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Abstract

This paper poses a simple question: what is the lowest rate,
in bits per unit time, at which feedback information can be
transmitted in order to stabilise a given dynamical system?
Expressions for this fundamental quantity have recently been
derived for linear systems, with and without noise. In this
work, the case of deterministic, fully observed, continuously
differentiable dynamical systems is investigated, under the ad-
ditional assumptions of controllability to the desired set-point
and bounded initial states. By the use of volume-partitioning
arguments and local Jordan forms, the infimum feedback data
rate is shown to be the base-2 logarithm of the magnitude of
the determinant of the open-loop Jacobian on the local un-
stable subspace, evaluated at the set-point. Connections to the
concept of local topological feedback entropy are briefly dis-
cussed.

1 Introduction

In many developing application areas such as micro-
electromechanical systems and decentralized tracking, the re-
sources available for communication between sensors and con-
trollers can be severely limited, due to size or cost. This im-
pinges directly on the feedback control performance that can
be achieved, since it implies that the data received by various
components is either out-of-date or poor in resolution, if not
both. In these situations the communications and control is-
sues are intimately related and the analysis of one aspect cannot
proceed without consideration of the other.

The focus in this paper is on communication constraints that
take the form of limited data rates, in bits per unit time. In
particular, the aim is to investigate the stabilisability of a given
dynamical system when feedback information is received over
a noiseless, digital channel with a finite data rate. A wealth of
results are available for linear, time-invariant systems without
disturbances, starting with the seminal paper [3] and continu-
ing with [17, 1, 4, 2, 13, 8, 5]. Particularly relevant are
[9, 15, 11, 1, 6], in which necessaryand sufficient data rate
bounds for the stabilisability of noiseless linear systems were
derived, and [10], in which a tight bound for stochastic linear
systems was derived. Despite different formulations and as-
sumptions, the bounds obtained were generally all equal to the
sum of the logarithms of the magnitudes of the unstable, open-
loop eigenvalues.

This line of inquiry is extended here towards a general class of
nonlinear systems. Assuming that the dynamical map is con-
tinuously differentiable and has a fixed point, the objective is
to find the infimum data rate above which there exists a cod-
ing and control law which uniformly exponentially stabilises
the system. In the next section, the problem is formulated pre-
cisely and the main result, Theorem 1 stated. Its connections
to the open-loop notions ofKolmogorov-Sinaiandtopological
entropy are also briefly discussed. The rest of the paper is the
proof of the theorem. In section 3, a volume-partitioning argu-
ment is used to establish the necessity of the data rate bound
specified. Its sufficiency is then confirmed in the penultimate
section by explicitly constructing a coding and control scheme
and establishing uniform exponential stability.

2 Formulation and Statement of Main Result

First, certain conventions need to be defined. Sequences
{aj}k

j=0 are denoted̃ak and‖·‖ represents either the Euclidean
norm on a vector space or the matrix norm induced by it. Le-
besgue measure is denotedλ, vectors are written in bold-face
type and matrices in bold-face upper-case. Then × n identity
matrix is denoted byIn, the m × n 0 matrix by0m×n, the
m × n matrix with 1’s on the left upper-corner diagonal and
zeros elsewhere byIm×n and the spectrum of a matrix is rep-
resented asσ(·), with multiple eigenvalues permitted. As usual,
the real numbers are writtenR, complex numbersC, positive
integersN and non-negative integersZ+.

Consider the fully observed, nonlinear, time-invariant system

xk+1 = f(xk,uk), ∀k ∈ Z+, (1)

wherexk ∈ Rn is the state anduk ∈ Rm the control vector. It
is assumed that

A1 the dynamical mapf : Rn × Rm → Rn is differentiable
once with continuous 1st order partial derivatives,

A2 there exist a fixed pointx∗ and constant inputu∗ such that
x∗ = f(x∗,u∗),

A3 f is controllable toz∗ in the sense that given anyl, ε > 0,
∃N ∈ N, U > 0 s.t.∀‖x0−x∗‖ ≤ l, there exists a control
sequence{uk}N−1

k=0 with ‖uk − u∗‖ ≤ U that ensures
‖xN − x∗‖ ≤ ε,

A4 the pair(A,B) is controllable, whereA andB are the Jac-
obians off w.r.t. state and control respectively at(x∗,u∗).



