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Abstract

In this paper, the problem of local output regulation is con-
sidered. The presented results answer the question: given a
controller solving the local output regulation problem, how to
estimate the set of admissible initial conditions for which this
controller makes the regulated output converge to zero. Theo-
retical estimation results and an estimation procedure explain-
ing the application of these results in practice are presented. An
example of the disturbance rejection problem for a mechanical
system (TORA system) is given as an illustration.

1 Introduction

In this paper, we consider the problem of asymptotic regula-
tion of the output of a dynamical system, which is subject to
disturbances generated by an external system. This problem
is known as the output regulation problem. Many problems
in control theory can be considered as particular cases of this
problem: tracking of a class of reference signals, rejecting a
class of disturbances, partial stabilization and controlled syn-
chronization. For nonlinear systems, solutions to thelocal out-
put regulation problem were given in [10, 6]. In [10], neces-
sary and sufficient conditions for the solvability of the problem
in some neighborhood of the origin were obtained and a pro-
cedure for designing a controller that solves the problem was
presented. That paper was followed by publications regarding
the local approximate output regulation problem [7, 8, 15] and
other aspects of the output regulation problem for nonlinear
systems: regulation in the presence of uncertainties, adaptive,
semiglobal and global output regulation (see [2, 3, 11, 14, 9]
and references therein). At the same time, one problem re-
garding thelocal output regulation problem remained open:
given a controller solving the problem insomeneighborhood
of the origin, how to determine (or estimate) this neighborhood
of admissible initial conditions? Without answering this ques-
tion, solutions to the local output regulation problem may not
be satisfactory from an engineering point of view.

One answer to that question was given in [13]. In that paper, a
procedure for estimating the set of admissible initial conditions
was proposed. That result was based on the notion of conver-

gent systems developed by B.P. Demidovich [4, 5]. Roughly, a
convergent system is a system that, being excited by a bounded
signal, has a unique asymptotically stable bounded response.
In this paper, we modify the approach developed in [13] in or-
der to obtain improved estimation results. This work is also
inspired by the results of B.P. Demidovich. More information
related to the notion of convergent systems can be found in
[16], [13] and in the paper [1] on incremental stability of dy-
namical systems.

The paper is organized as follows. In Section 2, we recall the
problem of local output regulation and formulate the problem
of estimating the set of admissible initial conditions. In Sec-
tion 3, we describe the ideas that are used to find the estimates
and formulate a technical result supporting these ideas. Sec-
tion 4 contains the main results on the estimation problem as
well as an explanation of their application in practice given in
the form of an estimation procedure. In Section 5, the proce-
dure is applied to a disturbance rejection problem in the TORA
system (see [17], [18], [12] for details about the TORA sys-
tem). Conclusions are contained in Section 6. The proofs of all
results are given in the Appendix.
The notations used in the paper are the following.AT is the
transpose of matrixA andA−T = (A−1)T . The norm of
a vector is denoted as|x| = (xT x)1/2. For a positive defi-
nite matrix P = P T > 0 we define the vector norm| · |P
as |x|P :=

√
xT Px. An ellipsoid EP (R) is defined by

EP (R) := {x ∈ R
n : |x|P < R}. An open ball is denoted

Bw(r) := {w : |w| < r}. ‖P‖ is the operator norm of the
matrix P induced by the vector norm| · |. By I we denote the
identity matrix. The largest eigenvalue of a symmetric matrix
J = JT is denotedΛ(J). DFx(x) is the Jacobian matrix of
F (x).

2 Estimation problem statement

First, we recall the problem of local output regulation. Follow-
ing [10], consider systems modelled by equations of the form

ẋ = f(x, u, w), (1)

e = h(x,w), (2)

with statex ∈ R
n, inputu ∈ R

p, regulated outpute ∈ R
l and

exogenous inputw ∈ Rm generated by the exosystem

ẇ = s(w). (3)



The exogenous signalw(t) can be viewed as a disturbance in
equation (1) or as a reference signal in (2). It is assumed that
f(0, 0, 0) = 0, h(0, 0) = 0, s(0) = 0; functionsf , h, s are
Ck functions for some largek. We assume that exosystem (3)
is neutrally stable. Neutral stability means that the equilibrium
w = 0 is Lyapunov stable in forward and backward time [3].
An important representative of neutrally stable exosystems is a
linear harmonic oscillator.
The local state-feedback output regulation problem is formu-
lated in the following way. Given a nonlinear system of the
form (1), (2) and a neutrally stable exosystem (3), find, if pos-
sible, a feedbacku = β(x,w), β(0, 0) = 0, such that
A) The system

ẋ = f(x, β(x, 0), 0) (4)

has an asymptotically stable linearization atx = 0,
B) There exists a neighborhoodX×W of (0, 0) such that for
each initial condition(x(0), w(0)) ∈ X × W the solution of

ẋ = f(x, β(x,w), w), (5)

ẇ = s(w) (6)

satisfiese(t) = h(x(t), w(t)) → 0 ast → ∞.

