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Abstract

This paper proposes a new fault tolerant control methodology
using Fuzzy Internal Model Control (IMC) for nonlinear sys-
tems. The models (direct and inverse plant models) used in
the IMC controller are generated by an adaptive neural net-
work called ANFIS, which implements a fuzzy inference sys-
tem of Takagi-Sugeno type. The inverse model of the IMC
controller is reconfigured by exploiting information estimated
from a fault diagnosis unit and a qualitative model of the sys-
tem, in terms of a fuzzy logic system. Simulation examples for
a fault tolerant sulfitation control problem are given to demon-
strate the effectiveness of the proposed scheme.

1 Introduction

The last two decades have been seen continuous improvement
in systems and control techniques resulting from the spec-
tacular progress in control theory and computer technologies.
Meanwhile, stimulated by the growing demand for improving
the reliability and performance of systems, many fault diag-
nosis and fault tolerant control methods have been developed
which have the capability of detecting the occurrence of faults
and retaining satisfactory system performance in the presence
of faults [3, 11].

Fault tolerance of dynamic systems can be achieved either from
systems robustness to fault as well as other uncertainties or
from controller reconfiguration (or restructuring) in response
to specific faults. The former methodology since no informa-
tion about faults is utilized by control systems, can be referred
as ”passive fault-tolerant control systems”, [4]. However, the
magnitude of faults that can be accommodated by a fixed con-
trol structure and parameters is often limited. By utilizing the
fault information obtained from fault detection and identifica-
tion (FDI) scheme, reconfigurable control modifies the control
function in response to the faults so that it is referred to as ”ac-
tive fault tolerant control”. This can be obtained by control law
re-scheduling [1], linear quadratic control [7], pseudo-inverse
methods [6], adaptive control methods [13, 5], etc.

As most plants are inherently nonlinear and the faults may of-
ten amplify the nonlinearities by driving the plants from a rela-
tively linear operation point into a more nonlinear operation re-
gion, the study of fault tolerant control for nonlinear systems is

important. In the attempt to solve this problem, methods such
as neural networks and fuzzy systems have been used due to
their capabilities of forming arbitrarily accurate approximation
to any continuous nonlinear functions [16, 5].

In this paper, an active fault tolerant system design methodol-
ogy using fuzzy IMC controller is proposed, and it has been
applied to a highly nonlinear system. The ability of neural net-
works to represent nonlinear relations leads to the idea of using
networks directly in a model-based control strategy. A suitable
control strategy within directly incorporates the plant model is
provided by Internal Model Control (IMC). In this work, fuzzy
neural networks, called ANFIS [9], had been used for the con-
struction of the plant model and its inverse and they are used
directly within the IMC control structure. The ANFIS archi-
tecture is used because it represents a fuzzy inference system,
and as a result of the training of the network some fuzzy rules
are obtained, which can be used to interpret the system.

After that, a fault diagnosis algorithm has been used based on
the nonlinear model obtained by the ANFIS architecture, and
the information provided by this algorithm is used to reconfig-
ure the controller. In this work, the controller is the inverse
model of the system, that consist of a set of fuzzy rules of
Takagi-Sugeno type, the key idea is to modify these rules when
a fault is detected. Specifically, the independent terms of those
rules are modified based on knowledge of the system (a quali-
tative plant model) using a fuzzy logic inference system. This
methodology has been applied to a highly nonlinear system: a
sulfitation tower.

The paper is organized as follows, in the section 2 the nonlinear
internal model control is presented, together with the ANFIS
network, and in the section 3 the fault-tolerant scheme is de-
scribed. In section 4 the application of this methodology to the
sulfitation process is presented, with a description of the sys-
tem, of the fault-tolerant control system design, and the results
when parametric faults have occurred in the system. Finally
section 5 concludes this paper.

