq];ﬁg properties of the set, any trajectory(«(1), w(t)) start-

in this paper can be extended with slight technical modificmg in ) satisfiesz(t) — m(w(t)) ast — +oo and hence

tions to the case of system (5) with a general right-hand sideé(t) — h(z(t), w(t)) — h(r(w(t),w(t)) = 0. So, the sy
Estimation results are presented in Section 4. In order to avifidan estimate of the set of initial conditios(0),w(0)) for
different formulations for different controllers solving the lowhich output regulation occurs. Below, a lemma that states
cal output regulation problem, the results are based on certaifficient conditions for a sét to be a convergent set is given.
properties of the closed-loop system (7) that are the same for

all the controllers. These properties are (see [10], [2]): Lemmal SupposeC C R™ is a convex set satisfying the

A) The Jacobian matriDF, (0) is Hurwitz, Demidovich condition

B) There exists a mapping = 7(w) defined in a neighbor- T

hoodW of the origin, withm(0) = 0 and such that ilgc) APDE, (@) +DF, (z)P) <0 ®)
97 (w)s(w) = F(r(w))+ a(w), for some positive definite matrix = P7 > 0. Then, any two

0 = h(r(w),w) (®) solutionsz; (t) andz,(t) of system (7) lying i@ for all ¢ > ¢,



satisfy k(wg) := sup |m(w(t, wo))|p, (13)

t>0
—pt =
|21(t) = z2()] < Ce™ T a1 (o) — z2(to)l, (10) \where w(t,wo) is a solution of the exosystem (3) satisfy-

where3 > 0 and C' > 0 do not depend on the particularing w(0,wo) = wo. The functionm(w) allows to estab-
solutionsey (t) and o (t). lish whether the solution (w(t, wy)) lies in a set of the form

C={z:U(x) < R} forallt > 0. The functionk(wy) in-
Lemma 1 is a direct corollary of a result of Demidovich fronglicates how large can the solutiaitw(t, w)) be in the| - | p-

[4], where it was shown that condition (9) implies norm.
. ) The following theorem gives an estimate of the admissible ini-
(x1 = @2)" P(f(21,8) = f(22,1)) < =Blwr — w2[p tial conditions set in the form of a neighborhood of the center

for all #1,20 € C, t € R and for some3 > 0 independent Manifoldz = 7(w).

of the particularzy, x5 and¢. Thus, if at some instarnit, any .
two solutions of system (7)1 (t) andz,(t) lie in C, then the Theorem 1 Consider the closed-loop system (7) and the ex-

functionV (¢) == 1/2]z1(t) — 22(t)|2 satisfies osyst_e_m 3). _Suppps_e for sofe= PT > 0 the Demidovich
condition (9) is satisfied for the sét:= {z : U(z) < R},
ﬂ(t ) < —28V(t.). (11) whereR > 0 and the functiorU (x) satisfies conditiong)-3).
dt >~ i Then, any trajectoryz (), w(t)) starting in the set

This implies (10). V= {(xo,wo): m(wy) <R,

20 = (o) p < 5 (R—m(wo)} (1)

By a proper choice of the matrik > 0 we can guarantee, that
condition (9) is satisfied at least f6ibeing some neighborhood
of the origin. Indeed, sinc®F,(0) is a Hurwitz matrix, we
can find such? > 0 that the matrixPDF,(0) + DF(0)P

is negative definite. By continuiyyDF,(z) + DFZ (z)P is () — w(w(t))] < Ce™?[x(0) — w(w(0))]  (15)
negative definite at least for small Hence, condition (9) is
satisfied fotC being some neighborhood of the origin. B
In practice, it is more convenient to look for a convergent se
C in some parameterized family of sets. So, in the sequel Wie inequalitym(w,) < R in the definition ofY specifies the
assume that such family is given by the expressiéR) = get of admissiblev,. It means that if a solutiom(t) of the
{z € R": U(z) < R}, where the functiol/ (x) satisfies the oy qsystem (3) starts iy, thenm(w(t)) does not leave the set
following three conditions: C = {z : U(z) < R}. The second inequality in the defini-

satisfies

for somes > 0 andC > 0 independent ofz(t), w(t)), and
{t) = h(z(t),w(t)) — 0ast — oc.