Suppose that the sensor measuring the states is connected to a
distant controller by a noiseless digital channel that can carry
only one discrete-valued symbolsk per sampling interval, se-
lected from a coding alphabetSk of time-varying sizeµk. The
transmission data rateR may then be defined as the asymptotic
average bit rate

R
∆= lim inf

k→∞
k−1

k−1∑
j=0

log2 µj . (2)

This is a more general definition of channel data rate than used
in the previous work on linear systems [11] and the motivation
for its use will become clear in section 4.

As the objective here is not to address computational limita-
tions, each symbol transmitted by the coder is permitted to de-
pend on all past and present measurements and past symbols,
i.e.

sk = γk(x̃k, s̃k−1), ∀k ∈ Z+, (3)

whereγk : Rn×(k+1) × S̃k−1 → Sk is the coder mapping
at timek. It is assumed that for any sequencec̃k−1 ∈ S̃k−1,
the coding partitions{γ−1

k (ck, c̃k−1) ⊂ Rn×(k+1)}ck∈Sk
are

measurable. Neglecting transmission errors, assume that each
symbol takes one sampling interval to be completely transmit-
ted. Hence at timek the controller hass0, . . . , sk−1 available
and generates

uk = δk(s̃k−1), ∀k ∈ Z+, (4)

whereδk : S̃k−1 → Rm is the controller function at timek.

Define thecoder-controlleras the triplet of alphabet, coder and
controller sequences(S̃∞, γ̃∞, δ̃∞). Given an asymptotic aver-
age data rateR > 0, the primary objective here is to investigate
whether there exists one that uniformly exponentially stabilises
the plant (1) over initial states within a ball of radiusl0, i.e.

%−k sup
‖x0‖≤l0

{‖xk − x∗‖, ‖uk − u∗‖} → 0 ask →∞ (5)

for some% ∈ (0, 1), wherex∗,u∗ are the fixed point and con-
stant input defined in assumption A2. The weaker notion of
uniform asymptotic stability, corresponding to% = 1, will also
be explored.

For finite-dimensional, linear systems, it is known that there is
a critical data rate which determines whether closed-loop sta-
bility is possible or not [15, 11]. It may therefore be expected
that a critical rate will also exist for the case of an nonlinear
system. The main result of this paper is now stated:

Theorem 1 Let assumptions A1–A4 hold for the plant (1).
Then any coder-controller (3)-(4) which stabilises the plant in
the uniform exponential sense (5) must have asymptotic aver-
age feedback data rateR (in bits per interval) (2) strictly sat-
isfying

R >
∑

η∈σ(A): |η|≥1

log2 |η|, (6)

whereA is the Jacobian of the dynamical mapf with respect
to state, evaluated at the set-point, andσ(A) is the spectrum
of A.

Furthermore this bound is tight, i.e. for any numberR0 satisfy-
ing it there exists a uniformly exponentially stabilising coder-
controller that has a smaller data rate.

For the weaker notion of uniform asymptotic stability this lower
bound is still necessary, but equality may be possible.

As no assumptions apart from causality and measurability have
been placed on the coding and control scheme, this in a very
general sense defines the infimum rate at which information
can circulate in a stable, deterministic feedback loop. Note that
is a function only of the local, open-loop dynamics at the de-
sired set-point and agrees with the results of [15, 11] for linear
systems without disturbances.

As in the linear case, insight into the meaning of (6) can be
obtained by rewriting it as2R >

∏
|η|≥1 |η|. The RHS is the

factor by which a volume in the locally unstable subspace in-
creases at each time step in open-loop, while the left-hand side
is the average number of coding regions into which this volume
can be partitioned. Hence the system is stabilisable if and only
if the increase in unstable uncertainty volume can be counter-
acted by the decrease due to coding.