2 The non-linear Internal Model Control

The basic idea of linear Internal Model Control (IMC) is illus-
trated in the Fig. 1. The key characteristic of this control design
approach is the inclusion of a plant model within the control
structure. If the model is a perfect representation of the pro-
cess, the influence of the process output on the feedback signal
vanishes. The feedback signal then only carries the influence of



disturbances. However, in practice the model and the plant are
rarely similar. The feedback signal then combines the model
error (model uncertainty) with the disturbances. Based on this
structure, perfect control is obtained if the controller C is cho-
sen as the inverse of the internal model M . IMC controllers
have been extensively studied in the case of linear modelling
of the process, and have been shown to have good robustness
properties against disturbances and model mismatch [10].

Figure 1: IMC Structure

The IMC structure can also be used in the nonlinear case. The
method simply consists in including a nonlinear plant model
in place of the linear one. Some possible alternatives exist in
order to chose the nonlinear model, such as a fuzzy model from
input-output data [2], a model based on first principles, [12] or
a model based on neural networks [8, 15].

In this work the nonlinear model proposed for the IMC, is the
Adaptive Network Based Fuzzy Inference System (ANFIS),
developed by [9], which is a fuzzy inference system imple-
mented in the framework of adaptive networks. An adaptive
network (Fig. 2) is a multilayer feedforward network in which
each node performs a particular function on incoming signals
as well as a set of parameters pertaining to this node. The AN-
FIS architecture implements a fuzzy inference system, for ex-
ample in the Fig. 2 it implements a system with two inputs x
and y, one output and two rules of Takagi and Sugeno’s type:

Rule 1: If x is A1 and y is B1 then f1 = p1x+ q1y + r1
Rule 2: If x is A2 and y is B2 then f2 = p2x+ q2y + r2.

The ANFIS architecture is described here. In layer 1 every
node i has the function: O1

i = �Ai
(x), where x is the input to

node i, andAi is the linguistic label (small, large, etc.). In other
words,O1

i is the membership function ofAi and it specifies the
degree to which the given x satisfies the quantifier Ai. Every
node in layer 2 multiplies the incoming signals and sends the
product out, i.e, each node output is a T-norm that performs the
connector AND.

wi = �Ai
(x) � �Bi

(y); i = 1; 2 (1)

wi =
wi

w1 + w2

; i = 1; 2 (2)

O4
i = wifi = wi(pix+ qiy + ri) (3)

In the layer 3 each node calculates the ratio of the ith rule’s
firing strength to the sum of all rules’ firing strengths (eq. 2).

Figure 2: Takagi-Sugeno fuzzy reasoning and the equivalent
ANFIS architecture

And each node in layer 4 has the node function represented in
eq. 3, where pi; qi; ri is the consequent parameter set. Finally,
the single node in the layer 5 calculates the overall output as
the summation of all incoming signals, i.e.,

O5 =
X
i

wifi =

P
i wifiP
i wi

(4)

Thus, an adaptive network which is functionally equivalent to
a Takagi and Sugeno fuzzy inference system has been con-
structed. The use of this ANFIS architecture within the IMC
structure, is implemented in two steps. The first one involves
training an ANFIS network to represent the plant response.
This network is then used as the plant model operatorM in the
control structure of Fig. 1. The network is trained in the clas-
sical way, i.e., the error signal used to adjust the net weights is
the difference between the plant output and the network output.
Thus, the net is forced towards copying the plant dynamics.

Following standard IMC practice, the controller is selected as
the plant inverse model. The second step in the procedure is
then, to train a second ANFIS network to represent the inverse
of the plant. To do this the architecture shown in Fig. 3 is used
[8]. Here, the plant model (obtained in the first learning step) is
used in the inverse learning architecture rather the plant itself.
For inverse modelling, the error signal used to adjust the net-
work is defined as the difference between a synthetic signal (the
desired network output) and the network output. This tends to
force the transfer function between the reference and the output
of the model to unity; i.e., the network being trained is forced



to represent the inverse model of the plant model. Having ob-
tained the inverse model, this ANFIS network is then used as
the controller block C in the control structure of Fig. 1.