1) Uz+y) <Uz)+U() tion of Y specifies for each admissiblg a set of suctx, that
2) 3d>0:U(x)<dz|pVzecR" the solutionz(¢) starting inzo does not leave the convergence
3) Theset {x:U(z) < R} is convex. setC.

) ) _ If we want the closed-loop system (7) and the exosystem (3) to
Property3) is required for Lemma 1 and propertigsand2) — giart in the sep), we need to guarantee that, first, the exosys-
will be required in subsequent results. Examples of such fuRgm, starts in a pointy in the setM = {wo : m(wo) < R}

tions areU/(x) = |z|p andU(z) = 2’|, wherez® is the ith  4nq second, that the closed-loop system (7) starts in the set

component of the vectar. E(wo) = {xo : (xo,wo) € Y)}. As can be seen from Fig. 1,
If the matrix P > 0 is chosen such thaPDF,(0) + the se€(wo) may be different for different values ofy. Thus,
DET(0)P < 0andU(x) = |z|p (or U(z) is any other vector AT

norm onR™) then condition (9) is satisfied fat(R) = {z € &(wn) Ewz)  p=m(w)

R™: U(z) < R} at least for smalR. If F(z) has the form
F(z) = Az + ¢(z?), it is convenient to choosE (z) = |z,
becausePDF, (z) + DFL (x)P depends only on?. In this
case, condition (9) is also satisfied B6(R) = {z € R" :

U(z) = |2%| < R} at least for smaliR. If P > 0 andU(z)

are chosen as described above, we can find the maximal con-
vergence saf(R) from the specified family by increasing the
parametefR until (9) is violated.

Fig.1 The set§ and& (wy): for differentw; andws,,
4 Estimation Results the sets£ (w; ) and€(w,) may be different.

Prior to formulating the main results, we introduce the followthe knowledge ofwg is important. In practice, however, we

ing functions: may not know the value ofvy. For example, if the exosys-
o tem generates disturbances, then, knowing the level of distur-

m(wo) = b Ul (w(t, wo))), (12) pances, we can establish that € M, but we do not know the



exact value ofwg. In order to cope with this difficulty, in the Procedure 1 .

next result we find setX, andW, such that in whatever pointi) Find a positive definite matri® such that

wp € Wy the exosystem is initialised, if the closed-loop system -

starts inzg € X, then the output regulation occurs. Mathe- PDF,(0) + DF, (0)P <0. (16)
matiqa_llly, this means that we find a set of admissible i”it@uchp exists, becausBF,
conditions(xg, wy) in the form of a direct produck, x Wj.
Relation between the se}¢sand X, x Wy is shown in Fig. 2.
Prior to formulating the result, define the functions

(0) is Hurwitz.

ii) Choose a functiod/(z) satisfying conditions)-3) and
find the maximalR such that condition (9) is satisfied for
C = {z : U(z) < R} (see Section 3 for details). Compute

Xox W, 1% z = m(w) the minimal constant such thatU (z) < d|z|p.
] y iii) Compute the functiom(r) := sup,, <,(m(wo) +
a dk(wp)) forincreasingr starting fromr = 0 until a(r) reaches
R in some point.. ComputeR(r) := (R — a(r))/d.
> > Then, for every- € [0,r,) the setEp(R(r)) x B,(r) is an
K estimate of the set of admissible initial conditidas, w).
— The matrix inequality in step) admits multiple positive defi-

