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Abstract

In this paper we present an approach to test stability and fea-
sibility of discrete-time LTI systems subject to constrained op-
timal control. The analysis is based on the feedback solution
of the constrained optimal control problem formulated in a Re-
ceding Horizon fashion. The validation procedure consists of
two independent parts. For stability, a piecewise quadratic Lya-
punov function is computed by solving LMIs. Sufficient con-
ditions for the existence of such functions are given. To guar-
antee feasibility, an efficient algorithm for computing invariant
subsets of piecewise affine systems is presented. Finally, we
demonstrate how this method may serve to obtain controllers
of low complexity.

1 Introduction

The main focus of this paper will be on receding horizon con-
trol (RHC) of constrained linear systems. In RHC, at each time
step an optimal control problem is solved over a finite horizon,
but only the first element of the computed control sequence is
applied. Traditionally, this optimization was carried out on line
and the resulting method has become known as Model Predic-
tive Control (MPC). More recently, it has been shown [2] how
to compute explicitly the piecewise affine (PWA) state feed-
back control law corresponding to the optimal controller by
solving a multi-parametric Quadratic Program (mp-QP). The
analysis techniques proposed in this paper require the explicit
state feedback control law, but after successful analysis, the
controller can be implemented in the equivalent MPC form if
this is preferred. The main problem of RHC is that it does
not, in general, guarantee stability. Furthermore, RHC might
drive the state to a part of the state space where no solution
to the finite time optimal control problem satisfying the con-
straints exists. This existence of an input sequence satisfying
the constraints is referred to as feasibility. The lack of feasi-
bility and stability guarantees has been addressed by imposing
terminal set constraints [9, 3] or by solving the infinite-horizon
problem [5]. The constraints on the terminal set necessary to
show stability tend to result in small terminal sets. This inad-
vertently leads to large horizons if the distance between the ini-
tial state and the terminal set is large and the input is bounded.
Large horizons inherently result in significant computational
complexity.

The method proposed in this paper consists of two algorith-
mic building blocks, which together allow for a proof of sta-
bility and feasibility for finite-time optimal control applied in
a RHC manner. A simple controller is computed and analyzed
for stability and feasibility. If no properties can be derived,
controller complexity is increased until stability and feasibility
can be guaranteed. The stability analysis is based on the results
in [7, 4] and the invariant set computation is based on proce-
dures in [8]. As will be shown in Section 5, the proposed anal-
ysis scheme may be used to obtain controllers of significantly
lower complexity than those obtained by other approaches in
the literature [9, 3].

2 Problem Formulation

We will consider optimal control problems for discrete-time
linear time-invariant systems

x(t+1) = Az(t)+ Bu(t), (1)

with A € R"*™ and B € R™*"™. Let x(t) denote the measured
state at time ¢ and 1, denote the predicted state at time ¢ +k
given the state at time ¢. For brevity we will denote g as .

Assume now that the states and the inputs of system (1) are
subject to the following constraints

r e XCR", uelUCR™, )

where X and U are compact polytopic sets containing the ori-
gin in their interior, and consider the constrained finite-time
optimal control problem

N-1
Ju(z(0) = min Z (up,Ruy, + 23, Qxy)  (3a)
UQ,.., UN —1 o
'y QN
subj. to rp € X Vk e {1,...,N}, (3b)
uy €U Vke{0,...,N—1}, (B¢

Tpy1 = Az + Bug, w9 = z(0),(3d)

Q>0, Q; =0, R+ 0. Ge)
The solution U} (2(0)) = [uo, ..., un—1] to problem (3) is a
function of the initial condition 2(0). Before going further, we
will introduce the following definitions:

Definition 1 We define the N-step feasible set X fN CR"” as
the set of initial states x(0) for which the optimal control prob-
lem (3) is feasible, i.e.

XY = {2(0) e R"|3UN € RN™, GUy < W + Ez(0)},



where m denotes the number of inputs and N the prediction
horizon.

