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Abstract

This paper discusses singular value analysis of Hankel opera-
tors for both continuous-time and discrete-time general nonlin-
ear systems. Singular value analysis clarifies the gain structure
of a given operator. Here it is proven that singular value anal-
ysis of smooth Hankel operators defined on Hilbert spaces can
be characterized by simple equations in terms of their states. A
balancing and model reduction procedure is derived based on
it. In particular, when the proposed model reduction method
is applied to continuous-time nonlinear systems, several gain
properties such as Hankel norm, controllability and observabil-
ity functions are preserved.

1 Introduction

A nonlinear extension of the linear state-space concept of bal-
anced realizations has been introduced in [11], mainly based
on studying the past input energy and the future output en-
ergy. Since then, many results on state-space balancing, modi-
fications, computational issues for model reduction and related
minimality considerations for nonlinear systems have appeared
in the literature, e.g. [5, 6, 9, 12]. Further, the relation of
the state-space notion of balancing for nonlinear systems with
the nonlinear Hankel operator has been considered, see e.g.
[5, 13, 12]. In particular, singular value functions [11] which
are nonlinear state-space extension of the Hankel singular val-
ues in the linear case play an important role in the nonlinear
Hankel theory. It has been shown that singular value analy-
sis of nonlinear Hankel operators can derive natural nonlinear
generalization of balanced realization of input-affine nonlinear
state-space systems [1, 2]. It also provides some beautiful in-
variance properties to the corresponding model reduction pro-
cedure [3], e.g., the Hankel norm of the target nonlinear system
is preserved under model reduction.

On the other hand, recently a balancing method for discrete-
time nonlinear systems was investigated [14] and a result on
computation of controllability and observability functions of
discrete-time nonlinear systems has been reported in [7]. How-
ever, typical discrete-time systems are not input-affine and the
results developed for continuous-time systems are not directly

applicable to discrete-time systems. The relationship between
input-output behavior and the state-space balancing was quite
unclear for discrete-time systems so far. Since the authors’
former result [1] was strongly dependent on continuous-time
input-affine state-space realizations, it cannot handle general
nonlinear systems such as discrete-time systems nor input-non-
affine ones.

The main objective of this paper is to provide a basic frame-
work for singular value analysis of general nonlinear Hankel
operators which does not require any specific state-space re-
alization of the target system. This framework clarifies an
algebraic characterization of the singular value structure of
the Hankel operators by only using the input-output proper-
ties. This characterization derives a concrete balancing proce-
dures based on a more limited technique with our new input-
output property which is now applicable to both continuous-
time and discrete-time input-non-affine nonlinear state-space
systems. Furthermore, we derive a model reduction procedure
for continuous-time input-non-affine nonlinear systems where
the gain properties such as controllability and observability
functions, singular value functions and the Hankel norm of the
system are preserved. It is also expected that this framework
can be utilized for balancing and model reduction for more
general systems such as infinite dimensional systems since the
proposed approach can handle any smooth operators on Hilbert
spaces.

2 Problem setting

This section explains the problem setting for singular value
analysis of nonlinear Hankel operators, which is the basic
framework for balancing and model reduction of nonlinear con-
trol systems.

2.1 Hankel operator

Let us consider a nonlinear Hankel operator
�

: U → Y de-
fined on Hilbert spaces U and Y . Here we suppose that

�
can

be decomposed as �
= � ◦ � (1)

with the controllability operator � : U → X and the observ-
ability operator � : X → Y where � is surjective and X is also
a Hilbert space. Typical examples of

�
are related to the fol-

lowing dynamical systems. See [2] for the details.



Example 1 Consider an asymptotically stable finite dimen-
sional continuous-time linear system

{

ẋ = Ax+Bu
y = Cx+Du .

It’s controllability operator � : Lm
2 (R+) → R

n and observabil-
ity operator � : R

n → Lp
2(R+) are defined by

x0 = � (u) :=
∫ ∞

0
eAτ Bu(τ)dτ

y = � (x0) := CeAtx0.

Its Hankel operator is given by the composition (1) with U =
Lm

2 (R+), X = R
n and Y = Lp

2(R+).

Example 2 Consider an L2-stable finite dimensional
continuous-time nonlinear system

{

ẋ = f (x,u, t)
y = h(x,u, t) .

