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Keywords: stabilizability, communication channels, entropy This line of inquiry is extended here towards a general class of
nonlinear systems. Assuming that the dynamical map is con-
Abstract tinuously differentiable and has a fixed point, the objective is
to find the infimum data rate above which there exists a cod-
This paper poses a simple question: what is the lowest rdtg and control law which uniformly exponentially stabilises
in bits per unit time, at which feedback information can bée system. In the next section, the problem is formulated pre-
transmitted in order to stabilise a given dynamical systeraisely and the main result, Theorem 1 stated. Its connections
Expressions for this fundamental quantity have recently betnthe open-loop notions dfolmogorov-Sinaandtopological
derived for linear systems, with and without noise. In thigntropy are also briefly discussed. The rest of the paper is the
work, the case of deterministic, fully observed, continuousgroof of the theorem. In section 3, a volume-partitioning argu-
differentiable dynamical systems is investigated, under the &dent is used to establish the necessity of the data rate bound
ditional assumptions of controllability to the desired set-poispecified. Its sufficiency is then confirmed in the penultimate
and bounded initial states. By the use of volume-partitionirggction by explicitly constructing a coding and control scheme
arguments and local Jordan forms, the infimum feedback datid establishing uniform exponential stability.
rate is shown to be the base-2 logarithm of the magnitude of
the determinant of the open-loop Jacopian on the [ocal W- Formulation and Statement of Main Result
stable subspace, evaluated at the set-point. Connections to the
concept of local topological feedback entropy are briefly digirst, certain conventions need to be defined. Sequences
cussed. {a; }?:o are denoted;, and||- || represents either the Euclidean
norm on a vector space or the matrix norm induced by it. Le-
besgue measure is denotgdvectors are written in bold-face
type and matrices in bold-face upper-case. ®he n identity
In many developing application areas such as micrgatrix is denoted byl,,, the m x n 0 matrix by 0,,,, the
electromechanical systems and decentralized tracking, therrex n matrix with 1's on the left upper-corner diagonal and
sources available for communication between sensors and c&#10s elsewhere lly, «,, and the spectrum of a matrix is rep-
trollers can be severely limited, due to size or cost. This imesented as(-), with multiple eigenvalues permitted. As usual,
pinges directly on the feedback control performance that ctire real numbers are writtelR, complex number&, positive
be achieved, since it implies that the data received by varidotegersN and non-negative intege¥s, .
components is ellther' out-of-date or pqor |'n resolution, if n@onsider the fully observed, nonlinear, time-invariant system
both. In these situations the communications and control is-
sues are in_timately rel_ated a_md the analysis of one aspect cannot Xpi1 = f(xp,up), Vk€Zy, 1)
proceed without consideration of the other.

The focus in this paper is on communication constraints th¥perex, € R™ is the state and;, € R™ the control vector. It
take the form of limited data rates, in bits per unit time. [#§ @ssumed that

particular, the aim is to investigate the stabilisability of a given

dynamical system when feedback information is received owst the dynamical mag : R" x R™ — R™ is differentiable
a noiseless, digital channel with a finite data rate. A wealth of once with continuous 1st order partial derivatives,
results are available for linear, time-invariant systems without

disturbances, starting with the seminal paper [3] and continy2 there exist a fixed point. and constant input.. such that
ing with [17, 1, 4, 2, 13, 8, 5]. Particularly relevant are X« = f(x., u.),

[9, 15, 11, 1, 6], in which necessaand sufficient data rate
bounds for the stabilisability of noiseless linear systems wi
derived, and [10], in which a tight bound for stochastic linear
systems was derived. Despite different formulations and as-
sumptions, the bounds obtained were generally all equal to the
sum of the logarithms of the magnitudes of the unstable, opey
loop eigenvalues.

1 Introduction

f is controllable taz, in the sense that given ahy: > 0,
IN € N,U > 0s.t.V||xg—x.|| <, there exists a control
sequence{uy, } ot with |luy — u.|| < U that ensures
[xn — x| <e,

the pair(A, B) is controllable, wherd andB are the Jac-
obians off w.r.t. state and control respectively(at,, u..).