For a specific z(0) problem (3) is a quadratic program. As
shown in [2] problem (3) can be solved for all 2(0) within a
polyhedral set of values by considering (3) as a mp-QP.

Theorem 1 [2, 3] Consider the constrained finite time optimal
control problem (3). Then, the set of feasible parameters X ;V

is polyhedral, the optimizer Uy; : X J;N — R?® is continuous and
piecewise affine (PWA), i.e.

Uk (x(0)) = Frx(0) + G, if z(0) € P,
P, = {z e R"|H,z < K, },

(4a)
(4b)

and the optimal solution Jy : X ;V — R is continuous, convex
and piecewise quadratic (PWQ).

Note that the evaluation of the PWA solution (4) of the mp-
QP provides the same result as solving the quadratic program,
i.e., when (0) is known, the optimal input sequence U % (x(0))
in (4) is identical to the optimal input sequence obtained by
solving the quadratic program (3) for z(0).

Henceforth, we will denote the RHC feedback law which pro-
vides the first input as vy = F.x + G,.. Analysis of the mp-QP
solution [2] yields that {P,}[ | is a polyhedral partition of
X ]{V . We will denote the polyhedron P, as region r.

In RHC the constraints are only enforced for N steps ahead,
which can lead to infeasibility of (3). Even in case of no
model mismatch, the optimal open-loop trajectory is different
from the trajectory which results from the closed-loop control
scheme [9, 3]. This may therefore affect not only feasibility
but stability as well. As stated in the introduction, this prob-
lem is commonly dealt with by enforcing terminal set con-
straints [9, 3] which tend to result in large optimization prob-
lems which are unsuitable for fast systems. In the following
an analysis scheme is presented which allows for simple con-
trollers with stability and feasibility guarantees. The scheme
consists of computing simple controllers with short prediction
horizons and subsequently analyzing stability and feasibility of
the closed-loop system.

3 Stability and Feasibility of RHC

In order for RHC to be applicable we must ascertain that the
controlled system is stable and that the system constraints will
always be satisfied, i.e., stability and feasibility must be proven.
The following definition and lemma will address the issue of
feasibility:

Definition 2 We define the control invariant subset Xy of the
feasible set XJ{V computed in (3) (X1 C X’{V) as:

X ={x(0) € X |x(k) € X} VEk > 0}.

The controller is given in Theorem I and the associated closed-
loop dynamics are given by

2(k+1) = (A+ BF)x(k) + BG, if Hoa(k) < K,. (5)

Lemma 1 For a given feasible compact set X ;V as presented
in Theorem 1, a control invariant subset X; C X ]{V induces
feasibility of (3) for all time if x(0) € X and the controller
given in Theorem 1 is applied in a receding horizon manner.

From Lemma 1 we can conclude that a sufficient condition for
infinite horizon feasibility is positive invariance of the regions
obtained with the methods in [2]. Note that positive invariance
does not induce stability since limit cycles cannot be ruled out.
Therefore we require a proof of stability as well. These two
aspects will be dealt with separately in the following two sub-
sections.

3.1 Feasibility

As previously stated, a stabilizing control law does not guar-
antee feasibility for all time. According to Lemma 1 invari-
ance implies feasibility. We will therefore present an efficient
method for computing the control invariant subset X7 as well
as a method for checking whether & is equal to the maximum
control invariant set Co,. For a more elaborate overview of in-
variant set computation for PWA systems we refer the reader to

[8].

3.1.1 Invariant Set Computation

The following procedure allows the exact computation of the
control invariant set Xy C X J{V of a given controller partition.
It should be noted, that in general X7 is non-convex and does
not even need to be connected. The underlying principle of the
algorithm is to iteratively remove states from which the trajec-
tory exits the feasible set X’ fN until no such states can be found.

To reduce the computational effort to a minimum, two data
structures are introduced so that redundant computation is
avoided. The transition matrix 7 € {0,1}7*% (where R
denotes the number of regions) and the modification vector
M € {0,1}F store the feasible transitions and keep track of
set modifications respectively. The exact definitions are

T (s,t) =1, if Jz(k) € Ps, such that x(k + 1) € Py,
else 7T (s,t) = 0;
M(r) =1, if Py £ P), else M(r) =0.

