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Abstract 
Recently quite some effort has been dedicated towards the 
use of Model Predictive Control (MPC) for regulating 
discrete-time piecewise affine systems. One of the 
obstructions for implementation is the high on-line 
computational load. In this paper we present an approach to 
reduce the on-line computations by using an algorithm that 
solves off-line a controllability problem with respect to an 
invariant target set. The algorithm generates a tree containing 
minimal discrete events controllable paths to the target set. 
For an initial state (or a measured state), a controllable path 
to the target set with a minimal number of discrete events is 
easily obtained and a resulting ordered sequence of state 
space regions (sets) is pre-computed; each region 
corresponds to a single sub-model, part of the piecewise 
affine system. It is then shown how, under certain 
assumptions, this controllable path can be used to design a 
computationally more friendly semi-explicit MPC algorithm 
for constrained piecewise affine systems. Finally, an example 
is given for illustration purposes. 

1  Introduction 
Over the recent years, researchers have become increasingly 
interested in the framework related to the stability and the 
control problems for piecewise affine systems. This growth 
in interest is motivated by the fact that many nonlinear 
systems can be (arbitrarily closely) approximated using 
piecewise affine systems [12] and by the fact that the 
interconnection of finite automata and linear systems yields 
piecewise affine systems as well [13]. Moreover, piecewise 
affine systems are very useful as they are equivalent to many 
other relevant classes of hybrid systems [7]. 

Several control algorithms developed for piecewise affine 
systems are designed using optimal control or Model 
Predictive Control (MPC) techniques. The first hybrid MPC 
algorithm, developed for mixed logical dynamical systems 
(equivalent to piecewise affine systems under certain mild 
conditions), has been presented in [1]. Unfortunately, this 
algorithm has a drawback that consists of a high on-line 
computational complexity, mainly caused by the mixed 
integer quadratic programming problem (NP hard) that has to 

be solved on-line, at each discrete-time instant. Then, an 
explicit piecewise linear control law that reduces the 
computational burden has been presented in [2]. However, 
recasting the MPC problem as a multiparametric mixed 
integer linear programming problem and obtaining an 
explicit solution off-line did not completely eliminate the 
computational load, as one still has to perform a search 
algorithm to determine the relevant control region (and the 
number of resulting control regions is increasing with the 
length of the prediction horizon). The present research work 
in this area deals with finding ways to reduce the number of 
on-line calculations, such as the reachability based strategy 
of branch-and-bound nature developed for piecewise affine 
systems in [3]. An optimal and receding horizon control 
algorithm for piecewise affine systems with bounded 
disturbances, based on the robust controllable sets theory [8], 
has been recently presented in [9]. The optimal control is 
determined in this case by comparing the solutions of a finite 
number of multiparametric LP problems. Another MPC 
algorithm for continuous piecewise affine systems, which 
requires solving on-line a finite number of LP problems, has 
been presented in [5]. 

In this paper we present a method that aims at reducing the 
on-line computational load encountered in MPC algorithms 
for hybrid systems. This is achieved by formulating a new 
algorithm (based on the controllable sets theory [6,8]) that 
solves off-line the controllability problem with respect to an 
invariant target set for constrained discrete-time piecewise 
affine systems. The algorithm starts from the target set, 
which is defined as the root node, calculates the discrete 
events (transitions between affine sub-models) controllable 
sets with respect to the target set and organizes the resulting 
state space regions in a tree-like structure. Each node of the 
tree, corresponding to a single sub-model in the piecewise 
affine system, will be a maximal (discrete-time) controllable 
set with respect to a parent node and a controllable set that is 
i discrete events away from the target set. For an initial state 
(or a measured state), a controllable path to the target set 
with a minimal number of discrete events is easily obtained 
and a resulting ordered sequence of state space regions (sets) 
is pre-computed. It is then shown that under some 
assumptions the minimal discrete events controllable path 
can be used to develop a computationally more friendly 
semi-explicit (sub-optimal) MPC algorithm for piecewise 
affine systems. 



