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Abstract

In this paper we study the stability of a networked control
system using the stability theory of Lyapunov. The frame-
work considered in this work is to allow in the discrete
dynamics of the networked system unknown delays and
some dropping in the samples between sensor and actua-
tors. Solving a linear matrix inequality can demonstrate
the stability of a system with time delays, and a bilinear
matrix inequatily the stability with data dropping. As a
case study, a simple integrator is used as a example.

1 Introduction

Computer-controlled systems started to emerge in the
1950s [14]. At the beginning stage, the potential of us-
ing digital computers as control system components was
limited, since computers were too big, consumed too much
power and were not highly reliable. The early implemen-
tation of computers in control systems operated in super-
visor mode, either as an operator guide or as a set-point
control. Ordinary analog-control equipment were needed
in both cases. In the 1990s, the development of the micro-
processor had a profound impact on the way computers
are applied to control entire production plants. Further-
more, sensors and actuators could be equipped with net-
work interfaces, and thus become independent nodes on a
real-time control network

Feedback control systems wherein the control loops are
closed through a data communication network are known

as networked control systems (NCS) [7, 9, 12, 13, 14]. Sen-
sors, controller and actuators are nodes of the data net-
work, therefore all the signals in such a control system,
reference input, plant output and control input, are ex-
changed as data packets using the shared communication
network of Figure (1). Advantages of NCSs are low cost,
simple installation, easy diagnosis and maintenance and
high reliability. Nowadays NCSs are very common.

The insertation of the communication network in the feed-
back control loop makes the analysis and design of NCSs
complex. Conventional control configurations use point-
to-point links, in which the delays sensor-to-controller and
controller-to-actuator are null. Data networks connect de-
vices to an unreliable transmission path, this means that
the information can suffer delays and even be lost. Delays
are either constant or time varying and degrade the perfor-
mance of control systems and can destabilize the system.
There are two delays in the system: delay in any commu-
nication between sensor and controller, 77¢, and delay in
any communication between controller and actuator, 7.%.
Any computational delay can be absorbed into either 7;¢
or 7% without lost of generality. Furthermore, Dropping
network packets occasionally happens on an NCS due to
node failures or message collisions.

Several previous authors have suggested different NCSs
setups [5, 9, 14]. Sensor node is clock-driven, by this,
we mean that the node samples with period h one o
more variables and sends the information all together in
one data packet to the controller. Controller and ac-
tuator are event-driven, this is, they start its activity
when a data packet is received. The total delay between
sensor and controller is less than the sampling period,
Tr = Tp° + 7% < h as Figure (2) shows.  The Lya-
punov stability [3, 10, 14] concers the asymptotic behav-
ior of the state of an autonomous dynamical system. The
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Figure 1: Network control system.
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Figure 2: Delays in the feedback loop.

main contribution of Lyapunov has been that stability of
such systems can be verified in terms of existence of func-
tions, called Lyapunov functions. For the general class of
nonlinear systems there are no systematic procedures for
finding such functions. However, for linear systems the
problems of finding Lyapunov functions can be solved ad-
equately as a feasibility test of a linear matrix inequality
(LMI) [2, 4, 8, 10, 11]. LMIs problems can be efficienty
solved using widely available software. We compute Lya-
punov functions to prove some level of performance of the
systems to study in the presence of delays between sensors
and actuators. Sections 3 and 4, study the stability with
constant and varying delays use Lyapunov functions.

Asynchronous dynamical systems (ADS) [6, 13, 14] incor-
porate continuous and discrete dynamics. In section 5,
these systems successful modelate data dropout of sam-
ples in a NCS. It allows to analyze the rate at which the
data should be transmitted to achieve the desired perfor-
mance. Now compute a Lyapunov function for an ADS is
cast to a optimization problem involving bilinear matrix
inequalities (BMI).