Suppose that the sensor measuring the states is connectedibexe A is the Jacobian of the dynamical mé&with respect
distant controller by a noiseless digital channel that can catoystate, evaluated at the set-point, am@A) is the spectrum
only one discrete-valued symbg| per sampling interval, se- of A.

lected from a coding alphabey, of ime-varying sizquy. The Furthermore this bound is tight, i.e. for any numifey satisfy-

transmission data rate may then be defined as the asymptotic ~ . : : : o
. Ihg it there exists a uniformly exponentially stabilising coder-
average bit rate

controller that has a smaller data rate.

A kot For the weaker notion of uniform asymptotic stability this lower
R = liminf k™1 E logs ;. (2) e ofi ; ;
i on 2 Hj bound is still necessary, but equality may be possible.
7=0

o - As,no assumptions apart from causality and measurability have
This is a more general definition of channel data rate than usoed . o
. . ) - .. been placed on the coding and control scheme, this in a very
in the previous work on linear systems [11] and the motivation ) o D :

. : : . general sense defines the infimum rate at which information
for its use will become clear in section 4. . . S

can circulate in a stable, deterministic feedback loop. Note that
As the objective here is not to address computational limit&- a function only of the local, open-loop dynamics at the de-
tions, each symbol transmitted by the coder is permitted to de#red set-point and agrees with the results of [15, 11] for linear
pend on all past and present measurements and past symbgktems without disturbances.

€. As in the linear case, insight into the meaning of (6) can be

sk = Vk(Xk, Sk—1), Vk € Zy, 3 obtained by rewriting it a8” > ], >, [n|. The RHS is the
wherey;, : R+ x S | — S, is the coder mapping factor by which a volume in the locally unstable subspace in-
at timek. It is assumed that for any sequenige; € S,_;, Creases ateach time step in open-loop, while the left-hand side
the coding partitions{y,jl(ck,ék_l) c R (DY s, are isthe average number of coding regions into which this volume
measurable. Neglecting transmission errors, assume that ez@hbe partitioned. Hence the system is stabilisable if and only
symbol takes one sampling interval to be completely transmiftthe increase in unstable uncertainty volume can be counter-
ted. Hence at timé the controller has,, . .., s;_; available acted by the decrease due to coding.

and generates The RHS of (6) is strikingly similar to expressions for the

Kolmogorov-Sinaandtopologicalentropy rates of linear maps;
see e.g. [16]. The crucial difference with the result above is
that these notions are defined for open-loop systems, whereas
the infimum stabilising data rate is a closed-loop concept. Non-
Define thecoder-controlleras the triplet of alphabet, coder andetheless, it is possible to rigorously definéopological feed-
controller sequencésS.., 7 0 ). Given an asymptotic aver- back entropy (TFEjor the plant, describing the rate at which
age data rat& > 0, the primary objective here is to investigatehe plant generates information in a stable feedback loop [12].
whether there exists one that uniformly exponentially stabilisBy taking appropriate limits éocal TFE at a fixed point can
the plant (1) over initial states within a ball of radilgsi.e. then be defined and shown to coincide with the RHS of (6).
From this viewpoint, exponential stability is possible if and
0" sup {|lxk — x|, [lup —u.|} = 0ask — oo (5) only if the data rate of the channel exceeds the local TFE at
lIxolI<lo the desired set-point, an interpretation that parallels Shannon’s
for somep € (0, 1), wherex., u, are the fixed point and con- Source coding_theorem !n digitallcommunications.[14]. How-
stant input defined in assumption A2. The weaker notion gYen the remalr)derof this Paperis devoted to proving Theorem
uniform asymptotic stability, correspondingdo= 1, will also L Without réferring to the notion of TFE.
be explored.

up = 6]@(5]@,1), Vk € Z+7 (4)

whered;, : Sp_; — R™ is the controller function at timé.