2  Problem formulation and main result 
Consider the time-invariant discrete-time piecewise affine 
system described by equations of the form [12]: 
   if  , (1) jkjkjk fuBxAx ++=+1 jkx Ω∈ i =
where  is the state vector,  is the control 
input vector, , , , 
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design constraints of the form: 
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are imposed with respect to the states and the inputs of (1), 
where X and U are convex and compact sets containing the 
origin in the interior. In the sequel we will need the concepts 
of maximal and one-step controllable sets [8] with respect to 
an affine sub-model j in the piecewise affine system (1)-(2), 
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Definition 1 The one-step controllable set for sub-model (3) 
with respect to a target set  is the set of states  

in  for which there exists an admissible control input 
such that the target set is reached in one discrete-time step 
(sampling period), i.e. 
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Definition 2 The maximal controllable set without switching 
for sub-model (3) with respect to a target set  is the set of 

states  in  for which there exists a finite 
sequence of admissible control inputs such that the target set 
is reached in a finite number of discrete-time steps and the 
state trajectory does not leave  until it enters , i.e. 
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where  is generated by (3) for the input 

sequence  and initial state . These 
definitions can be straightforwardly extended to the 
piecewise affine system (1)-(2), i.e. the one-step controllable 
set is in this case the union of all sets (4) and the maximal 
controllable set without switching is the union of all sets (5) 
over all .  
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u
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Note that the algorithms developed for the computation of 
the controllable sets in [9] require closedness of all regions 

. Since we chose the  regions to be disjoint this is not 
necessarily the case. However, as indicated in Remark 2 of 
[7], this is numerically not really a problem. 

jX jΩ

We introduce now the notions of a controllable path and a 
minimal discrete events controllable path. 

Definition 3 We call  ),...,( 0 rxx=x  with Xxi ∈  for all 

r,...,0  a (discrete-time) controllable path from  to 
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trajectory of system (1)-(2) and 
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Definition 5 A discrete events controllable path  from  

to a target set  is a minimal discrete events controllable 

path from  to  if it has a minimal number of discrete 

events, i.e. for all discrete events controllable paths 
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Definition 6 The i-discrete-events controllable set for system 
(1)-(2) with respect to a target set  is the set TX

∃∈= |{ 0 XxX i
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0x TX
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from  to  such that  and there does not exist a 

discrete events controllable path 
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This set is the collection of all the states in X  from which a 
target set  can be reached in i transitions between the 
affine sub-models in (1) and not less. It is evident that we 
have the following result: 

TX

Lemma 1 The zero-discrete-events controllable set for the 
piecewise affine system (1)-(2) with respect to a target set 
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The controllability problem with respect to discrete events 
controllable paths for the piecewise affine system (1)-(2) can 
now be formulated as follows: 

Problem 1 Given a target set XT and an initial state space 
region X0, calculate for every initial state in X0 a minimal 
discrete events controllable path (in X) - if it exists - with 
respect to XT. 



Problem 1 is formulated such that it requires the calculation 
of a minimal discrete events controllable path because fewer 
discrete events yield a smaller storing capacity (this aspect is 
discussed in Section 3). A similar approach, regarding the 
reachability problem for piecewise affine systems, but 
formulated with respect to discrete-time steps rather than 
discrete events has been presented in [3]. Next, we formulate 
an algorithm that solves Problem 1 and organizes the 
resulting state space regions in a tree-like structure. 

Algorithm 1 

0. Normalize all regions Ω . The normalized regions will 

be  for all . 
j

XX jj ∩Ω= Sj ∈
1. Calculate the maximal controllable sets (5) in all 

regions  with respect to , namely 

, and build the zero-discrete-events 
controllable set (7) for the piecewise affine system (1)-
(2) with respect to the target set X
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• Build a tree with the target set  as the root node 
and with the elements of (8) as child nodes, and 
associate level i = 0 to this level in the tree, 
containing all  sets. 

TX

0
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• Build the set of remaining empty regions for level i 
= 0 (the set of states that cannot be steered to the 
target set with zero discrete events): 
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• Insert the level i + 1, , in the controllable sets 
tree: 
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3. Set i = i + 1. If  or if , 
STOP; Else go to step 2. 

i
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Remark 1 If Algorithm 1 has been terminated with 
, then a tree that contains a minimal discrete 

events controllable path to the target set from any x

i
TXX ⊆0

0 in X0 has 
been generated. The l-th level of the tree consists of the 
union of state space regions (sets) from which the target set 
can be reached in l discrete events (l transitions between 
different affine sub-models in (1)) and not less. Note that, 
two consecutive sets in the controllable path cannot belong to 
the same original region Xj (otherwise there does not exist a 
discrete event), but this is allowed for sets belonging to the 
same level of the tree. Only a single switching succession has 
been chosen from the set of possible minimal discrete events 
paths and this additional freedom might be used for 
optimising other performance criteria. In this work we are 
only interested in selecting one minimal discrete events 
controllable path. 