2 NCS description

In Figure (1) the NCS is illustrated in a block diagram.
The continuous controlled plant is assumed to be

&(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

and the linear feedback state controller is

(1)

u(t) = —Ku(t) (2)
where z(t) € R"™ is the state of the plant, u(t) € R™
the controlled input and y(¢) € R™ the output; A, B, C
and K are matrix of appropiate sizes. We assume that
the control system can be designed without having the
network in mind. That is, the original continuous plant
and the continuous state feedback controller without the
network connection is stable or satisfies certain control
specifications.

Even though the delay between sensor to controller can
be known, the controller does not take it into account.
Thus, the influence from the network is collected in the
total delay between sensor and actuator, 7, = 7, + 7.°.
The variable 75 is assumed to be less than the sampling
interval h. If this condition is not satisfied, the data will
be removed as in section 5. The communication network
gives total delays between sensor and actuator that are
totally random and the network messages are received in
the order they were generated. Now Equations (1) and
(2) are rewritten as

#(t) = Az(t) + Bu(t), t € [kh + 7, (k + 1)h + 741],
y(t) = Cx(t),
u(tt) = —Kax(t — ), t € {kh+ 7,k =0,1,2,...} (3)

Two control samples uiy—1 and uy will be applied during
the kth sampling period as in Figure (2). Then, Equations
(3) sampled with period h are [1]

Tpy1 = P + To(mw)ur + T (78)up—1,

yr = Czy.

where
P — AR

h*‘rk
To(7k) :/ e* Bds,
0
Tk
() = eA(th’“)/ et Bds.
0

If we define 2z, = [z],ul |]T

tor, the new state is

zk1 = (k) zu+T (T )ug = ((I) Fl(Tk)) Zk+(

as the augmented state vec-

To(r)
(1)

0 0



or
21 = O (k) 2k (5)
where
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-K 0

We get a discrete time linear time variant system.

3 Stability with constant delays

The simplest model of the network delay is to model it as
being constant for all the transfers in the communications
network. Even if the network has varying delays, the worst
case delay can be used in the analysis using buffers in the
input of the plant.

When the delay is constant 7 = 73, Vk, Equations (5) and
(6) are

21 = @2 (1) 2, (7)
. (r) = (@—E(}?’)K F1é7’)> 7 (8)

all the coefficients of ®,(7) are constant and therefore the
system is still time invariant and the analysis is simplifyed.

The stability triangle [1] can be used to explicitly calculate
the relations between 7 and h. If the system is complex, it
may be analytically infeasible to calculate the exact stabil-
ity region. However, stability regions can be determined
by simulation and the Lyapunov stability.

A discrete time linear time invariant (DTLTT) system as
in Equations (7) and (8) is said stable in the sense of
Lyapunov if there exists a Lyapunov function V(zy) such
that V(zk41) — V(zx) < 0, Vzi, with zg # ©. If a DTLTI
system is asymptotically stable, there exist a quadratic
Lyapunov function V(2x) := 2} Pz, > 0, P € S", Vz #
©. This can be rewriting as an LMI:

Vizgt1) = V(zk) = z,erlATPAzk —2f Pz =
= Z,{(ATPA — P)Zk <0, Vzi 75 (C]

equivalent to

ATPA-P <O (9)
The stability region is plotted by incrementally increasing
the delay, 7, and testing the existence of a Lyapunov ma-
trix, P. The Matlab’s LMI control toolbox [4] is used to
to find P and demostrate que system is stable. A point is
marked in the location of the stability region.

If we considerer the following integrator example
‘T(t) = u(t)7 u(t) = _‘T(t)v

Equation (8) is

(I)Z(T)_<1—(h—r)K 7'>7 (10)

-K 0

and its stability region, points that
®,(1)TP®,(1) — P < 6, is plotted in Figure (3).
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Figure 3: Stability region of the integrator

4 Stability with varying delays

Normally, network delays are usually random due to sev-
eral reasons: waiting for the network to be idle, transmi-
sion and waiting for queued messages, and retransmisions
because of errors and collisions. If the delays are varying,
the NCS represented by Equation (5) and (6), is a DTLTV
system.

If an DTLTV system can be formulated as

241 :Azk, Zk GRH, Aec A (11)
where A is an closed convex set, A = co[Aq,. .., Ayx], this
system is robustly stable if (11) is asymptotically stable
for all A € A.