A controller solving the local output regulation problem makes
the outpute tend to zero at least for small initial conditions
(x(0), w(0)). Without specifying the regionX × W of ad-
missible initial conditions, such solution may not be satisfac-
tory from an engineering point of view. Thus, we come to
the followingestimation problem: given the closed-loop sys-
tem (5) and the exosystem (6), estimate the region of admissi-
ble initial conditionsX × W for which the regulated output
e(t) = h(x(t), w(t)) tends to zero on solutions(x(t), w(t))
starting inX × W .

In this paper, we assume that the closed-loop system (5) has the
form

ẋ = f(x, β(x,w), w) =: F (x) + a(w). (7)

This is the case, for example, for systems of the formẋ =
f(x) + Bu + d(w) in closed-loop with a controller of the form
u = g(x) + c(w). This assumption is made to simplify the
subsequent analysis and to make the ideas behind this analysis
more transparent. It should be noted that the results presented
in this paper can be extended with slight technical modifica-
tions to the case of system (5) with a general right-hand side.

Estimation results are presented in Section 4. In order to avoid
different formulations for different controllers solving the lo-
cal output regulation problem, the results are based on certain
properties of the closed-loop system (7) that are the same for
all the controllers. These properties are (see [10], [2]):
A) The Jacobian matrixDFx(0) is Hurwitz,
B) There exists a mappingx = π(w) defined in a neighbor-
hoodW of the origin, withπ(0) = 0 and such that

∂π
∂w (w)s(w) = F (π(w)) + a(w),

0 = h(π(w), w)
(8)

for all w ∈ W.
In fact, a controlleru = β(x,w) solves the local output reg-
ulation problem if and only if the closed-loop system (7) sat-
isfies conditionsA) andB) (see [2] for details). So, we as-
sume that these conditions hold and that the mappingπ(w) is
known. The last assumption is not restrictive, because in many
cases the mappingπ(w) is required for the construction of the
controller.

To simplify the subsequent analysis, it is assumed that the
closed-loop system (7) and the mappingπ(w) are defined glob-
ally for all x ∈ R

n andw ∈ R
m (i.e. W = R

m). If this
assumption does not hold, one should restrict all the subse-
quent results to the setsX ⊂ R

n andW ⊂ R
m for which

F (x) + a(w) andπ(w) are well-defined.

3 Ideas and preliminaries

Before formulating the estimation results, let us first have a
look at the dynamics of the extended closed-loop system (5),
(6) near the origin. Under the neutral stability assumption on
the exosystem (6) and propertiesA) andB) of the closed-loop
system, the manifoldx = π(w) is a locally attractive invariant
center manifold and on this manifold the regulated outpute =
h(x,w) is equal to zero (see [2] for details). This implies that
for a small trajectoryw(t) of the exosystem (6), any solution
x(t) of the closed-loop system (5) starting close enough to the
origin converges to the solution̄x(t) := π(w(t)) on the center
manifold. Thus,e(t) = h(x(t), w(t)) → h(π(w(t)), w(t)) ≡
0 (see (8)) and output regulation is attained. This dynamics can
be described in a different, yet equivalent way: all solutions of
the closed-loop system (5) starting close enough to the origin
converge one to another and among them there is a solution
x̄(t) = π(w(t)) on whiche(t) ≡ 0.

Such a reformulation suggests a way to estimate the set of
admissible(x(0), w(0)) for which the output regulation oc-
curs. First, find a setC ⊂ R

n such that any two solutions
x1(t) andx2(t) of the closed-loop system (7) lying inC for
all t ≥ 0 converge to each other:|x1(t) − x2(t)| → 0 as
t → ∞. We call such setC a convergence set. Second, find
a setY ⊂ R

n+m of initial conditions(x(0), w(0)) such that
any trajectory(x(t), w(t)) starting in this set satisfies the con-
ditions x(t) ∈ C andπ(w(t)) ∈ C for all t ≥ 0. Then, by
the properties of the setC, any trajectory(x(t), w(t)) start-
ing in Y satisfiesx(t) → π(w(t)) as t → +∞ and hence
e(t) = h(x(t), w(t)) → h(π(w(t), w(t)) ≡ 0. So, the setY
is an estimate of the set of initial conditions(x(0), w(0)) for
which output regulation occurs. Below, a lemma that states
sufficient conditions for a setC to be a convergent set is given.