Here, the dynamics are given by (5) and ¢ denotes the iteration
number in the algorithm given below:

1. Given a controller partition {P,}2_,, compute the entries
of the transition matrix 7. Subsequently create the transi-
tion set IT = {s,¢ € {1,..., R} | 7(s,t) = 1}, initialize
M(r) =1,¥r € {1,..., R} and set the iteration counter
1 =0.



2. Forall s,t € II, do:
If M(t) = 1 compute and store the subset S;ﬁl =
{z(k) € R*|z(k) € P!, x(k + 1) € P}} for the dy-
namics in (5). If M (t) = 0, set S;'ftl =S,

3. For each start region P!, attempt to create the union
Pitl = Ugs,pyem Siht. Pitl C P corresponds to the
set of points * € P! which remains within the partition
U,— {1,...R} ‘P, in one time step. The algorithm for com-
puting the union of polytopes is described in [1].

(a) The union P+ is convex:
Set M(s) = 0if PI™ = Pl and set M(s) = 1 if
pitt c pi.

(b) The union Pi*1 is non-convex:
Add new regions to the controller partition, i.e. for
all ST # @, set P, = Sit'and R = R +
1. In addition, the transition matrices 7, II and the
modification vector M are updated accordingly.

4. If no region has been modified (M(r) = 0 Vr €
{1,..., R}), the algorithm has converged and the invari-
ant subset is found. Otherwise set ¢+ = ¢ 4 1 and goto step
2.

The union of all remaining regions is equal to X7.

Lemma 2 Given a compact initial set X ]{V over which a PWA
feedback law is defined, the presented polyhedral-invariant-set
algorithm always converges.

Proof It follows from (2) that the initial volume of X’ va is fi-
nite. At each iteration, this volume is reduced by AVol > 0
until AVol = 0, i.e., the volume is strictly decreasing. If any
point contained in the resulting invariant set does not belong to
X1, AVol would not be zero which implies that the resulting
set is positive invariant. Therefore the algorithm always con-
verges, though not necessarily in finite time. O

It should be noted that in extensive simulations the algorithm
always converged in finite time.

3.1.2 Computing the Maximum Control Invariant Set C,

The following definition is derived from [8]:

Definition 3 The set Co, is the maximal control invariant set
contained in R™ for the system xy1 = f(x,ur) subject to
the constraints in (2) if and only if Co is control invariant and
contains all the control invariant sets contained in R™ which
uphold the constraints in (2).

An important question which arises in practical problems, is
whether the obtained invariant set X} is the maximum control
invariant set C, for a given problem, i.e., does there exist an
alternative feedback law which produces a larger invariant set

X[ D Xr. As was stated in [5], the set Co is convex and poly-
hedral, independent of the weight matrices (Q,R) and solely
depends on the system dynamics and constraints. We can there-
fore discard all invariant sets X7 which are not convex. Con-
vexity can be checked with the methods in [1].

If X7 is convex, there is an easy way to check whether the in-
variant set X is also the maximum control invariant set Coo.
Solving the following problem as an mp-QP

(6a)

1 €X, 1 € Xrandug € U, (6b)
x1 = Axzg+ Bug, zo = z(0), (6¢c)

J_1(x(0)) = minugug,
uo

subj. to

yields a convex partition X,,,qp. If A1 = Xjpqp, then &7
is Coo. The proof follows from the fact that all states which
can enter the set X in one step are contained in X7y, i.e.,
Pre(X;) = X7 [8]. Note that this computation is very efficient
since the mp-QP is solved over a prediction horizon N = 1
only.

3.2 Stability

In order to guarantee stability, we identify a PWQ Lyapunov
function over the invariant set X; which was computed with
the methods in Section 3.1.1. The procedure is identical to the
LMI procedure presented in [4] but will be restated here for
completeness. Furthermore, we will show that the considered
Lyapunov function always exists for sufficiently large predic-
tion horizons N in (3).