Remark 2 Note that the sets  are not necessarily 
convex, which complicates matters for an MPC set-up. Some 
conditions are known that guarantee convexity (see e.g. 
[4,8]) but in general these are not satisfied. Actually, every 
set (10) can be a non-convex or even a non-connected set and 
then the computational complexity of Algorithm 1 increases 
(in the “worst” case it leads to the same state space 
decomposition as in [9]). Still, each i-discrete-events 
controllable set can be decomposed as a union of one-step 
convex sets [8] that could again be represented as a sub-tree 
structure. Then, a single switching succession with a minimal 
number of discrete events can still be chosen and this can be 
used under suitable assumptions to implement an on-line 
computationally more friendly MPC algorithm. 

i
jTX

3  A semi-explicit MPC algorithm for PWA systems 
In this section, a MPC methodology is utilized to develop a 
controller that steers the states of system (1)-(2) along a 
minimal discrete events controllable path towards the target 
set. Hence, one could call the resulting MPC algorithm semi-
explicit, as the minimal discrete events controllable path is 
calculated off-line, while the computation of the control 
input is still carried out on-line. The following assumption 
will be needed in the sequel: 

Assumption 1 The target set  contains the origin and is 
positively invariant if a piecewise linear state feedback 

 is applied. The feedback  has the property 

TX

)( kxg )( kxg



that the state trajectory and the control input of the closed-
loop piecewise affine system (1)-(2) with )( kk xgu =  
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Typically, a set XT satisfying Assumption 1 would be the 
maximal output admissible set [6] defined for the closed-
loop piecewise affine system. Consider now the piecewise 
affine system (1)-(2), a target set  satisfying Assumption 

1 and the L levels controllable sets tree, , 

calculated off-line using Algorithm 1. Then, for a known 
initial state (or a measured state) we find the set 

 in which  resides. This operation 
needs to be performed only once, at start-up (or on-line, by a 
supervisory system, at a slower pace than the sampling 
frequency of the MPC controller, for the actual measured 
state). The sets corresponding to the minimal discrete events 
controllable path are easily obtained from the tree generated 
by Algorithm 1, i.e. 
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shorthand for . The control goal is to drive the states of 
the piecewise affine system (1)-(2) to the target set using the 
sequence of discrete events controllable sets (14) (which are 
at least unions of convex sets, as indicated in Remark 2). In 
order to do his, choose for each sub-model ji in (14) a 
convex set  in  and the corresponding one-

step controllable set 
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convex [8]) satisfying the following assumption: 

Assumption 2 There exists an equilibrium pair ( x ) 

with  in the interior of x )~( )1(1
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Next, consider the optimal control problem given by the QP: 
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matrix  satisfies the discrete-time Lyapunov equation 
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Solving Problem 2 for the state measured at each sampling 
instant and applying to the plant only the first element of the 
optimal control sequence yields a stabilizing feedback 
controller for any tuning parameters provided that  is 

stable and the constraints (18) are feasible. If  has 
unstable modes, a terminal equality constraint could be 
added to Problem 2 and the prediction horizon has to be 
chosen in order to guarantee feasibility under constraints (18) 
and hence, convergence (see [10] for a possible solution). 
The control of Problem 2 will asymptotically steer the states 

of the affine sub-model  towards 

ij
A

ij
A

)ij
~( (1

1

+−

+
∈ il

jej ijii
XKx )1 . Once 

the set )~( )1(1
1

+−

+

il
j iji

XK  has been reached (convergence to  is 

not required), the state can be driven in the next state space 
region in (14). To guarantee the transition, the following 
one-step optimal control problem has to be solved: 
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The solution of Problem 3 will activate the transition to the 
next state space region in (14) and then, the solution of 
Problem 2 formulated for the next affine sub-model (i.e. sub-
model ji+1) will steer the states of system (1)-(2) towards the 
next one-step controllable set. By repeating this procedure, 
the target set  will ultimately be reached. Moreover, this 
will be achieved with a minimal number of discrete events. 
Note that, in principle,  does not have to be an 

equilibrium for the affine sub-model , but only a reference 
point since the solution o  Problem 2 should only drive the 
state inside the set 
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. Still, in this case it is not 
clear how to formulate a QP complexity MPC algorithm with 
guaranteed convergence. 
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only for some  chosen such that the constraints (18) are 
feasible. Possible approaches for determining a prediction 
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horizon that ensures feasibility of Problem 2 (for each sub-
model in (14)) can be found in [8,10]. 

Consider now the following algorithm. 

MPC Algorithm 1 

0. Select the corresponding sequence of sets (14) associated 
with a minimal discrete events controllable path for 

 (or for the measured state at a slower pace than 
the sampling frequency of the MPC controller) from the 
tree generated by Algorithm 1, store the elements 
necessary for formulating Problems 2 and 3, select  
such that each MPC sub-problem is feasible and set i = 0. 
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ij
N
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system (1), set i = i + 1 and go to step 1. 
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• Else, solve Problem 2, apply  to system 
(1) and go to step 1. 