Fig.2 Relation between the séfsand Xy x Wj. nite solutionsP. At the moment it is an open question how to
chooseP in order to obtain the best (in some sense) estimates.
Stepiii) is computationally most expensive, since it requires
integration of the exosystem. Yet, in the case of the exosystem
being a linear harmonic oscillator

a(r) == sup (m(woy) + dk(wp))

|wo|<r

d
" R(r) = (R — a(r))/d. thy = Sz, bz = S, (17)

The functiona(r) is nondecreasing ang(0) = 0. Letr, >0 the formula fora(r) simplifies to

be the largest number such thet) < R forall r € [0,r,). _

Suchr. exists due to stability of the trivial solution(t) = 0 or) = sup (Ulmwo)) +dimwo)le).  (18)
and the fact that(0) = 0. Indeed, stability implies that

sup  |w(t,wo)] — 0, asr—0 5 Example
e Let us illustrate the application of the estimation procedure.
and, by continuity ofr(w) Consider the system shown in Fig. 3, called the TORA system

(see [17], [18] for details about this system).

sup k(wg) = sup |w(w(t,wo))|lp — 0, asr— 0.

Due to property?) of the functionU (x) and the definitions of k My,
m(w) andk(w), it holds thatm(w) < dk(w). Hence(r) < (\ I
2dsup|, <, k(wo) — 0 asr — 0. So, the inequalityx(r) < J\/\/\/\_ ._>\.m
R is satisfied at least for small > 0. Hence, there exists the D, P o
largestr,. > 0 such thatx(r) < R forall » € [0,r,). The next
theorem gives estimates of the admissible initial conditions set T&%YW%
in the form of a direct producky x Wj. |_> .
Theorem 2 Under the conditions of Theorem 1, any trajectory F19-3 TORA system/ — cart massk — spring stiffness,
(z(t), w(t)) starting in the seEp(R(r)) x By (r) for anyr € m — eccentric mass; — conFroI torquee — horizontal
[0,r,) satisfies displacementD — disturbance force.
l2(t) — m(w(t))] < CePa(0) — w(w(0))] The control problem is to find a control law for the torque

such that the horizontal displacemer&nds to zero regardless
for somed > 0 andC' > 0 independent ofz(t), w(t)), and of the harmonip disturbance forde qf knowr_1 frequency, put _
e(t) = h(z(t), w(t)) — 0 ast — co. unknown amplitude and phase. This is a disturbance rejection

problem. A tracking problem, in which there is no disturbance

Theorem 2 provides estimatég x W, of the admissible ini- forceD_(t) and the output(t) has _to track a prescribed refer-
ence signal, was solved globally in [12].

tial conditions set. For practical application, it is convenient to
unify all the steps necessary for findidg, = Ep(R(r)) and Incertain coordinates and after some feedback transformations,
Wy = B,,(r) in the following estimation procedure. the TORA system can be described by the following equations



[18] 0.25

T = @ 02

To = —x1+esinxg+ puD .

T3 = T4 (19) = o015

1‘4 = 0, &

e = (M= —esinzg), ot
wheree := /m/(m+ M), u := 1/(kle), A :== le andv is a oo
new control |n_put. 'I_'he disturbance foréeis the output of a T B
linear harmonic oscillator Disturbance levet [N]
w1 = Quwa, e = —Qui, D =uw;. (20)  Figure 1:R(r) andr for the estimate® p(R(r)) x B, (r).

The above control problem is a particular case of the output

regulation problem. For small initial conditiorfs(0),w(0)) Presented: one gives the estimates in the form of a neighbor-
this problem is solved by a controller of the form= c(w) + hoodY C R™™ of the center manifold; another one gives
K (x — w(w)), where the mappings(w) € R* andc(w) € R estimates in the form of a direct produst, x Wy of two

are defined by the formulae neighborhOOdS of the OrigilXo c R"™ and Wy C R™. In
both cases, trajectories starting in the estimated sets tend to the
m(w) == =55 m3(w) := — arcsin(4zt) output-zeroing center manifold uniformly exponentially. The
my(w) = —E2  my(w) = —%, (21) application steps of the last result are unified in an estimation
o procedure. This procedure is illustrated by application to the
B pQ2wr (42 — 2 (w? + wd)) - example of th_e dlstgrbgnce_ rejection problem in the T_ORA Sys-
c(w) == ) (22) tem. Further investigation is needed to make the estimates less
( /Q4e2 — M2w2)3 .
1 conservative.