For finite-dimensional, linear systems, it is known that there?’s Necessity

a critical data rate which determines whether closed-loop sj&s mentioned above, the intuition behind the necessity of (6)
bility is possible or not [15, 11]. It may therefore be expected that the open-loop growth in unstable subspace uncertainty
that a critical rate will also exist for the case of an nonlineggiume near the set-point must be counteracted by the reduc-
system. The main result of this paper is now stated: tion in volume due to the coding partitions. A similar idea was
employed in the linear case [15, 11]. However, the nonlinearity
Theorem 1 Let assumptions A1-A4 hold for the plant (1)of the plant necessitates rather different technical tools.
Then any coder-contr_oller (3)-(4) which stabilises the pl_a nt Iguppose that uniform exponential stability has been achieved
the uniform exponential sense (5) must have asymptotic aver-

age feedback data rat® (in bits per interval) (2) strictly sat- by some coder-controll_e(lSoo, Yoo, 0c0). Recall thatA is the .
isfying Jacobian of the dynamical map w.r.t. the state at the set-point,

R > Z logQ |77‘7 (6) A é ﬁ c Rnxn’ (7)
nea(A): |n|>1 X |(x, u)



and letT € R"*" be an orthonormal real similarity transform{xo € R" : ||xo| < lo, $x—2 = Ck-2}5 _,c5, , Must be

such that A disjoint and exhaustive.
=2 / nxn

J=TAT €R ) A recursive lower bound for the worst-case volumewill now
is areal Jordan form see e.g. [7] for details. Briefly] has be derived. Observe that
a block-diagonal structure with each block possessing either A Mz 5o = G}
one real or two complex conjugate eigenvalues, not counting A+t T DAXAUR41] Sk-1 = Gk
repeats. In terms of system dynamieg, 2 Tx;, can then = max\{g(z},z},u)| 51 =1}, (15)
be interpreted as a vector of modes with decoupled open-loop -t
dynamics near the set-point. where for convenience, the locally stable componentEof

Definez! € R? to be the vector of those modes governed by i€ denoted;; € R"~¢ andg(z", z°, u) = Lix Tf(x, u). The
genvalues off not less than 1 in magnitude. Assuming withouf€Xt Step is to replace the nonlinear functignwith its local
loss of generality that the blocks dfare ordered according to'inearisation. Af has continuous first order derivative$z —
descending eigenvalue magnitudes, z|s o —u. |l <1

g(z",z°u) =z +J"(z" — z}) + Lix», TB(u — u.) + o(l)

zy = LiwnXp, withz} 2 IivnXs. 9) A

o uniformly overz,u asl — 0, whereJ" = 1, TJT'L, x4 €
It then trivially follows that||x; — x.[| = [|zx — z.[| > ||z} — R9x4, the Jordan form governing the locally unstable subspace.
z,|, so thatzj; — z; exponentially ink and uniformly over From this it can established that({) — 0 s.t. for any measur-
Xo- ableH C {(z,u) € R" X R™[[|z — z.[|, [[u — w.[| < I},
Next,Vé,_o € Sp_o define thdocally unstable uncertainty set ) {g(z",2°,u)| (z,u) € H} >

. A 1 —eD]A{zy +I"(z" — 2z}) + 1ixn,TBu|(z,u) € H}

I(Cr—2) =

{Zu c Rd| HXOH < lOa Gro = 6k—2, Zz0 — Z};} ’ (10) Substituting this into (15) with = Ik, Z}; = ZLT’_Z?@ =z%u =

’ u and{(z, ux)|Sk—1 = éx—1} = H, and writinge(ly) = &y,

i.e. the set of all possible points thg} can take given the sym-
bol sequencé;_> = ¢;,_». As the dynamical ma is con-

tinuous and the coding partitions measurable, these uncertainty = (1 — ex) max A{z} + I%(z; —z)

Ck—1
sets are also measurable and seaast-case locally unstable - - -
. 4+ 1gxn TBOL(Cr_1)| Sk—1 = Ci_
uncertainty volume axn TBOk(Ck1)| Sp-1 = Cr1}

= (1 —eg)max A {J"(z} — z})| Sk—1 = Cr—1}, (16)
Ck—1

Vk+1

A ~
vk = max ML(G-2)} @D () max | det YAz 5k s = G 1}, (17)
Ck—1
can be defined. Now, if denotes the supremum distance of N N
points in a measurable sgt C R¢ from the distance, thef = (1—ep)[detd ‘Ig;?}’; {g}a’ld‘ {2kl sr—1 = cx—1,
is obviously wholly contained in the ball of radiusentred at

. Sk—o = Cp— 1
the origin. Hence Sk—2 = Ck2}}, (18)
J J 4 where (16) follows from the translation-invariance of Lebesgue
MH} < pré=p sup x|, vV measurablel C R, measure and (17) describes the effect of an invertible linear

transformation on volume.