The RHS of (6) is strikingly similar to expressions for the
Kolmogorov-Sinaiandtopologicalentropy rates of linear maps;
see e.g. [16]. The crucial difference with the result above is
that these notions are defined for open-loop systems, whereas
the infimum stabilising data rate is a closed-loop concept. Non-
etheless, it is possible to rigorously define atopological feed-
back entropy (TFE)for the plant, describing the rate at which
the plant generates information in a stable feedback loop [12].
By taking appropriate limits alocal TFE at a fixed point can
then be defined and shown to coincide with the RHS of (6).
From this viewpoint, exponential stability is possible if and
only if the data rate of the channel exceeds the local TFE at
the desired set-point, an interpretation that parallels Shannon’s
source coding theorem in digital communications [14]. How-
ever, the remainder of this paper is devoted to proving Theorem
1 without referring to the notion of TFE.

3 Necessity

As mentioned above, the intuition behind the necessity of (6)
is that the open-loop growth in unstable subspace uncertainty
volume near the set-point must be counteracted by the reduc-
tion in volume due to the coding partitions. A similar idea was
employed in the linear case [15, 11]. However, the nonlinearity
of the plant necessitates rather different technical tools.

Suppose that uniform exponential stability has been achieved
by some coder-controller(S̃∞, γ̃∞, δ̃∞). Recall thatA is the
Jacobian of the dynamical map w.r.t. the state at the set-point,

A ∆=
∂f
∂x

∣∣∣∣
(x∗,u∗)

∈ Rn×n, (7)



and letT ∈ Rn×n be an orthonormal real similarity transform
such that

J ∆= TAT′ ∈ Rn×n (8)

is a real Jordan form; see e.g. [7] for details. Briefly,J has
a block-diagonal structure with each block possessing either
one real or two complex conjugate eigenvalues, not counting

repeats. In terms of system dynamics,zk
∆= Txk can then

be interpreted as a vector of modes with decoupled open-loop
dynamics near the set-point.

Definezu
k ∈ Rd to be the vector of those modes governed by ei-

genvalues ofJ not less than 1 in magnitude. Assuming without
loss of generality that the blocks ofJ are ordered according to
descending eigenvalue magnitudes,

zu
k = Id×nxk, with zu

∗
∆= Id×nx∗. (9)

It then trivially follows that‖xk − x∗‖ = ‖zk − z∗‖ ≥ ‖zu
k −

zu
∗‖, so thatzu

k → zu
∗ exponentially ink and uniformly over

x0.

Next,∀c̃k−2 ∈ S̃k−2 define thelocally unstable uncertainty set

Ik(c̃k−2)
∆={

zu ∈ Rd| ‖x0‖ ≤ l0, s̃k−2 = c̃k−2, zu = zu
k

}
, (10)

i.e. the set of all possible points thatzu
k can take given the sym-

bol sequencẽsk−2 = c̃k−2. As the dynamical mapf is con-
tinuous and the coding partitions measurable, these uncertainty
sets are also measurable and so aworst-case locally unstable
uncertainty volume

vk
∆= max

c̃k−2
λ{Ik(c̃k−2)} (11)

can be defined. Now, ifr denotes the supremum distance of
points in a measurable setH ⊂ Rd from the distance, thenH
is obviously wholly contained in the ball of radiusr centred at
the origin. Hence

λ{H} ≤ βrd = β sup
x∈H

‖x‖d, ∀ measurableH ⊂ Rd,

whereβ is thed-dimensional sphere constant. Thus

lk
∆= sup

‖x0‖≤l0

{‖zk − z∗‖, ‖uk − u∗‖} ≥ sup
‖x0‖≤l0

‖zu
k − zu

∗‖,

= max
c̃k−2

sup
‖x0‖≤l0, s̃k−2=c̃k−2

‖zu
k − zu

∗‖, (12)

≥ max
c̃k−2

β−1/dλ{zu
k − zu

∗| ‖x0‖ ≤ l0, s̃k−2 = c̃k−2}1/d,

= β−1/d max
c̃k−2

λ{zu
k| ‖x0‖ ≤ l0, s̃k−2 = c̃k−2}1/d, (13)

= β−1/d max
c̃k−2

λ{Ik(c̃k−2)} ≡ β−1/dv
1/d
k , (14)

i.e., vk → 0 exponentially as well. The equality (13) is a
consequence of the invariance of Lebesgue measure to con-
stant translations, while the equality in (12) follows from the
fact that, with the coder-controller fixed, the samex0 can-
not yield two different symbol sequences, i.e. the regions

{x0 ∈ Rn : ‖x0‖ ≤ l0, s̃k−2 = c̃k−2}c̃k−2∈S̃k−2
must be

disjoint and exhaustive.