Lemma 1 SupposeC ⊂ R
n is a convex set satisfying the

Demidovich condition

sup
x∈C

Λ(PDFx(x) + DF T
x (x)P ) < 0 (9)

for some positive definite matrixP = P T > 0. Then, any two
solutionsx1(t) andx2(t) of system (7) lying inC for all t ≥ t0



satisfy

|x1(t) − x2(t)| ≤ Cε−βt|x1(t0) − x2(t0)|, (10)

whereβ > 0 and C > 0 do not depend on the particular
solutionsx1(t) andx2(t).

Lemma 1 is a direct corollary of a result of Demidovich from
[4], where it was shown that condition (9) implies

(x1 − x2)
T P (f(x1, t) − f(x2, t)) ≤ −β|x1 − x2|2P

for all x1, x2 ∈ C, t ∈ R and for someβ > 0 independent
of the particularx1, x2 andt. Thus, if at some instantt∗ any
two solutions of system (7)x1(t) andx2(t) lie in C, then the
functionV (t) := 1/2|x1(t) − x2(t)|2P satisfies

dV

dt
(t∗) ≤ −2βV (t∗). (11)

This implies (10).

By a proper choice of the matrixP > 0 we can guarantee, that
condition (9) is satisfied at least forC being some neighborhood
of the origin. Indeed, sinceDFx(0) is a Hurwitz matrix, we
can find suchP > 0 that the matrixPDFx(0) + DF T

x (0)P
is negative definite. By continuity,PDFx(x) + DF T

x (x)P is
negative definite at least for smallx. Hence, condition (9) is
satisfied forC being some neighborhood of the origin.
In practice, it is more convenient to look for a convergent set
C in some parameterized family of sets. So, in the sequel we
assume that such family is given by the expressionC(R) =
{x ∈ R

n : U(x) < R}, where the functionU(x) satisfies the
following three conditions:

1) U(x + y) ≤ U(x) + U(y)
2) ∃ d > 0 : U(x) ≤ d|x|P ∀ x ∈ R

n

3) The set {x : U(x) < R} is convex.

Property3) is required for Lemma 1 and properties1) and2)
will be required in subsequent results. Examples of such func-
tions areU(x) = |x|P andU(x) = |xi|, wherexi is the i-th
component of the vectorx.

If the matrix P > 0 is chosen such thatPDFx(0) +
DFT

x (0)P < 0 andU(x) = |x|P (or U(x) is any other vector
norm onR

n) then condition (9) is satisfied forC(R) = {x ∈
R

n : U(x) < R} at least for smallR. If F (x) has the form
F (x) = Ax + φ(xi), it is convenient to chooseU(x) = |xi|,
becausePDFx(x) + DF T

x (x)P depends only onxi. In this
case, condition (9) is also satisfied forC(R) = {x ∈ R

n :
U(x) = |xi| < R} at least for smallR. If P > 0 andU(x)
are chosen as described above, we can find the maximal con-
vergence setC(R) from the specified family by increasing the
parameterR until (9) is violated.

4 Estimation Results

Prior to formulating the main results, we introduce the follow-
ing functions:

m(w0) := sup
t≥0

U(π(w(t, w0))), (12)

k(w0) := sup
t≥0

|π(w(t, w0))|P , (13)

where w(t, w0) is a solution of the exosystem (3) satisfy-
ing w(0, w0) = w0. The functionm(w0) allows to estab-
lish whether the solutionπ(w(t, w0)) lies in a set of the form
C = {x : U(x) < R} for all t ≥ 0. The functionk(w0) in-
dicates how large can the solutionπ(w(t, w0)) be in the| · |P -
norm.
The following theorem gives an estimate of the admissible ini-
tial conditions set in the form of a neighborhood of the center
manifoldx = π(w).