where/ is thed-dimensional sphere constant. Thus The trivial decomposition (18) leads to an observation that is

A uw _.uy the heart of the necessity argument developed here. The un-
e = sup {llzx — 2z, [Jap —uif[} = sup [z} —zi, . . . )
%0 | <lo lIxol<lo certainty setgz}?| sy_1 = cx—_1,Sk—2 = Cx_2} are not neces-
—  max sup |z — 2| (12) sarily disjoint as the single symbej}_; runs over its possible

C—2 ||x0|<lo, Sk _2=Ck_2 values. However, since,_; is a well-defined function of the

> max 87Nzl — 22 %ol < lo, Se_s = Er_s}4, initial st~ate and~ previous symbols, their union must cover the
- k * u
Ck—2 Set{Zk|Sk,2 = Ckfz}, l.e.

= 8V max Mz [xoll <o, 52 =2} (13)  A({2}] 552 = &r2})

—1—1
= Y max M1 (G_s)} = B~ 140}/ 14 e ) _
B hax {In(@r—2)} = 67/ vy, (14) = A U {z| sk—1 = ck—1,8k—2 = Ck—2} | »
cr—1=0
i.e.,, vy — 0 exponentially as well. The equality (13) is a " kll
. . k—1—
consequence of the invariance of Lebesgue measure to con- Z Mz s . 5 — o)
stant translations, while the equality in (12) follows from the = . k| ok=1 = Tk—1,%k-2 = %—2J,
Ck—1=

fact that, with the coder-controller fixed, the samg can-
not yield two different symbol sequences, i.e. the regions

IN

Mk—1 Icnax )\{Zm Sk—1 = Ck—1, §k_2 = 5k—2}- (19)
k—1



Substituting this into (18), second phase, since the first phase is completed in finite time
with a constant data rate. It will then be shown that, by choos-
ing a sufficiently smalb, the asymptotic average data rate of
& the second phase can be made arbitrarily close to the RHS of
(1 —eg)| det IV (1 —¢;)|det I (6)
= ———— v, 20 H B — '
j=1

Vg1 > (1 —eg)| det TV Ienaxu,;ll)\ {z}| Sp—2 = Cr—2},
k—2

Ll — 5 — . . .
Hh—1 Hi-1 Note that this scheme is not proposed as a practical control

by repeating the recursidntimes. Asv; — 0 exponentially law, as issues such as performance, robustness and complexity
fast, 3o € (0, 1) s.t. for sufficiently largek would then need to be considered. Itis intended only to demon-
’ strate that the data rate lower bound (6) can be approached ar-

. (1—g;)| det Ju| pitrarily cl'o.s.ely from above, making it the infimum exponen-
0 > 11 o (20)  tially stabilising data rate.
j=1 (
k
N %ZlogQ 151 > log, | det I 4.1 Phase One
j=1 By the controllability assumption A3ye,l > 0, AN €
T Z4,U > 0 such thatv||zg — z.|| < [, there is a control se-
+ % Zlog2(1 —¢;) —log, 0, quencev_; of length N and uniformly bounded by/ that
j=1 takes the system stateithout communication constraints
1k within ¢ of the fixed point,HzR;)minal — z,|| < e. In principle,
=R £ liminf- Z logy pj—1 > log, | det J¥| these controls are determined solely by the initial state, which
koo K j=1 is fully observed by the coder and can then pre-calculate them.
1t One strategy the coder can then use is to
+ likm inf 2 Z log, (1 —¢5) —log, 0, (21)
T = 1. overbound then-dimensional ball of radiu&’ and centre
= log, |det J¥| —log, o, (22) u, by a cube centred at, with sides of lengtrRU and
partition this intoug indexed, identical sub-cubes.
> log, |det J"| = log, H Uk 2. attimek, transmit the index;, of the subcube which con-
ne€a(J) tains the nominal control signad, | 1,
= > logy Il (23)
n€a(A):|n|>1 Upon receiving this index, the controller then appligs =

. . . 1/m
where (22) follows since; — 0 and the inequality in (23) the midpoint of this sub-cube. A, — vi|| < U/ug’ ",

from the fact thab < o < 1 strictly. This completes the proof € continuity off w.r.t. control implies that thatt > 0, 3y
of necessity. sufficiently large such thatzy — z3|| < 6; hence for any

permitted initial state,
Note that if the definition of stability used was weakened to

uniform asymptoticstability, then the argument still applies but ||zy — z.|| < ||zy — z3™™| + |23 — 2, < 0 + ¢

the strictness of the inequality in (23) is lost, sincenay not

be strictly less than 1. l.e. the state can be brought arbitrarily close to the origin in
finite time IV by using a constant, sufficiently large data rate

. 1 .