A recursive lower bound for the worst-case volumevk will now
be derived. Observe that

vk+1
∆= max

c̃k−1
λ{zu

k+1| s̃k−1 = c̃k−1},

= max
c̃k−1

λ {g(zu
k, zs

k,uk)| s̃k−1 = c̃k−1} , (15)

where for convenience, the locally stable components ofTxk

are denotedzs
k ∈ Rn−d andg(zu, zs,u) ∆= Id×nTf(x,u). The

next step is to replace the nonlinear functiong with its local
linearisation. Asf has continuous first order derivatives,∀‖z−
z∗‖, ‖u− u∗‖ ≤ l

g(zu, zs,u) = zu
∗ + Ju(zu − zu

∗) + Id×nTB(u− u∗) + o(l)

uniformly overz,u asl → 0, whereJu ∆= Id×nTJT′In×d ∈
Rd×d, the Jordan form governing the locally unstable subspace.
From this it can established that∃ε(l) → 0 s.t. for any measur-
ableH ⊂ {(z,u) ∈ Rn × Rm| ‖z− z∗‖, ‖u− u∗‖ ≤ l},

λ {g(zu, zs,u)| (z,u) ∈ H} ≥
[1− ε(l)]λ {zu

∗ + Ju(zu − zu
∗) + Id×nTBu| (z,u) ∈ H}

Substituting this into (15) withl = lk, zu
k = zu, zs

k = zs, uk =
u and{(zk,uk)| s̃k−1 = c̃k−1} = H, and writingε(lk) ≡ εk,

vk+1

≥ (1− εk) max
c̃k−1

λ {zu
∗ + Ju(zu

k − zu
∗)

+ Id×nTBδk(c̃k−1)| s̃k−1 = c̃k−1} ,

= (1− εk) max
c̃k−1

λ {Ju(zu
k − zu

∗)| s̃k−1 = c̃k−1} , (16)

= (1− εk) max
c̃k−1

|detJu|λ {zu
k| s̃k−1 = c̃k−1} , (17)

≡ (1− εk)|detJu|max
c̃k−2

{
max
ck−1

λ {zu
k| sk−1 = ck−1,

s̃k−2 = c̃k−2}} , (18)

where (16) follows from the translation-invariance of Lebesgue
measure and (17) describes the effect of an invertible linear
transformation on volume.

The trivial decomposition (18) leads to an observation that is
the heart of the necessity argument developed here. The un-
certainty sets{zu

k| sk−1 = ck−1, s̃k−2 = c̃k−2} are not neces-
sarily disjoint as the single symbolck−1 runs over its possible
values. However, sincesk−1 is a well-defined function of the
initial state and previous symbols, their union must cover the
set{zu

k|s̃k−2 = c̃k−2}, i.e.

λ ({zu
k| s̃k−2 = c̃k−2})

= λ

µk−1−1⋃
ck−1=0

{zu
k| sk−1 = ck−1, s̃k−2 = c̃k−2}

 ,

≤
µk−1−1∑
ck−1=0

λ{zu
k| sk−1 = ck−1, s̃k−2 = c̃k−2},

≤ µk−1 max
ck−1

λ{zu
k| sk−1 = ck−1, s̃k−2 = c̃k−2}. (19)



Substituting this into (18),

vk+1 ≥ (1− εk)|detJu|max
c̃k−2

µ−1
k−1λ {z

u
k| s̃k−2 = c̃k−2} ,

=
(1− εk)|detJu|

µk−1
vk ≥ v1

k∏
j=1

(1− εj)|detJu|
µj−1

,

by repeating the recursionk times. Asvk → 0 exponentially
fast,∃% ∈ (0, 1) s.t. for sufficiently largek,

%k ≥
k∏

j=1

(1− εj)|detJu|
µj−1

, (20)