First, certain solution properties need to be established:

Lemma 3 [11, 5] Given system (1) with (A, B) stabilizable
and (C, A) detectable (C'C = Q), there exists a finite horizon
N5 defined over a compact set S of initial states such that the
receding horizon solution obtained in (3) for horizon Ns and
terminal weight Q5 = Prqr equals the open loop solution
for N — oo. The terminal weight Ppqr is obtained from the
Algebraic Riccati Equation (ARE). The equality also holds for
all horizons N > Ng. The procedure of computing Ns is
explained in [5].

Lemma 4 [5] Given a horizon N > Ng and terminal weight
Qr = PLqr in (3), the PWA partition obtained by solving an
mp-QP is convex and positive invariant. The terminal weight
PrLqr can be computed by the Algebraic Riccati Equation
(ARE).

Theorem 2 The PWQ value function J3; in (3) is a Lyapunov
function for all N > N, if Q5 = PLqr. The function J¥ (z)
is piecewise-quadratic if v € X ;V and quadratic if x € Py,
where Py is the region containing the origin.

Proof Follows from Lemma 4 and Theorem 1. Since the
solution obtained for a horizon N > Ng is infinite hori-
zon optimal, the solution is stabilizing, infinite time feasible



and the cost J5 (zy) is strictly decreasing from & to k + 1.
JX (x) is quadratic around the origin since there the optimal
feedback law corresponds to the Riccati LQR and therefore
Ji (x) = 2’ PLgrx in a neighborhood of the origin. It follows
that the value function is only zero at the origin (J3 (0) = 0).
Since J(x) is quadratic around the origin and the set S is
compact, a quadratic upper and lower bound on J3 () exists.
The PWQ cost function Jy; in (3) is therefore a Lyapunov func-
tion guaranteeing exponential stability. Since the set X J{V is
also positive invariant if computed with horizon N > Ns [5],
Jx (xy) is defined for all k > 0, iff 2 € X]ﬁv. O

In the following, we will consider a PWQ Lyapunov function
of the form:

Prwq(z) = 2'Qrx+2'2L, + C,,
if H.x < K,.

(7a)
(7b)

As shown in [4], this function does not need to be continuous
to imply stability for discrete time systems. If a state moves
from region s (zg € Ps) to region t (x1 € P,) in one time step,
the decay rate of the Lyapunov function AVy, is defined as:

AV (zo) = Ppwqlx1) — Prwq(zo),
= 1‘6 AQst o + 21}6 ALSt + ACst.

We will define here the set of states contained in region s that
enter region ¢ in one time step.

7;75 — {xo c RH|HSLI}0 S KS,Ht((A—FBFS)J}()—I—BGS) S Kt}
3)

The sets 7, can be efficiently computed by applying the meth-
ods presented in Section 3.1.1 and will be described by 7, =
{z € R"| Hgqax < Ky }. The set of all feasible transitions
st is stored in the set denoted as II = {st € N | 7,, # &}.
Concisely, we aim to prove stability by identifying a Lyapunov
function Ppwq(x) defined over the control invariant set X
which satisfies the following conditions:

find PPWQ s.t. (93.)
PPWQ(LC) 26||£CH27 V!EGX[, e>0 (9b)
AVy(z) < —pl|z||?, Vz € X1, p > 0. (9¢)

In order to find a function PWQ(x) which satisfies (9c) we
can formulate the following inequality with Z = [z¢ 1]’ and
p > 0 for region s:

A‘/;t(xo) = PWQ(IIJl) — PWQ(LL‘()) (lOa)
— ;z-'{ ﬁ%ﬁt ﬁ%“t’ }f (10b)
—_H'
< T’ — /St NG/ *Hs Ks/
=T < [ Kst ] (f[ t f}
—p[é 8]):5 (10c¢)
< —px)ao (10d)

Note that the term in (10c) is smaller than the term in (10d), if
the state x¢ is inside the set 7;; = {x € R"| Hyx < K},
since Ng; is a matrix consisting of nonnegative elements only.
The formulation corresponds to the S-procedure also applied in
[7,4].