It’s controllability operator � : Lm
2 (R+) → R

n and observabil-
ity operator � : R

n → Lp
2(R+) are defined by

x0 = � (u) :
{

ẋ = − f (x,u, t) x(∞) = 0
x0 = x(0)

(2)

y = � (x0) :
{

ẋ(t) = f (x,0, t) x(0) = x0

y = h(x,0, t)
. (3)

Its Hankel operator is given by the composition (1) with U =
Lm

2 (R+), X = R
n and Y = Lp

2(R+).

Example 3 Consider an `2-stable finite dimensional discrete-
time nonlinear system

{

x(t +1) = f (x(t),u(t), t)
y(t) = h(x(t),u(t), t) .

It’s controllability operator � : `m
2 (Z+)→R

n and observability
operator � : R

n → `p
2(Z+) are defined by

x0 = � (u) :
{

x(t −1) = f (x(t),u(t), t) x(∞) = 0
x0 = x(0)

y = � (x0) :
{

x(t +1) = f (x(t),0, t) x(0) = x0

y(t) = h(x(t),0, t)
.

Its Hankel operator is given by the composition (1) with U =
Lm

2 (Z+), X = R
n and Y = Lp

2(Z+).

Here we investigate the singular value structure of Hankel op-
erators which is a generalized version of the results in [1]. This
investigation will derive a balancing and model reduction pro-
cedure which are applicable to a much wider class of nonlinear
systems such as time-varying systems, input-non-affine sys-
tems, discrete-time systems.

The controllability and observability functions Lc : X → R+

and Lo : X → R+ with respect to the Hankel operator
�

given
in (1) are defined by

Lc(x0) := inf�
(u)=x0
u∈U

1
2
‖u‖2 (4)

Lo(x0) :=
1
2
‖ � (x0)‖2. (5)

If the pseudo-inverse � † : X →U of � : U → X defined by

� †(x0) := arg inf�
(u)=x0
u∈U

‖u‖ (6)

exists, then Lc can be written as

Lc(x0) =
1
2
‖ � †(x0)‖2.

2.2 Singular value analysis of nonlinear operators

The main objective of this paper is to investigate the gain struc-
ture of the Hankel operator

�
, i.e., to examine

ρmax(c) := sup
‖u‖=c

‖
�

(u)‖

‖u‖

vmax(c) := arg sup
‖u‖=c

‖
�

(u)‖

‖u‖
.

We add the constraint ‖u‖= c because we are interested in the
maximizing input for each input magnitude.

Here we suppose the Hankel operator
�

is (Fréchet) dif-
ferentiable. Since vmax is the stationary (critical) points of
(‖

�
(u)‖/‖u‖), v = vmax needs to satisfy

d
(

‖
�

(u)‖

‖u‖

)

(v) = 0 subj. to ‖v‖ = c. (7)

Actually calculating the derivative of the first equation in (7),
we obtain

0 = d
(

‖ � (u)‖

‖u‖

)

(v)

=
‖u‖ ·d(‖ � (u)‖)(du)−‖ � (u)‖ ·d(‖u‖)(du)

‖u‖2

=
(‖u‖/‖ � (u)‖)〈 � (u),d � (u)(du)〉− (‖ � (u)‖/‖u‖)〈u,du〉

‖u‖2

=
(‖u‖/‖ � (u)‖)〈(d � (u))∗◦ � (u),du〉− (‖ � (u)‖/‖u‖)〈u,du〉

‖u‖2

=
〈(d � (u))∗ ◦ � (u)− (‖ � (u)‖/‖u‖)u,du〉

‖u‖4 · ‖ � (u)‖
. (8)

On the other hand, the constraint in (7) reduces to

〈u,du〉= 0.

Hence we can rewrite the problem (7) into

〈(d
�

(v))∗ ◦
�

(v)− (‖
�

(v)‖/‖v‖)v,du〉 = 0
for ∀du s.t. 〈v,du〉 = 0.

Finally, we can obtain an alternative formulation of (7) as fol-
lows. The proof is straightforwardly obtained from the above
discussion.