⇒ 1
k

k∑
j=1

log2 µj−1 ≥ log2 |detJu|

+
1
k

k∑
j=1

log2(1− εj)− log2 %,

⇒ R
∆= lim inf

k→∞

1
k

k∑
j=1

log2 µj−1 ≥ log2 |detJu|

+ lim inf
k→∞

1
k

k∑
j=1

log2(1− εj)− log2 %, (21)

= log2 |detJu| − log2 %, (22)

> log2 |detJu| = log2

∣∣∣∣∣∣
∏

η∈σ(Ju)

η

∣∣∣∣∣∣ ,

=
∑

η∈σ(A): |η|≥1

log2 |η|, (23)

where (22) follows sinceεj → 0 and the inequality in (23)
from the fact that0 < % < 1 strictly. This completes the proof
of necessity.

Note that if the definition of stability used was weakened to
uniformasymptoticstability, then the argument still applies but
the strictness of the inequality in (23) is lost, since% may not
be strictly less than 1.

4 Tightness of Bound

The final step in proving Theorem 1 is to establish that the
bound (6) is achievable, i.e. there exist coding and control
schemes with asymptotic average data rates arbitrarily close to
it that still achieve uniform exponential stability. In order to do
so a specific coder-controller will be constructed and analysed.

The basis of the scheme is a two-phase strategy. In the first
phase, a large but finite data rate is used to force the system into
a specifiedb0-neighbourhood of the origin in finite time. In the
second phase, a more refined coder-controller is used to drive
it exponentially fast towards the origin. This involves allocat-
ing each locally unstable component ofzk a an effective data
rate roughly proportional to the log-magnitude of its governing
local eigenvalue, while ignoring locally stable modes. Clearly,
the asymptotic average data rate will be determined only by the

second phase, since the first phase is completed in finite time
with a constant data rate. It will then be shown that, by choos-
ing a sufficiently smallb0, the asymptotic average data rate of
the second phase can be made arbitrarily close to the RHS of
(6).

Note that this scheme is not proposed as a practical control
law, as issues such as performance, robustness and complexity
would then need to be considered. It is intended only to demon-
strate that the data rate lower bound (6) can be approached ar-
bitrarily closely from above, making it the infimum exponen-
tially stabilising data rate.

4.1 Phase One

By the controllability assumption A3,∀ε, l > 0, ∃N ∈
Z+, U > 0 such that∀‖z0 − z∗‖ ≤ l, there is a control se-
quenceṽN−1 of lengthN and uniformly bounded byU that
takes the system statewithout communication constraintsto
within ε of the fixed point,‖znominal

N − z∗‖ ≤ ε. In principle,
these controls are determined solely by the initial state, which
is fully observed by the coder and can then pre-calculate them.
One strategy the coder can then use is to

1. overbound them-dimensional ball of radiusU and centre
u∗ by a cube centred atu∗ with sides of length2U and
partition this intoµ0 indexed, identical sub-cubes.

2. at timek, transmit the indexsk of the subcube which con-
tains the nominal control signalvk+1,

Upon receiving this index, the controller then appliesuk =
the midpoint of this sub-cube. As‖uk − vk‖ ≤ U/µ

1/m
0 ,

the continuity off w.r.t. control implies that that∀θ > 0,∃µ0

sufficiently large such that‖zN − zn
N‖ ≤ θ; hence for any

permitted initial state,

‖zN − z∗‖ ≤ ‖zN − znominal
N ‖+ ‖znominal

N − z∗‖ ≤ θ + ε

I.e. the state can be brought arbitrarily close to the origin in
finite time N by using a constant, sufficiently large data rate
log2 µ0.

4.2 Phase Two

Once the state is within some arbitrarily small neighbourhood
of the origin, the coding and control is performed more care-
fully, by taking explicit account of the local dynamics. First,
recall that the real Jordan formJ of the Jacobian off w.r.t. state
at the set-point has a block diagonal structure

J ≡ diag(J1, . . . ,Jr) ∈ Rn×n.