** )1( kk u=u

Remark 4 MPC Algorithm 1 guarantees convergence to the 
target set with a minimal number of discrete events and with 
no constraint violation by solving at each discrete-time 
instant Problem 2 or Problem 3, depending on the state space 
region in which the measured state resides. Thus, global 
asymptotic stability is guaranteed for the controlled 
piecewise affine system (1)-(2) if Assumptions 1 and 2 are 
satisfied and under feasibility of Problem 2. 

Remark 5 Normally, the MPC problem for piecewise affine 
systems involves solving a kind of MIQP problem. In this 
respect, one can state that Algorithm 1 removes off-line the 
switching part of the problem (the integer part) by selecting a 
particular switching sequence. Any MPC algorithm designed 
using a minimal discrete events controllable path (including 
MPC Algorithm 1) comes down to solving a single QP 
problem subject to constraints and to checking a finite 
number of linear inequalities (Step 1) on-line (at each 
sampling time instant), i.e. a reduction of the on-line 
computational burden.  

Remark 6 MPC Algorithm 1 achieves a reduced 
computational effort at the price of storing capacity, which 
may become a disadvantage for some cases. For every state 
space region (set) in (14), a finite number of linear 
inequalities (the ones defining all one-step controllable sets 
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4  Example 
To illustrate the algorithm presented in Section 2 and the 
MPC algorithm formulated in Section 3, consider the 
following piecewise affine system with the partitioning 
corresponding to the four quadrants of the two dimensional 
x2 – x1 plane [11]: 
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In addition, system (23) is subject to design constraints of 
the form: 
 . (24) 0   ],1 ,1[    ],5 ,5[]5 ,5[ ≥∀−=∈−×−=∈ kUuXx kk

The target set XT defined for system (23)-(24) and the 
corresponding normalized state space regions X1, X2, X3, X4 
(obtained accordingly with Step 0 of Algorithm 1) are 
depicted in Fig. 2. Consider now Problem 1 formulated for 
system (23)-(24). For simplicity, Algorithm 1 will be used to 
calculate only the controllable path with respect to the initial 
state (utilized in the simulations) . The tree 
generated by Algorithm 1, which contains the minimal 
discrete events controllable paths to the target set X

Tx ]4   4[0 −=

T, is given 
in Fig. 1. Once the tree has been obtained, the sequence of 
sets (14) corresponding to a minimal discrete events 
controllable path is easily attained, i.e. , 

,  and . The controllable sets 
employed in Algorithm 1 have been calculated using the 
Matlab Invariant Set Toolbox [8]. 
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Fig. 1 The discrete events controllable sets tree for system 

(23)-(24) and x0. 

For system (23)-(24) and the chosen initial state, the number 
of discrete events needed to reach the target set coincides 
with the number of discrete-time steps. The target set is 
reached by implementing the MPC Algorithm 1 for the one-
step controllable sets plotted in Fig. 2 and with the tuning 
parameters 1=N , 2IQ =  and  at each sampling 
instant and then, global asymptotic stability is achieved using 
the stabilizing state feedback  of [11]. The simulation 
results are plotted in Fig. 3. 
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Fig. 2 The graphical illustration of the one-step sets. 
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Fig. 3 State histories and control input. 

The proposed MPC set-up yields performances comparable 
with the ones obtained with the control law of [11] and, in 
addition, the input constraint (24) is satisfied, which is not 
the case for the state feedback. 

5 Conclusions 
An approach for reducing the on-line computational load 
encountered in MPC algorithms for piecewise affine systems 
has been presented. The method is based on an algorithm that 
solves off-line the controllability problem with respect to an 
invariant target set. The algorithm calculates minimal 
discrete events controllable paths to the target set and 
organizes the resulting state space regions (sets) in a tree-like 
structure. For an initial state (or a measured state), a 
controllable path to the target set with a minimal number of 
discrete events is easily obtained and a resulting ordered 
sequence of state space regions is pre-computed; each region 
corresponds to a single sub-model of the piecewise affine 
system. Then, it has been shown that under certain 
assumptions the minimal discrete events controllable path 
can be used to develop a semi-explicit (sub-optimal) 
computationally more friendly MPC algorithm for piecewise 
affine systems. 

The algorithm that solves the minimal discrete events 
controllability problem and the MPC algorithm have been 
illustrated on an example. The simulations show the 
satisfactory performance of the proposed control scheme. 
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