With (10) equation (9) can easily be reformulated to obtain a
suitable LMI problem:

find Ppwq, Ny, Nst, p, €, s.t.

Vre{l,...,RtandVst €Il  (lla)
_AQst —pI —ALSt o
—AL, ~ACy | =
%}
I Nst |—Hse K, (11b)
e |
Q —el Lr] {_Hf]
> TN [FHe K], (1)
AR A
Ng >0, N, >0, p>0, €>0, (11d)
Ny = NJ, Ny € R*XD Ny = Nj, Ny € R
C;=0, L1 =0 € R". (11e)

Here (11b) induces AV, < 0, (11¢) ascertains that the PWQ
Lyapunov function is positive and (11d) ensures that all ele-
ments of IV, and N, are nonnegative while d, and d4; denote
the number of rows of H,. and H,;. Equation (11b) is sufficient
(not necessary) for (9c), as becomes clear if we multiply (11b)
with [z 1] from the left and [z 1]’ from the right. The scalar
parameters € and p are arbitrarily small and greater than zero
in order to enforce a strictly positive PWQ function and ex-
ponential stability, respectively. Equation (11e) ensures that a
quadratic upper bound for the Lyapunov function exists, by en-
forcing a quadratic Lyapunov function around the origin, which
is covered by region r = 1.

Theorem 3 [4] If a PWQ function Ppwq(z) is obtained with
(11) and with region r = 1 containing the origin, the system is
exponentially stable.

4 Algorithm

The proposed algorithm provides the minimal prediction hori-
zon N for which the resulting controller covers the maximum
control invariant set with stability and feasibility guarantees.

Algorithm A

1. Initialize the prediction horizon to NV = 1.
2. Solve (3) for prediction horizon /N as an mp-QP.

3. Compute the polyhedral invariant set X’; as described in
Section 3.1.1.

4. Apply the method in 3.1.2 to check if X is the maximal
control invariant set. If not, set N = N + 1 and goto 1.

5. Compute a PWQ Lyapunov function over X as described
in Section 3.2 to verify stability. If not successful, set N =
N + 1 and goto 1, else end.



The existence of a PWQ Lyapunov function is guaranteed for
sufficiently large horizons /N (Theorem 2). However, since the
LMI computation is merely sufficient, there is no guarantee
that a PWQ function guaranteeing stability will be found. It
is therefore advisable to abort this procedure once step 5 has
been executed a large number of times.

5 Numerical Examples

Extensive simulations were performed in order to assess the
potential gain of the post-processing procedure introduced in
this paper. The post-analysis tools were used to obtain the min-
imum prediction horizon N which provides a stabilizing and
infinite-time feasible controller covering the maximum control
invariant set Co, (i.e., Algorithm A). The infinite horizon con-
troller in [5] was used as a basis for comparison. Both con-
trollers cover the same set of states and provide stability and
feasibility properties. In this section we will compare com-
plexity and performance of the two controllers. A total of 20
random stable systems were created for n = 2 and n = 3 states
respectively whereby the number of inputs was fixed at m = 2.
The inputs for all systems were constrained to —1 < uj 9 <1
and the states were limited to —10 < z; < 10 (i = 1,2,3).
Two different performance objectives were considered in the
original problem formulation (3). We covered the cases of
small and large weights on the input, i.e., Ry = 0.1/ and
Ro = 10I with @ = I for both cases. Therefore a total of
80 cases were studied.

The results for the 2 and 3 state systems are given in Figures
1 and 2 for Ry = 0.1, where the prediction horizon, number
of regions and performance is compared to the infinite horizon
solution. The run-time for Algorithm A is also given.