Each blockJi ∈ Rdi×di has either one distinct, real eigenvalue
ηi of multiplicity mi = di, or two distinct, complex conjugate
eigenvaluesηi, η̄i of multiplicities mi = di/2. The compon-
ents of the transformed state vectorzk corresponding to the
block Ji are denotedz(i)

k ∈ Rdi . A further property of these



blocks that will be used later is that∃κ > 0 s.t.

‖Jτ
i ‖ ≤ κτdi−1|ηi|τ , ∀N ∈ N. (24)

This states that powers of a Jordan block grow exponentially
according to the magnitude of its eigenvalue, with possibly
an extra polynomial factor arising from multiplicity; see [7],
pg. 138.

The coder to be used in the second phase can now be construc-
ted. For convenience, the time indexk is reset to zero, so that
‖z0− z∗‖ ≤ b0 a number that can be made arbitrarily small by
increasing the data rate in the previous phase. LetR0 be any
number that satisfies (6) and divide timesk ∈ Z+ into epochs
[jτ, . . . , (j + 1)τ − 1], j ∈ Z+, of some uniform integer dur-
ationτ . At time k = jτ , supposebj is a pre-defined, uniform
bound such that‖zjτ − z∗‖ ≤ bj , ∀‖z0 − z∗‖ ≤ b0. The way
in which {bj}j∈Z+ is generated will be specified later. Over-
bound this region by ann-dimensional cube centred atz∗ with
sides of length2bj . Then partition this cube by dividing each

coordinate axis corresponding to a component ofz(i)
jτ into Mi

intervals of equal length,

Mi
∆= b|ξηi|τc+ 1 for |ηi| ≥ 1,Mi

∆= 1 for |ηi| < 1, (25)

whereb·c denotes rounding down and the parameterξ > 1 is
selected to satisfy

0 < d log2 ξ < R0 −
∑
|ηi|≥1

di log2 |ηi|

≡ R0 −
∑

|η|∈σ(A):|η|≥1

log2 |η|. (26)

Note that as the right-hand side (RHS) is guaranteed positive,
candidates forξ always exist. The total number of subcuboids
thus formed is

∏r
i=1 Mdi

i , so index them in a predefined way

by the integers0, . . . , µjτ − 1, whereµjτ
∆=

∏
1≤i≤r Mdi

i . At
time jτ , transmit the indexsjτ of the one which containszjτ .
At remaining times in the epochjτ +1 ≤ k ≤ (j+1)τ−1, set
µk = 1, i.e. transmit no information. Clearly, the asymptotic
average data rate over both phases is determined only by the
average data rate over this second phase, so

R =
1
τ

∑
|ηi|≥1

di log2 (b|ξηi|τc+ 1) ≤ 1
τ

∑
|ηi|≥1

di log2 (2|ξηi|τ ) ,

=
d

τ
+ d log2 ξ +

∑
|ηi|≥1

di log2 |ηi| < R0

by (26), for sufficiently largeτ .

Now consider the controller at the other end of the channel,
which receives the symbolsjτ at timejτ +1. As it also knows
the uniform boundbj and the number of intervalsMi, i =
1, . . . , r, it then knows which subcuboidzτj lies in and uses
its centre as an estimateqj . Hence

‖z(i)
jτ − q(i)

j ‖ ≤

[
di∑

h=1

(
bj

Mi

)2
]1/2

=
√

di

Mi
bj . (27)

It then calculates the nextn control signalsuτj+1, . . . ,uτj+n

by using the controllability of(A,B), and hence of(J,TB),
to force the linearised system with nominal initial stateqj to
the origin inn + 1 steps, i.e. by solving

jτ+n∑
k=jτ+1

Jτj+n−kTB(uk − u∗)

≡ W(yj − y∗) = −JnT(qj − z∗), ∀j ∈ Z+, (28)

whereW ∆= [TB JTB · · ·Jn−1TB] ∈ Rn×nm andyj
∆=

[u′jτ+n u′jτ+n−2 · · ·u′jτ+1]
′ ∈ Rnm. The remaining control

signals in the epoch are set tou∗

Note that as the controllability matrixW has rankn, it pos-
sessesn linearly independent columns∈ Rn and only the cor-
respondingn scalar components of the stacked control vector
yj are needed. If the inverse of the matrix formed by these
columns is padded withnm − n null rows, corresponding to
the unnecessary components ofyj , to formV ∈ Rnm×n, then
the stacked control may be expressed more explicitly as

yj − y∗ = −VJn(qj − z∗), (29)

i.e. a linear function ofqj − z∗.