4 Tightness of Bound 082 Ho

The final step in proving Theorem 1 is to establish that the2 Phase Two

bound (6) is achievable, i.e. there exist coding and control o o .

schemes with asymptotic average data rates arbitrarily closéYace the state is within some arbitrarily small neighbourhood
it that still achieve uniform exponential stability. In order to d§f the origin, the coding and control is performed more care-

so a specific coder-controller will be constructed and analysdd!y: by taking explicit account of the local dynamics. First,
recall that the real Jordan fordnof the Jacobian of w.r.t. state

The basis of the scheme is a two-phase strategy. In the figgthe set-point has a block diagonal structure
phase, a large but finite data rate is used to force the system into

a specifiedy-neighbourhood of the origin in finite time. In the J = diag(Jq,...,J,) € R™*™.

second phase, a more refined coder-controller is used to drive

it exponentially fast towards the origin. This involves allocaach blockl; € R *4 has either one distinct, real eigenvalue
ing each locally unstable componentzf a an effective data 7: of multiplicity m; = d;, or two distinct, complex conjugate
rate roughly proportional to the log-magnitude of its governirgjgenvalues;, ; of multiplicities m; = d;/2. The compon-
local eigenvalue, while ignoring locally stable modes. Clearlghts of the transformed state vectqr corresponding to the
the asymptotic average data rate will be determined only by thieck J; are denotedg) € R%. A further property of these



blocks that will be used later is thak > 0 s.t. It then calculates the next control signalsa,j;1, ..., Urjyn
by using the controllability of A, B), and hence ofJ, TB),
to force the linearised system with nominal initial stateto

This states that powers of a Jordan block grow exponentialf} ©rigin inn + 1 steps, i.e. by solving

according to the magnitude of its eigenvalue, with possibly  jr+n _

an extra polynomial factor arising from multiplicity; see [7], Z Jitn=ETB(uy — u,)

pg. 138. k=j7+1

W(Yj - y*) = _JnT(qJ - Z*)v V] S ZJra (28)

[J7) < kr®mi|", VN €N. (24)

The coder to be used in the second phase can now be construc- =

ted. For convenience, the time indexs reset tol zero, so thatwhereW A [TB JTB---J"'TB] € R*™"™ andy; 2

lzo — z.|| < by @ number that can be made arbitrarily small by , , P - .

. . . . W L, Wi, o-o-ul ] € R"™. The remaining control
increasing the data rate in the previous phase. Rgebe any sig]]nals in]the epoch are setig

number that satisfies (6) and divide times Z . into epochs

lj7,...,(j + )T — 1], 7 € Z, of some uniform integer dur- Note that as the controllability matri¥v has rankn, it pos-
ationt. Attime k = j7, suppose, is a pre-defined, uniform sesses linearly independent columris R™ and only the cor-
bound such thaftz;. — z.|| < b;, V||zo — z.|| < by. The way responding» scalar components of the stacked control vector
in which {b;} ¢z, is generated will be specified later. Overy; are needed. If the inverse of the matrix formed by these
bound this region by an-dimensional cube centredat with  columns is padded withm — n null rows, corresponding to
sides of lengtl2b;. Then partition this cube by dividing eachthe unnecessary componentsygf to formV € R"™*", then

coordinate axis corresponding to a componen §finto 17, the stacked control may be expressed more explicitly as
intervals of equal length, Vi —y.=—VI'(q; —2z.) (29)

M; 2 ||ém|") +1 for ;| > 1,M; £1 for |n;| <1, (25) i.e.alinear function ofy; — z..

selected to satisfy uniform upper bound; from one epoch to the next. In the
following a recursion fob; will be sought which decays expo-
0 <dlogy, €& < Ry — Z d; logy |0 nentially to zero for a sufficiently large but fixed epoch duration
Ini|>1 7. Asb; > ||z, — z.|| by definition, this will effectively com-
lete the proof of Theorem 1.
=Ry~ Y. logynl (26) P g