Theorem 1 Consider the closed-loop system (7) and the ex-
osystem (3). Suppose for someP = P T > 0 the Demidovich
condition (9) is satisfied for the setC := {x : U(x) < R},
whereR > 0 and the functionU(x) satisfies conditions1)-3).
Then, any trajectory(x(t), w(t)) starting in the set

Y := { (x0, w0) : m(w0) < R,

|x0 − π(w0)|P <
1

d
(R− m(w0))} (14)

satisfies

|x(t) − π(w(t))| ≤ Ce−βt|x(0) − π(w(0))| (15)

for someβ > 0 andC > 0 independent of(x(t), w(t)), and
e(t) = h(x(t), w(t)) → 0 ast → ∞.

The inequalitym(w0) < R in the definition ofY specifies the
set of admissiblew0. It means that if a solutionw(t) of the
exosystem (3) starts inw0, thenπ(w(t)) does not leave the set
C = {x : U(x) < R}. The second inequality in the defini-
tion of Y specifies for each admissiblew0 a set of suchx0 that
the solutionx(t) starting inx0 does not leave the convergence
setC.
If we want the closed-loop system (7) and the exosystem (3) to
start in the setY, we need to guarantee that, first, the exosys-
tem starts in a pointw0 in the setM = {w0 : m(w0) < R}
and, second, that the closed-loop system (7) starts in the set
E(w0) = {x0 : (x0, w0) ∈ Y)}. As can be seen from Fig. 1,
the setE(w0) may be different for different values ofw0. Thus,
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Fig.1 The setsY andE(w0): for differentw1 andw2,
the setsE(w1) andE(w2) may be different.

the knowledge ofw0 is important. In practice, however, we
may not know the value ofw0. For example, if the exosys-
tem generates disturbances, then, knowing the level of distur-
bances, we can establish thatw0 ∈ M, but we do not know the



exact value ofw0. In order to cope with this difficulty, in the
next result we find setsX0 andW0 such that in whatever point
w0 ∈ W0 the exosystem is initialised, if the closed-loop system
starts inx0 ∈ X0, then the output regulation occurs. Mathe-
matically, this means that we find a set of admissible initial
conditions(x0, w0) in the form of a direct productX0 × W0.
Relation between the setsY andX0 × W0 is shown in Fig. 2.
Prior to formulating the result, define the functions
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Fig.2 Relation between the setsY andX0 × W0.

α(r) := sup
|w0|≤r

(m(w0) + dk(w0))

and
R(r) := (R− α(r))/d.

The functionα(r) is nondecreasing andα(0) = 0. Let r∗ > 0
be the largest number such thatα(r) < R for all r ∈ [0, r∗).
Suchr∗ exists due to stability of the trivial solutionw(t) ≡ 0
and the fact thatπ(0) = 0. Indeed, stability implies that

sup
|w0|≤r, t≥0

|w(t, w0)| → 0, asr → 0

and, by continuity ofπ(w),

sup
|w0|≤r

k(w0) = sup
|w0|≤r, t≥0

|π(w(t, w0))|P → 0, asr → 0.

Due to property2) of the functionU(x) and the definitions of
m(w) andk(w), it holds thatm(w) ≤ dk(w). Hence,α(r) ≤
2d sup|w0|≤r k(w0) → 0 asr → 0. So, the inequalityα(r) <
R is satisfied at least for smallr > 0. Hence, there exists the
largestr∗ > 0 such thatα(r) < R for all r ∈ [0, r∗). The next
theorem gives estimates of the admissible initial conditions set
in the form of a direct productX0 × W0.

Theorem 2 Under the conditions of Theorem 1, any trajectory
(x(t), w(t)) starting in the setEP (R(r))×Bw(r) for anyr ∈
[0, r∗) satisfies

|x(t) − π(w(t))| ≤ Ce−βt|x(0) − π(w(0))|

for someβ > 0 andC > 0 independent of(x(t), w(t)), and
e(t) = h(x(t), w(t)) → 0 ast → ∞.

Theorem 2 provides estimatesX0 × W0 of the admissible ini-
tial conditions set. For practical application, it is convenient to
unify all the steps necessary for findingX0 = EP (R(r)) and
W0 = Bw(r) in the following estimation procedure.