The crucial remaining step is to determine how to update the
uniform upper boundbj from one epoch to the next. In the
following a recursion forbj will be sought which decays expo-
nentially to zero for a sufficiently large but fixed epoch duration
τ . As bj ≥ ‖zjτ − z∗‖ by definition, this will effectively com-
plete the proof of Theorem 1.

First observe that, asqj ∈ Rn lies in a cube of sides2bj

centered atz∗, ‖qj − z∗‖ ≤
√

nbj . In addition, by (29)∃C ∆=
‖VJn‖ independent ofτ andbj s.t.‖uk − u∗‖ ≤ Cbj for all
timesk in the jth epoch. Now consider the mapf iteratedτ
times from some initial statez and with inputsv0, . . . ,vτ−1,
denotedfvτ−1 · · · fv0(z) for convenience. By the continuous
differentiability off , it follows that∀‖z−z∗‖ ≤ b, ‖vt−u∗‖ ≤
Cb, t = 0, . . . , τ − 1, ∃ζ(b) s.t.

bζ(b) ≥
∥∥fvτ−1 · · · fv0(z)− z∗ − Jτ (z− z∗)

−
τ−1∑
t=0

Jτ−1−t
i TB(vt − u∗)

∥∥∥∥∥
(30)

whereζ(b) may depend onτ but → 0 with b. Substituting
z = zjτ , vt = ujτ+t, rearranging and looking at eachith local
mode,

‖z(i)
(j+1)τ − z(i)

∗ ‖ ≤ ‖Jτ
i ‖‖z

(i)
jτ − q(i)

j ‖+ ζ(bj)bj ,

≤ κτdi−1|ηi|τ
√

dibj

Mi
+ ζ(bj)bj .(31)

⇒ ‖z(j+1)τ − z∗‖

≤
√

rκ max
1≤i≤r

{
τdi−1|ηi|τ

√
di

Mi

}
bj +

√
rζ(bj)bj ,(32)

≡ [β(τ) +
√

rζ(bj)]bj =: bj+1, (33)



where (31) follows from (24) and (27), and (32) from the tri-
angle inequality.

Now, consider thebj-independent termβ(τ) on the RHS of
(33). If |ηi| < 1, Mi = 1 andτdi−1|ηi|τ → 0 asτ → ∞. If
|ηi| ≥ 1, Mi ≥ |ξηi|τ from (25), so

τdi−1|ηi|τ
√

di

Mi
≤

√
diτ

di−1ξ−τ → 0 asτ →∞.

Hence,β(τ) can be made arbitrarily small, independently of
bj . Select some value forτ large enough thatβ(τ) < 1. As
for any fixedτ , ζ(b) → 0, and further recalling thatb0 can
be made arbitrarily small by the first phase of the coding and
control scheme, setb0 so that∀b ≤ b0, β(τ)+

√
rζ(b) ≤ some

selectedχ < 1. It then follows thatb1 ≤ χb0 < b0, and by
induction it can be established thatbj+1 ≤ χbj < bj .

Hencebj → 0 exponentially fast and, recalling that‖ujτ −
u∗‖ ≤ Cbj , the closed loop system is then uniformly exponen-
tially stable in state and control at timesk = jτ . The continu-
ity of f and the linear dependence ofuk − u∗ onqj − z∗ can
then be used to show that it is uniformly exponentially stable
ask →∞ over the integers.

5 Conclusion

In this paper the problem of uniformly exponentially stabilising
a deterministic, nonlinear dynamical system under a feedback
data rate constraint was formulated and investigated. By using
volume-partitioning arguments and local Jordan forms, the in-
fimum asymptotic average data rate for the system to be stabil-
isable was derived, in terms of the unstable eigenvalues of the
dynamic map at the desired set-point. Connections to the no-
tion of topological feedback entropy have been explored else-
where [12].
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