Proposition 1 Suppose the Hankel operator
�

: U → Y is
Fréchet differentiable. Then a v ∈ U satisfies (7) if and only
if it satisfies ‖v‖ = c and

(d
�

(v))∗ ◦
�

(v) = λ v, λ ∈ R. (9)

Here Equation (9) characterizes all stationary (critical) inputs
as well as the maximizing input vmax. For the objective of Han-
kel theory in control, we are only interested in such stationary
inputs in the image space of � †, see [1] for a detailed discus-
sion on this matter. Therefore what we have to solve here is
Equation (9) and

v ∈ Im � †. (10)

We call investigation of the solution of the above equation “sin-
gular value analysis of

�
”. Here the solution v is “a singular

vector” and the corresponding scalar ρ defined by

ρ =
‖

�
(v)‖

‖v‖
(11)

is called a “singular value” of
�

.

It was proven in our former paper [1] that the singular value
structure (9) can be characterized by an algebraic equation us-
ing Lc and Lo if the target system is an input-affine continuous-
time nonlinear system. However, this result were not di-
rectly applicable to general (neither non-affine nor discrete-
time) nonlinear systems so far.

3 Singular value analysis of Hankel operators

The objective of this section is to provide the solution of Equa-
tions (9) and (10) for singular value analysis of the Hankel op-
erator

�
. Here we assume the smoothness of the operators � ,

� and � †.

Assumption A1 the operators � : U → X , � : X → Y and � † :
X →U exist and are differentiable.

Under Assumption A1 we can obtain an alternative characteri-
zation of singular value analysis of the Hankel operator on the
signal space X which is much simpler than (9).

First of all, in order to characterize the signal space satisfying
the constraint (10), let us consider the properties of the pseudo-
inverse operator � †. By Assumption A1, both � and � † exist
and are smooth. Hence the constraint (10) can be characterized
by singular value analysis of � † ◦ � . That is,

argsup
u∈U

‖ � † ◦ � (u)‖

‖u‖

with the maximum singular value 1 characterizes the elements
of Im � †, because

‖ � † ◦ � (u)‖

‖u‖
= 1 u ∈ Im � †

‖ � † ◦ � (u)‖

‖u‖
< 1 otherwise

hold for the definition of � † in (6).

By the argument similar to Equation (8) we know that Equation
(10) reduces to singular value analysis

(d( � † ◦ � )(v))∗ ◦ � † ◦ � (v) =
‖ � † ◦ � (v)‖

‖v‖
v = v

since the maximum singular value is 1. This turns out to be

(d � (v))∗ ◦ (d � †( � (v)))∗ ◦ � † ◦ � (v) = v. (12)

On the other hand, the decomposition of
�

in (1) implies that
the singular value analysis equation (9) can be written as

(d � (v))∗ ◦ (d � ( � (v)))∗ ◦ � ◦ � (v) = λ v. (13)

Comparing (12) and (13), we obtain a sufficient condition to
characterize the singular structure of

�
as

(d � ( � (v)))∗ ◦ � ◦ � (v) = λ (d � †( � (v)))∗ ◦ � † ◦ � (v) (14)

using the linearity of the operator (d � (v))∗. Defining the inter-
mediate signal ξ := � (v), we can obtain a simpler expression

(d � (ξ ))∗ ◦ ( � (ξ )) = λ (d � †(ξ ))∗ ◦ ( � †(ξ )). (15)

Recall that the derivative of the controllability and observabil-
ity functions Lc and Lo defined in (4) and (5) are given by

dLc(x)(dx) = 〈 � †(x),d � †(x)(dx)〉 = 〈(d � †(x))∗◦( � †(x)),dx〉 (16)

dLo(x)(dx) = 〈 � (x),d � (x)(dx)〉 = 〈(d � (x))∗◦( � (x)),dx〉. (17)

Therefore Equation (9) reduces down to

dLo(ξ ) = λ dLc(ξ ).

Finally we can obtain the following result which is the general-
ized version of the result in [1] in the sense that it is applicable
to a larger class of input-state-output systems.

Theorem 1 Suppose that Assumption A1 holds. Assume more-
over that there exist λ ∈ R and ξ ∈ X satisfying

dLo(ξ ) = λ dLc(ξ ). (18)

Then v ∈U defined by

v := � †(ξ ) (19)

satisfies the equation for singular value analysis of
�

(d
�

(v))∗ ◦
�

(v) = λ v. (20)

Proof. Suppose ξ ∈ X is the solution of Equation (18). Then
obviously it satisfies the condition (15) by the relations (16) and
(17). Note that we can define the corresponding input v ∈U by
(19). Then v has to be the solution of (12) because it is an
element of the signal space Im � †. Equations (12) and (14)



imply it also satisfies (13). That is, Equation (20) holds. This
completes the proof. 2

Note that the corresponding singular value ρ defined in (11) is
given by

ρ =
‖

�
(v)‖

‖v‖
=

‖ � ◦ � ◦ � †(ξ )‖

‖ � †(ξ )‖
=

‖ � (ξ )‖

‖ � †(ξ )‖

=

√

(1/2)‖ � (ξ )‖2

(1/2)‖ � †(ξ )‖2 =

√

Lo(ξ )

Lc(ξ )
.