Lyapunov quadratic stability can be applied. The follow-
ing statements are equivalent:

a) The system in Equation (11) where A € co[A1, ..., AN]
is quadratically stable
b) There exists P € S™ such that the LMI
ATPA;—P<© (12)
is feasible.
c) There exists P € S™ such that the LMI
[P];li A}TDP} -0 (13)

is feasible.

Furthermore, if the system of Equation (11) is quadrati-
cally stable then it is also robustly stable.

The Schur complement lemma converts a class of convex
nonlinear inequalities as in Equation (12) to an LMI as in
Equation (13). The Schur complement lemma says

R>06 [Q S

Q-SR1'S=0 |87 R} -0



thus, an equivalent alternative form for P = ©, ATPA —
P<0Ois

[P ATP C o

pAT P
Therefore, it can be demostrated that if Equation (12)

is satisfyed for {A1,...,An}, also is satisfyed for A €
co[A1, ..., As]. A can be written as

N
A= Z N A;
=1

where Efvzl A; = 1, and multiplying each inequality by \;

[P(AZA?) P :| -0,Vvi=1,...,N. (14)
and summing up all the above inequalities provides
[ Sl AP Zf-V:l(AiAiT)P} _ [ P ATP} o
PN n4)  S¥oap 1T Llra P
(15)

which implies that A is stable.

Returning to the integrator example, the coefficients of its
2x2 matrix, ®,(7;), are depicted in Figure (4). This is a
very simple case, where @, (75) changes as a straight line.
The integrator system with varying delays is rewritten as

(I)z(Tk) = )\(I)Z(O) + (1 - A)Q)Z(h)? A€ [07 1]
and the quadratic stability condition is
P06

oL(0)PD,(0)-P <O
oL (h)PP,(h) — P < ©

If such P exists, it exists for the convex set formed by
®,(0) and ®,(h) and the integrator with varying delays is
stable irrespective of how fast the time variations of @, (73)
take place. In fact, V(z) := 27 Pz serves as a Lyapunov
function for this time-varying system.

Conventionally, a faster sampling rate is desirable in
sampled-data systems so the discrete-time control design
and performance can aproximate that of the continuous
system. But in NCS, a faster sampling rate means a
increasing in the network load, which in turn results in
a longer delay of signals. We must find the sampling
rate that can both tolerate the network-induced delay and
achieve the best performance.

After some tests, we found that the maximum sampling
rate, hmaz, Which allows stability with varying delays be-
tween 0 and h, is 0.9 s. The LMIs are feasible for this
value of sampling rate. The P of Lyapunov found is

p_ 1.0000 0.4600
~10.4600 0.8219
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Figure 4: Network control system.

5 Stability with data dropout

Not all the networks can garantee that the delay will be
less than a known value. If the delay is longer than one
sampling period (7 > h), it may be advantageous to dis-
card the old sample and wait for the next one. In this
case, only one control input (ur = ug—1) will be applied
during the kth sampling period as Figure (5) shows. Fur-
thermore, network are unreliable data transmision paths,
where data are dropped occasionally due to packet colli-
sion or network node failure. Feedback controlled plants
can tolerate a certain amount of data loss, thus it is valu-
able to determine whether the system is stable when only
receiving the data at a certain rate.
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Figure 5: Data dropout on the input signal.

An NCS with data dropout can be modeled as an asyn-
chronous dynamical system (ADS) with rate constraints
on events. ADSs, like hibrid systems, are systems that
incorporate continuous and discrete dynamics. The con-
tinuous dynamics are governed by differential or difference
equations, and the discrete dynamics are governed by a fi-
nite automata that are driven asynchronously by external



discrete events with fixed rates [6].

Data dropout can be easily represented in an ADS system
with two events as in Figure (6). The switch closes at a
certain rate r1 (event Fj, position s1) and data is trans-
mitted and arrives on time (73, < h). The switch is open
at a rate ro = 1 — 1 (event Fs, position s;) and data
arrives on late (7, > h). In this last case, the output of
the switch is held at the previous value and the data is
lost.