and the matrixK is such that the closed-loop system has

an asymptotically stable linearization at the origin. Indee%&cknowledgments
for such controller the closed-loop system has the farm
F(z)+a(w) and it satisfies conditiond) andB) with the spec-  This research is supported by the Netherlands Organization for
ified (w). Thus, for all small initial condition$z(0),w(0))  Scientific Research (NWO).

the trajectory(z(t),w(t)) satisfiese(t) — 0 ast — oc.
Let us apply Procedure 1 to estimate this set of admissit]x_?ererences

(2(0),w(0)) for the following values of parameters:= 0.5,

p=0.04,Q=1,K=(12,—4,-8,-5). [1] D. Angeli. “ A Lyapunov approach to incremental stabil-
In Procedure 1, we pick a matriR — P” > 0 such that ity properties."[EEE Trans. on Automatic Contral/, pp.
PDF,(0) + (DF,(0))T P = —Q, whereQ is diagonal matrix 410-421, (2002).

diag(2,8,1,1). For conveniencep is normalized such that 5] c.|. Byrnes, F. Delli Priscoli, A. IsidoriOutput regula-

|[P|| = 1. The functionU(x) is chosenU(z) := |z3|. Such tion of uncertain nonlinear systenBirkhauser: Boston,
choice ofU () is made becausE(z) equals a linear part plus (1997).

a nonlinearity depending ons (see Section 3). Completing

the remaining steps of the procedure, we obtain the estimatg3] C.l. Byrnes, A. Isidori. “Output regulation for nonlinear
of the admissible initial conditions se®p(R(r)) x By (r), systems: an overviewlht. J. Robust Nonlinear Control,
whereR(r) is shown in Fig. 4. Note, that the mapping&w) 10, pp. 323-337, (2000).

andc(w) and, thus, the closed-loop system are defined only fo

lwy| < Q%€/u. For the given values of the system parameter;f
this constraint is given bjw, | < 12.5. The obtained estimates
satisfy this condition. The estimates are rather conservative.
According to simulations, for a fixed level of disturbance
output regulation still occurs far(0) € Ep(£(r)) with B(r) 5] B.p. Demidovich.Lectures on stability theory. Nauka:
at leastt times larger tharR(r). One possible reason for such Moscow, (1967) (in Russian).

conservativeness is a bad choice of the maktixA different

] B.P. Demidovich. The dissipativity of a nonlinear system
of differential equations. Vestnik Moscow State Univier-
sity, ser. matem. mekh., part 16;pp. 19-27, (1961); part
II—1, pp. 3-8, (1962) (in Russian).

choice forP may result in a better estimates. [6] J. Huang, W.J. Rugh, “ On a nonlinear multivariable ser-
vomechanism problemAutomatica26(6), pp. 963-972,
(1990).

6 Conclusions
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Appendix
) o o By definition of k(wy) it holds that|w(wo)|p < k(wp). Sub-

Proof of Theorem 1. Notice, that it is sufficient to show that stityting these inequalities in (23), we obtain — m(wo)|p <
the set) is invariant and that for angz, w) € Y it holds that (R — m(wy))/d. This completes the proof.0]
U(zr) < RandU(m(w)) < R. If this is the case, then for
every(z(t), w(t)) starting in) the solutionse(t) andw(w(t))
belong to the convergence get= {z : U(z) < R} for all
t > 0. Thus, the statement of the theorem follows from Lemma
1.
Let us show that the séf is such that for anyz, w) € Y it
holds thatU (z) < R andU(w(w)) < R. Let(z,w) € Y.
By definition of Y, U(n(w)) < m(w) < R. Successively
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