In particular, if we can characterize all the solutions ξi’s of
(18) and let ρi’s denote the corresponding singular values, then
clearly we obtain the property that the Hankel norm, which is
the gain of the Hankel operator, coincides with the maximum
singular value. That is,

sup
u∈U
u6=0

‖
�

(u)‖

‖u‖
= sup

i
ξi

ρi|ξ=ξi
.

Example 4 Suppose that our target system is the linear dynam-
ical system given in Example 1. Then the solution of singu-
lar value analysis of the corresponding Hankel operator can be
characterized by

ξ TQ = λ ξ TP−1

with the controllability and observability Gramians P and Q,
which is equivalent to

PQ ξ = λ ξ .

That is, ξ is the eigenvector of PQ and the solution set of ξ
plays the role of the coordinate axes of the balanced realization.
Furthermore, the singular value ρ coincides with the Hankel
singular values (square root of the eigenvalues of PQ).

Example 5 Suppose that our target system is the dynamical
system given in Example 2 or 3. Then the solution of singu-
lar value analysis of the corresponding Hankel operator can be
characterized by an algebraic equation

∂Lo

∂x
(ξ ) = λ

∂Lc

∂x
(ξ ). (21)

Similarly to the linear case, the solution set of ξ plays the role
of the axes of the balanced coordinates.

Please note that we do not require any state-space realization of
any operator here. So Theorem 1 is applicable to very general
nonlinear systems including both continuous and discontinuous
both input-affine and input-non-affine dynamical system.

4 Balanced realization and model reduction

The result on the singular value analysis of Hankel operators
given in Theorem 1 allows one to obtain the balanced realiza-
tion of both continuous-time and discrete-time input-non-affine
nonlinear systems. We can also apply the model reduction pro-
cedure via balanced truncation technique [11].

4.1 Input-normal/output-diagonal balancing

If the intermediate signal space X = R
n which is the typical

case for normal dynamical systems, the condition (18) reduces
to (21) as shown in Example 5. In this case, we can apply the
(input-normal) balancing procedure given in [3]. Here we need
to employ the following assumption.

Assumption A2 Suppose that X = R
n, that (∂ 2Lc(x)/∂x2)(0)

and (∂ 2Lo(x)/∂x2)(0) are positive definite and that the eigen-
values of ((∂ 2Lc/∂x2)(0))−1((∂ 2Lo/∂x2)(0)) are distinct.

Under Assumption A2, we can prove the existence of n inde-
pendent solutions ξi’s of (18) (or (21)).

Theorem 2 Consider the Hankel operator
�

in (1). Sup-
pose that Assumptions A1 and A2 hold. Then there exists a
neighborhood S0 ⊂ R of 0, n smooth functions ρi : S0 → R+’s,
i ∈ {1,2, . . . ,n} such that

min{ρi(s),ρi(−s)} ≥ max{ρi+1(s),ρi+1(−s)}

holds for all s ∈ S0 and all i ∈ {1,2, . . . ,n− 1} and that there
exist n distinct smooth curves ξi : S0 → X satisfying ξi(0) = 0
and

Lc(ξi(s)) =
s2

2
, Lo(ξi(s)) =

ρi
2(s) s2

2
∂Lo

∂x
(ξi(s)) = λi(s)

∂Lc

∂x
(ξi(s))

with

λi(s) := ρi
2(s)+

s
2

dρi
2(s)

ds
.

In particular, if S0 = R, then

sup
u∈U
u6=0

‖
�

(u)‖

‖u‖
= sup

s∈S0

ρ1(s).

Proof. The proof is straightforwardly obtained from those of
Theorems 6 and 7 in [2] which is based on Brouwer’s fixed
point theorem [8]. 2

Here the functions ρi’s are called axis singular value functions
and they are the “singular values” of the corresponding Han-
kel operator

�
indeed. Using Theorem 2 recursively, we can

obtain the following input-normal/output-diagonal realization
whose axes coincide with the solutions ξi’s in Theorem 2.