Plant

Controller

Figure 6: Dropout in input signal.

If the continuous dynamics of the ADS is governed by
difference equations, the system is exponentially stable if

lim o”||zx| =0 (16)
k—oo

for some o > 0. The largest « is referred to as the decay
rate of the system. In what follows it is shown a Lyapunov
argument to compute bounds on the decay rate of an ADS.

Suppose a Lyapunov function V : R™ — R, continuosly
differentiable and

Billae]” < V(z) < Belanl?

where 312 > 0. If the evolution of the state is given
by two difference equations, zx11 = fs(vr) where s €
{1,2}, and r; and rq9 are its rates, a sufficient condition
for exponential stability of the ADS is the existence of an
V asin (17) and two scalars a2 > 0 satisfying

(17)

V(@n) = Vi) < (a2 = )V(wx), s € {12} (18)
and
ajtag? >a>1
This last equation can be equivalently written as
rilogay + rologas > loga > 0 (19)

Under these conditions the ADS satisfyes Equation (16)
and the system is exponentially stable on the average. On
the average means that it is not require that every differ-
ence equation of the ADS have to decrease monotonically
at some rate «, but rather it guarantees the ADS will be
stable on the whole.

The proof is as follows. From any sampling instant, ¢,
until the following one, t;41, only one event occurs, either
E; or Es, then from Equation (18) we get

V(®kt1)

Vi) <(a;?—1), se{1,2}

or

logV(xgs1) — log V(zk) < —2log a (20)

Notice that whenever an event E; occurs we have a con-
tributing term «; at the right hand side of Equation
(20). Hence, summing up these inequialities for k =
1,2,..., K —1 gives

logV(xg) — logV(zg) < —2log a1 Ty — 2log aaTh

where T; is the number of times F; occurs. In the limit,
T; is equal to r;k as K — oo. Therefore,

log V(xy) — logV(xzg) < —2logayr k — 2log aarak
or by Equation (18)
log V(zr) — log V(zg) < —2logak

so that
V(CL‘;C) < 6_210gakV($0)

Now using Equation(17) we get V(zg) < B2l2o]/? and
Billzk? < V(xk), or

[ B2
||z || < E”IOH

lim of||zg| =0
k—oo

or

Let the state of the ADS, wy, = [z, z[]T, be the input
and the output of the switch of Figure (6), and its dynam-
ics wrt1 = Py,; wy. From Equation (4), when the switch
is in position s;

_[2(m) —L(m)K
Pua() = [g) “rmyK)

whereas if the position is so
Doy o(Th) = {(i)(gk) _f(;k)K}

For the integrator example, its dynamics when the switch
is in position s; is

‘I)w,l(Tk) = )\ifl)wyl(()) + )\jq)w,l(h) =

(0)

_ ~T(0)K ®(h) -T(h)K
=i [é(()) —f(O)K} A [cﬁ(h) —f(h)K} (21)
for any A1, A2 such A1 + Ay = 1. If the switch is in s
0,0 = [T TTUIK] (22)

The stability condition by Equations (18), (19), (21) and
(22) is
artan? >1

&7 1(0)P®,1(0) < a2P



@ 1 (W) PPy (h) < ay?P

L PPy < ay’P (23)

The integrator is found stable on the average for h = 0.5
and a dropout rate () of 20% with the following solutions
to Equations (23)

o1 = 0.7852, ap = 2.6307

1.0000 0.2356 1.2565 0.9874
p— 0.2356 0.6983 2.5845 1.4223
1.2565 2.5845 1.1764 3.1209
0.9874 1.4223 3.1209 1.2236

6 Conclusions

This paper studied the two main issues in network con-
trol systems. The first one is the network-induced delay
when transmiting sensor and control data. The delay can
be either constant or time varying. If the delay is con-
stant the relationship between the sampling rate h and
the network-induced delay 7 was showed using a stability
plot. If the delay is time varying, an LMI has been used
to demostrate the quadratic stability. Then we modeled
the packet dropout as an asynchronous dynamical system.
We determine whether the NCS is stable at a certain rate
of data loss.
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