Procedure 1 .
i) Find a positive definite matrixP such that

PDFx(0) + DF T
x (0)P < 0. (16)

SuchP exists, becauseDFx(0) is Hurwitz.
ii) Choose a functionU(x) satisfying conditions1)–3) and
find the maximalR such that condition (9) is satisfied for
C = {x : U(x) < R} (see Section 3 for details). Compute
the minimal constantd such thatU(x) ≤ d|x|P .
iii) Compute the functionα(r) := sup|w0|≤r(m(w0) +
dk(w0)) for increasingr starting fromr = 0 until α(r) reaches
R in some pointr∗. ComputeR(r) := (R− α(r))/d.
Then, for everyr ∈ [0, r∗) the setEP (R(r)) × Bw(r) is an
estimate of the set of admissible initial conditions(x0, w0).

The matrix inequality in stepi) admits multiple positive defi-
nite solutionsP . At the moment it is an open question how to
chooseP in order to obtain the best (in some sense) estimates.
Stepiii) is computationally most expensive, since it requires
integration of the exosystem. Yet, in the case of the exosystem
being a linear harmonic oscillator

ẇ1 = Ωw2, ẇ2 = −Ωw1, (17)

the formula forα(r) simplifies to

α(r) = sup
|w0|≤r

(U(π(w0)) + d|π(w0)|P ). (18)

5 Example

Let us illustrate the application of the estimation procedure.
Consider the system shown in Fig. 3, called the TORA system
(see [17], [18] for details about this system).
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Fig.3 TORA system:M – cart mass,k – spring stiffness,
m – eccentric mass,u – control torque,e – horizontal

displacement,D – disturbance force.

The control problem is to find a control law for the torqueu
such that the horizontal displacemente tends to zero regardless
of the harmonic disturbance forceD of known frequency, but
unknown amplitude and phase. This is a disturbance rejection
problem. A tracking problem, in which there is no disturbance
forceD(t) and the outpute(t) has to track a prescribed refer-
ence signal, was solved globally in [12].

In certain coordinates and after some feedback transformations,
the TORA system can be described by the following equations



[18]:
ẋ1 = x2

ẋ2 = −x1 + ε sin x3 + µD
ẋ3 = x4

ẋ4 = v,
e = (λ(x1 − ε sin x3),

(19)

whereε :=
√

m/(m + M), µ := 1/(klε), λ := lε andv is a
new control input. The disturbance forceD is the output of a
linear harmonic oscillator

ẇ1 = Ωw2, ẇ2 = −Ωw1, D = w1. (20)

The above control problem is a particular case of the output
regulation problem. For small initial conditions(x(0), w(0))
this problem is solved by a controller of the formv = c(w) +
K(x − π(w)), where the mappingsπ(w) ∈ R

4 andc(w) ∈ R

are defined by the formulae

π1(w) := −µw1

Ω2 π3(w) := − arcsin(µw1

Ω2ε )

π2(w) := −µw2

Ω
π4(w) := − µΩw2√

Ω4ε2−µ2w2

1

, (21)

c(w) :=
µΩ2w1(Ω

4ε2 − µ2(w2
1 + w2

2))

(
√

Ω4ε2 − µ2w2
1)

3
, (22)

and the matrixK is such that the closed-loop system has
an asymptotically stable linearization at the origin. Indeed,
for such controller the closed-loop system has the formẋ =
F (x)+a(w) and it satisfies conditionsA) andB) with the spec-
ified π(w). Thus, for all small initial conditions(x(0), w(0))
the trajectory(x(t), w(t)) satisfiese(t) → 0 as t → ∞.
Let us apply Procedure 1 to estimate this set of admissible
(x(0), w(0)) for the following values of parameters:ε = 0.5,
µ = 0.04, Ω = 1, K = (12,−4,−8,−5).

In Procedure 1, we pick a matrixP = P T > 0 such that
PDFx(0) + (DFx(0))T P = −Q, whereQ is diagonal matrix
diag(2, 8, 1, 1). For convenience,P is normalized such that
‖P‖ = 1. The functionU(x) is chosenU(x) := |x3|. Such
choice ofU(x) is made becauseF (x) equals a linear part plus
a nonlinearity depending onx3 (see Section 3). Completing
the remaining steps of the procedure, we obtain the estimates
of the admissible initial conditions set:EP (R(r)) × Bw(r),
whereR(r) is shown in Fig. 4. Note, that the mappingsπ(w)
andc(w) and, thus, the closed-loop system are defined only for
|w1| < Ω2ε/µ. For the given values of the system parameters
this constraint is given by|w1| < 12.5. The obtained estimates
satisfy this condition. The estimates are rather conservative.
According to simulations, for a fixed level of disturbancer,
output regulation still occurs forx(0) ∈ EP (R̄(r)) with R̄(r)
at least4 times larger thanR(r). One possible reason for such
conservativeness is a bad choice of the matrixP . A different
choice forP may result in a better estimates.