Theorem 3 Consider the Hankel operator
�

in (1). Suppose
that Assumptions A1 and A2 hold. Then there exists a neighbor-
hood X0 ⊂ X of 0 and a coordinate transformation x = Φ(z),
Φ(0) = 0, converting the system into an input-normal/output-
diagonal form, i.e. there exist n smooth functions τi : X0 → R,
ρi : S0 → R+ satisfying

Lc(Φ(z)) =
1
2

zTz

Lo(Φ(z)) =
1
2

zTdiag(τ1(z), . . . ,τn(z)) z



such that

zi = 0 ⇔
∂Lc(Φ(z))

∂ zi
= 0 ⇔

∂Lo(Φ(z))
∂ zi

= 0 (22)

holds for all i ∈ {1,2, . . . ,n} on X0. Furthermore

τi(0, . . . ,0,
i
z̆i,0, . . . ,0) = ρ2

i (zi)

∂τi

∂ z
(0, . . . ,0,

i
z̆i,0, . . . ,0) = (0, . . . ,0,

i
˘dρ2

i (zi)

dzi
,0, . . . ,0)

holds for all i ∈ {1,2, . . . ,n}. Here the notation
i
˘(·) denotes the

i-th element of a given vector. In particular, if X0 = R
n, then

sup
u∈U
u6=0

‖
�

(u)‖

‖u‖
= sup

z1∈R

√

τ1(z1,0, . . . ,0).

Proof. The proof is straightforwardly obtained from that of
Theorem 8 in [2]. 2

In this section, we have assumed that the system has a finite-
dimensional state-space (which is not assumed in Section 3).
This means the balancing procedure given in Theorems 2 and
3 are applicable to any finite-dimensional state-space systems
as given in Examples 1, 2 and 3. This result does not even
require the ordinary dynamics of the system indeed.

4.2 Model reduction for dynamical systems

Here we will discuss model reduction procedure based on the
balanced realization given in Theorem 3 for input-non-affine
systems. To this end we need to employ dynamics as given in
Example 2.

Let us now suppose that Assumptions A1 and A2 hold and that
we already have the coordinate transformation z = Φ(x) for the
balanced realization in Theorem 3. Moreover, we employ the
following setting.

Assumption A3 Suppose that the Hankel operator
�

is con-
structed via the procedure in Example 2 from a time-invariant
continuous-time nonlinear system

{

ẋ = f (x,u)
y = h(x,u)

.

Let us consider the case

min{ρk(zk),ρk(−zk)} > max{ρk+1(zk+1),ρk+1(−zk+1)}
(23)

holds for all z ∈ Φ−1(X0). Then the state variables z1, . . . ,zk
are more important in terms of the Hankel operator than those
zk+1, . . . ,zn due to the ordering of the axis singular value func-
tions ρi’s.

Divide the coordinates into two parts corresponding to the di-
vision (23) as

z = (za,zb) ∈ R
n

za := (z1, . . . ,zk) ∈ R
k

zb := (zk+1, . . . ,zn) ∈ R
n−k

f z(z,u) :=
(

f a(z,u)
f b(z,u)

)

:=
∂Φ−1(x)

∂x

∣

∣

∣

∣

x=Φ(z)
f (Φ(z),u)

hz(z,u) := h(Φ(z),u).

Moreover, divide the system Σ into two subsystems accord-
ingly as follows

Σa :
{

ża = f a( (za,0), ua )
ya = hz( (za,0), ua )

(24)

Σb :
{

żb = f b( (0,zb), ub )
yb = hz( (0,zb), ub )

. (25)

For simplicity, let
� a and

� b denote the Hankel operators
related to the divided state-space systems (24) and (25), and let
Lz

c, Lz
o, La

c , La
o, Lb

c and Lb
o denote the controllability and observ-

ability functions of
�

in the coordinate z, those of
� a, and

those of
� b, respectively. That is, we have Lz

c(z) := Lc(Φ(z))
and Lz

o(z) := Lo(Φ(z)). Then we obtain the following model re-
duction properties which are a nice and natural generalization
of the linear case results in [10, 4].