Inl€o(A):|n|>1 First observe that, ag; € R" lies in a cube of sidegb;

... A
Note that as the right-hand side (RHS) is guaranteed positiggntered a., [|a; — z.|| < v/nb;. In addition, by (295C =

candidates fo¢ always exist. The total number of subcuboidk V7" || independent of andb; s.t.|luy, — u.|| < Cb; for all

thus formed ig[T}_, Mld so index them in a predefined Wa);?mesk in the jth t_ap_qch. Now cons_ide_r the mdpteratedr
- times from some initial state and with inputsvg, ..., v, _1,

i A d;
by the integer®), ..., pjr — 1, wherep;r = [1io;<, Mi*- At genotedr, ---fy,(z) for convenience. By the continuous

time j, transmit the index; - of the one which contains;-.  giterentiability off, it follows thatv||z—z. || < b, |[v;—u,|| <
Atremaining timesinthe epochr+1 <k < (j+1)r—1,set -, , _ 7—1,3¢(b) st

wi = 1, i.e. transmit no information. Clearly, the asymptotic Y ’ o

average data rate over both phases is determined only by the b((b) > |[|fy,_, - fu,(2z) — 2. — I (z — z,)

average data rate over this second phase, so r—1
1 1 =Y JTITB(ve - wy)
R = =) dilogy([léml"]+1) < = > dilogy (21émil7), =0
T T
Im:|>1 Imi|>1 (30)
= d + dlog, € + Z d;log, [n:| < Ro where ((b) may depend om but — 0 with b. Substituting
T o1 ’ ’ z = 7;,, Vi = Ujr4¢, rearranging and looking at eadh local
B mode,
by (26), for sufficiently large-. ) ) ) _
v (20,10 Yo 2, 2O < 1T — o1+ (b,
Now consider the controller at the other end of the channel,
which r_eceives the symbel.- at timejr + 1..As it also knows < k%L Vdib; + ¢ (b;)b;.(31)
the uniform boundb; and the number of intervald/;, i = M;
1,...,r, it then knows which subcuboig, ; lies in and uses
its centre as an estimatg. Hence = llz2G+1)r — 24
d.
1/2 < di—1),. T\ﬁ . Np.-
/ Vrk max {T il v }bg +Vr((b;)b;,(32)

d; 2 -
(@) _ @ : ba‘) _ Vdiy, 27
|27 ~ S[Z (5 1 B e il = by, (33)

h=1



where (31) follows from (24) and (27), and (32) from the tri-[6] J. Hespanha, A. Ortega, and L. Vasudevan.

angle inequality.

Now, consider theé;-independent tern#(r) on the RHS of
(33). If || < 1, M; = 1and7%~L|n;|” — 0asT — oo. If
|’f]t‘ >1,M; > ‘g?’]l‘T from (25), SO

P
7d7"71|7li|7—7\]{/; < Vit TeTT -0 asT — oo,
(2

Hence,3(7) can be made arbitrarily small, independently of

b;. Select some value far large enough that(r) < 1. As
for any fixedr, {(b) — 0, and further recalling thal, can

be made arbitrarily small by the first phase of the coding and

control scheme, sét so thatvb < by, 8(7) +1/r((b) < some
selectedy < 1. It then follows thath; < xby < by, and by
induction it can be established thgt, ; < xb; < b,.

Henceb; — 0 exponentially fast and, recalling théti;, —
u.|| < Cb;, the closed loop system is then uniformly exponen-
tially stable in state and control at timgs= jr. The continu-

ity of f and the linear dependencewf — u. onq; — z. can
then be used to show that it is uniformly exponentially stab

ask — oo over the integers.

5 Conclusion

In this paper the problem of uniformly exponentially stabilising 2]
a deterministic, nonlinear dynamical system under a feedback
data rate constraint was formulated and investigated. By using
volume-partitioning arguments and local Jordan forms, the in-
fimum asymptotic average data rate for the system to be stabif]
isable was derived, in terms of the unstable eigenvalues of the
dynamic map at the desired set-point. Connections to the no-
tion of topological feedback entropy have been explored else-
where [12].
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