6 Conclusions
In this paper, we have considered the problem of estimating the
set of admissible initial conditions for a solution to the local
output regulation problem. Two estimation results have been
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Figure 1:R(r) andr for the estimatesEP (R(r)) × Bw(r).

presented: one gives the estimates in the form of a neighbor-
hoodY ⊂ R

n+m of the center manifold; another one gives
estimates in the form of a direct productX0 × W0 of two
neighborhoods of the originX0 ⊂ R

n and W0 ⊂ R
m. In

both cases, trajectories starting in the estimated sets tend to the
output-zeroing center manifold uniformly exponentially. The
application steps of the last result are unified in an estimation
procedure. This procedure is illustrated by application to the
example of the disturbance rejection problem in the TORA sys-
tem. Further investigation is needed to make the estimates less
conservative.
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Appendix

Proof of Theorem 1. Notice, that it is sufficient to show that
the setY is invariant and that for any(x,w) ∈ Y it holds that
U(x) < R andU(π(w)) < R. If this is the case, then for
every(x(t), w(t)) starting inY the solutionsx(t) andπ(w(t))
belong to the convergence setC = {x : U(x) < R} for all
t ≥ 0. Thus, the statement of the theorem follows from Lemma
1.
Let us show that the setY is such that for any(x,w) ∈ Y it
holds thatU(x) < R andU(π(w)) < R. Let (x,w) ∈ Y.
By definition of Y, U(π(w)) ≤ m(w) < R. Successively

applying properties 1) and 2) of the functionU(x) and the def-
inition of Y, we obtain:U(x) ≤ U(π(w)) + U(x − π(w)) ≤
U(π(w)) + d|x − π(w)|P < m(w) + R− m(w) = R.

The invariance ofY is proved by contradiction. Let(x0, w0) ∈
Y and suppose thatt1 > 0 is the first instant when the trajec-
tory (x(t), w(t)), starting in(x0, w0), leaves the setY. This is
equivalent to the following two statements:

|x(t) − π(w(t))|P <
1

d
(R− m(w(t))) ∀ t ∈ [0, t1),

|x(t1) − π(w(t1))|P =
1

d
(R− m(w(t1))).

Sincem(w(t)) ≤ m(w0) < R for all t ≥ 0, we obtain

|x(t1) − π(w(t1))|P ≥ 1

d
(R− m(w0)).

Thus, the functionV (t) = 1/2|x(t) − π(w(t))|2P satisfies the
inequality:V (0) < V (t1). Necessarily, there exists a time in-
stantt∗ ∈ (0, t1) such that the derivative ofV (t) is positive at
t∗: dV/dt(t∗) > 0. Notice, that the setC = {x : U(x) <
R} satisfies the conditions of Lemma 1 and bothx(t∗) and
π(w(t∗)) belong to this set. Hence, by Lemma 1 (see formula
(11)) dV/dt(t∗) ≤ −2βV (t∗) ≤ 0. Thus, we come to a con-
tradiction. So, the setY is indeed invariant. This completes the
proof. �

Proof of Theorem 2. It is sufficient to show thatEP (R(r)) ×
Bw(r) ⊂ Y for anyr ∈ [0, r∗). Then, the statement of Theo-
rem 2 follows from Theorem 1.
Supposex0 ∈ EP (R(r)) and w0 ∈ Bw(r) for some fixed
r ∈ [0, r∗). According to the definition ofY, we first need
to show thatm(w0) < R. By the definition ofα(r) and the
choice ofw0, it holds thatm(w0) + dk(w0) ≤ α(r). Thus,
m(w0) ≤ α(r) and, by the choice ofr, α(r) < R. This im-
pliesm(w0) < R.
Second, we show that|x0 − π(w0)|P < (R− m(w0))/d. The
triangle inequality implies

|x0 − π(w0)|P ≤ |x0|P + |π(w0)|P . (23)

By the choice ofx0 and by the definition ofR(r),

|x0|P < R(r) = (R− α(r))/d
= (R− sup|w|≤r(m(w) + dk(w)))/d

≤ (R− m(w0))/d − k(w0).

By definition ofk(w0) it holds that|π(w0)|P ≤ k(w0). Sub-
stituting these inequalities in (23), we obtain|x0 − π(w0)|P <
(R− m(w0))/d. This completes the proof.�
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