Figures 1(a) and 2(a) depict the decrease in the necessary pre-
diction horizon. Note that knowledge of the minimum predic-
tion horizon necessary to stabilize the maximum control in-
variant set can also serve to speed up procedures which rely
on on-line solution of the optimization problem (MPC). The
average decrease in the prediction horizon over all 80 simula-
tion runs is 72% which corresponds to an average decrease in
the number of regions of 69%. The decrease in number of re-
gions is depicted in Figures 1(b) and 2(b). Figures 1(c) and
2(c) depict the decrease in closed-loop performance compared
to the infinite horizon solution. The performance index was ob-
tained by gridding the state space and subsequently computing
the closed-loop cost for all of the initial states. The average
decrease in performance is 0.06%. As previously stated, the
LMI analysis in Section 3.2 is not guaranteed to provide a so-
lution due to the conservative formulation. However, we have
observed that the LMI was successful in 100% of the analyzed
cases.

One important aspect is the computational complexity of the
proposed off line computations. We found that most of the
time is spent on solving the LMI problem in (11), followed by
the invariant set computation and the mp-QP (see Figures 1(d)
and 2(d)). The entire procedure may take from under a minute

n=2 n=3 n=2 n=3
R1 R Ra Ra
A/ 5] A/ 5] A/ [5] A/[5]
Horizon N || 1.2/8.4 | 2.5/85 | 1.4/4.6 | 2.3/4.9
No. Regions R || 19/218 | 224/897 | 27/66 | 172/267
Performance 0.20% 0.01% 0.03% 0.02%

Table 1: Average prediction horizon /N, number of regions R
and performance decrease of Algorithm A versus [5] for the
combinations of cost weights R; = 0.1/, R = 101 (Q = 1)
and state space dimension n = 2 and n = 3. 20 Simulations
were run for each combination.

(No. of regions R < 100) up to several hours' (No. of regions
R > 1000). We do not believe that going beyond R = 1000
regions in dimensions above n = 3 makes sense, since the
necessary runtime becomes prohibitive. We have been able to
successfully apply algorithm A to several fourth order systems
with more than 500 regions. However, the maximum control
invariant set for random fourth order systems may easily con-
sist of more than 10000 regions. For problems of this size we
have run into numerous numerical difficulties in all three com-
ponents of Algorithm A (i.e. mp-QP, invariant set computation
and LMI) such that we decided to abort simulation of systems
beyond a dimension of n = 3. It should be stressed, however,
that we do not see the bottleneck in the dimension alone, it is
the combination of large prediction horizons and higher dimen-
sional systems which make excessive computation necessary.

Differences in the solutions for the different cost objectives
R1 = 0.1 and R, = 101 were also observed. For the in-
finite horizon controller in [5], the prediction horizon which is
needed for the controller to cover the maximum control invari-
ant set is much smaller for large weights on the input, i.e., for
Ro (see Table 1). This is due to the fact that the unconstrained
region A7 is significantly larger if the weight on the input is
large (this also follows from monotonicity of the Riccati equa-
tion). However, the different cost objectives have little impact
on the controllers obtained with Algorithm A and the differ-
ences in relative performance versus [5] are mainly due to the
strong variations in the complexity of the infinite horizon con-
trollers when different cost weights R in (3) are used.

6 Conclusion

We have shown, how to verify infinite time feasibility and
stability for constrained optimal control applied as RHC. The
procedure requires the off-line computation of the feedback
solution to the optimal control problem, but the results remain
valid for on-line computations as well. Though the focus of
this paper was on linear systems, the procedure can be applied
to other PWA (e.g. hybrid) systems without any modification
to the proposed algorithm. The extensive examples have
shown that the proposed method allows for significantly

12GHz PC using NAG for LPs and SeDuMi [10] for the LMI problems.
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Figure 1: Simulation results for 20 second-order systems with R = 0.11.
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Figure 2: Simulation results for 20 third-order systems with Ry = 0.11.

shorter prediction horizons than other RHC methods without
a significant decrease in performance. This in turn results in
a significantly lower computational burden for both off-line
and on-line solutions of the optimization problem. However,
the numerical results have also shown that the proposed
Algorithm is not applicable to most higher order systems. Our
recent work has focussed on making the presented techniques
tractable for larger problems [6].

The presented algorithms can be downloaded from:

http://control.ethz.ch/ "grieder
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