Theorem 4 Consider the Hankel operator
�

in (1) and sup-
pose that Assumptions A1, A2 and A3 hold. Then the related
controllability and observability functions satisfy

La
c(z

a) = Lz
c(z

a,0), La
o(z

a) = Lz
o(z

a,0) (26)
Lb

c(z
b) = Lz

c(0,zb), Lb
o(z

b) = Lz
o(0,zb). (27)

Furthermore, the state-space systems Σa and Σb are in an
input-normal/output-diagonal form in the sense of Theorem 3,
and

ρa
i (za

i ) = ρi(za
i ) i ∈ {1,2, . . . ,k} (28)

ρb
i (zb

i ) = ρi+k(zb
i ) i ∈ {1,2, . . . ,n− k} (29)

hold with ρa
i ’s and ρb

i ’s the singular values of the Hankel op-
erators

� a and
� b, respectively. In particular, if X0 = R

n,
then the Hankel norm is also preserved as

sup
ua∈U
ua 6=0

‖
� a(ua)‖

‖ua‖
= sup

u∈U
u6=0

‖
�

(u)‖

‖u‖
. (30)

Proof. Following the argument in [11], the observability func-
tion Lz

o of the system Σ in the coordinate z is given by a solution
of a Hamilton-Jacobi equation

∂Lz
o(z)

∂ z
f z(z,0)+

1
2

hz(z,0)Thz(z,0) = 0.

Substituting z = (za,0) for this equation, we obtain



0 =

(

∂Lz
o(z

a,zb)

∂ za ,
∂Lz

o(z
a,zb)

∂ zb

)∣

∣

∣

∣

zb=0

(

f a((za,0),u)
f b((za,0),u)

)

+
1
2

hz((za,0),0)Thz((za,0),0)

=
∂Lz

o(z
a,0)

∂ za f a((za,0),u)+
1
2

hz((za,0),0)Thz((za,0),0)

because of (22). Clearly, this equation coincides with the
Hamilton-Jacobi equation for the observability function La

o of� a. That is, we have proven the relation (26). The relation
(27) can be obtained in the same way.

Next we consider the controllability function Lz
c. By the defi-

nition of � and Lc in (2) and (4), it can be observed that Lz
c(z)

can be obtained by solving a Hamilton-Jacobi equation

∂Lz
c(z)

∂ z
f z(z,u?(z))+u?(z)Tu?(z) = 0 (31)

which is related to the optimal control problem in (4). Here
u?(z) is the solution of

u = −
1
2

∂ f z(z,u)

∂u

T ∂Lz
c(z)

∂ z

T

. (32)

The existence (and smoothness) of � † in Assumption A1 im-
plies the existence of the solution u = u?(z) here. Substituting
z = (za,0) for the equation (32) yields

u = −
1
2

∂ f a((za,0),u)

∂u

T ∂Lz
c(z

a,0)

∂ za

T

which is equivalent to the constraint equation for the controlla-
bility function La

c . Obviously, u = u?(za,0) is also the solution
of this equation. Further, substituting z = (za,0) for the equa-
tion (31), we obtain

0 =

(

∂Lz
c(z

a,zb)

∂ za ,
∂Lz

c(z
a,zb)

∂ zb

)
∣

∣

∣

∣

zb=0

(

f a((za,0),u?(za,0))
f b((za,0),u?(za,0))

)

+u?(za,0)Tu?(za,0)

=
∂Lz

c(z
a,0)

∂ za f z((za,0),u?(za,0))+u?(za,0)Tu?(za,0)

which coincides with the Hamilton-Jacobi equation for the con-
trollability function La

c(z
a) for

� a. That is, we have the rela-
tion (26). The relation (27) can be obtained in the same manner.

Since the balanced realization given in Theorem 3 is charac-
terized only by the controllability and observability functions,
the systems Σa and Σb are also balanced. Then Equations (28)-
(30) follow immediately from Theorem 3. This completes the
proof. 2

This theorem is a generalized version of Theorem 5 in [3]. The
proposed result can handle continuous time input-non-affine
nonlinear systems whereas the former result is only valid for
input-affine systems. In this model reduction procedure, the re-
duced systems Σa and Σb are uniquely determined (coordinate
free), although the input-normal coordinate z = Φ−1(x) itself is
not unique.

Unfortunately, however, we did not obtain similar invariance
properties in the discrete-time case yet, although the model
reduction procedure itself works in a similar way. Model re-
duction with preserving several gain properties for nonlinear
discrete time systems is still an open problem.
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