Figure 3: Use of synthetic signal to obtain the inverse model

3 Fault tolerant fuzzy IMC controller

3.1 Fault detection and Identification scheme

Model-based fault diagnosis is the detection, isolation and
characterization of faults in the components of a system [3] or
in the system itself, based on a model of the process. The dif-
ference between measurements and model outputs are called
residues, which are the signals to which a threshold is set, in
such a way that when a fault occurs, the residual becomes
greater than the threshold. Once a threshold is exceeded, an
analysis of the residual leads to the fault isolation. Through,
the general structure of model-based fault diagnosis has two
main stages: residual generation and decision making.

A fault detection system capable of detecting both additive and
multiplicative faults have been developed. The residues are
generated as the difference between the model and the system
outputs. The model used is the one defined as direct model in
the IMC structure, then using the same model that for control
purposes the modelling effort is reduced drastically. The resid-
ual designed in that way takes non-zero values when a fault
occurs or when a reference change is set. This drawback can
be overcome if an appropriate decision making method is used.

The decision making system does not perform over the residue
but over the absolute value of its derivative. The value obtained
in this way is compared with a threshold, which is exceeded
when a fault or a reference change occurs. In order to differen-
tiate between both cases, a new residue is introduced. This is
calculated as the maximum of the absolute value of the deriva-
tive of the windowed reference. A threshold is provided to this
new residue. This last residue is calculated in that way because
when a reference change is introduced, the residue associated
to the system output has a delay in taking a value different
from zero. If the reference were not windowed, both residues
would not exceed their thresholds at the same time. The win-
dow memorizes changes in the reference.

With these residues, the decision making is based on a simple
rule: If both residues exceed their respective thresholds, a ref-
erence changed has occurred; if only the residue associated to
the system output violates its threshold, a fault has occurred.
The only problem is that this system is unable of detecting a

fault that occurs at the same time that a reference change.

3.2 Fault Tolerant Control with a priori Knowledge

In Fuzzy-IMC, the role of the controller is carried out by an in-
verse model of the plant. This inverse model is implemented by
an ANFIS network, which main characteristic is the set of rules
that conform it. The ANFIS, at least in the way employed here,
is a Takagy and Sugeno fuzzy inference system. This means,
that the consequent part of the rules are first grade functions
of the inputs, so, the consequent of each rule has an indepen-
dent term (the ri parameters shown in eq. 3 and in Fig. 2). In
this work they are called Consequent Independent Terms (CIT).
The fault-tolerant strategy is based on inducing changes on the
CIT set. The controller is reconfigured in this way every time
that a fault is detected and isolated. Due to the non-linear nature
of the system, the amount of change in the CIT set depends on
the operation point. In order to calculate the size of the change
a qualitative model is used. The qualitative model expresses
the relationship between the input and the output in such a way
that it is a reliable model even when a fault has occurred. This
model can be expressed as the following rule, where y is the
output system and u is the control action:

Let be error = reference� y,
If error > 0, reference > y ) �u < 0
If error < 0, reference < y ) �u > 0

This rule can be expressed mathematically as eq. 5, where
!0(k) is the CIT set at period k and e(k) is the error. The
role of parameter Lr is to adapt the qualitative model to the
operation point in which the fault has occurred, so the adapted
qualitative model can be used to change the CIT set in a way
that the fault is accommodated.

!0(k + 1) = !0(k)� Lr � e(k) (5)

In order to calculate the values of Lr, a fuzzy inference system
was designed. The input of this fuzzy system is the reference,
that is, the value that is desired the plant reaches under fault.
The output of the fuzzy system is the Lr parameter value that
accommodates the fault, and the rules are obtained with prior
knowledge of the plant.

4 Application to a non-linear process

4.1 Plant description

The sulfitation is a chemical process used in the sugar refining
industry in order to decrease the pH of a solution of lime milk,
Ca(OH)2 by means of a flow of sulfur dioxide, SO2. The pro-
cess takes place usually in a closed vessel with a reaction tank
inside that receives a continuous flow F of the product through
the ceiling, and a flow Fg of SO2 through the bottom (Fig. 4).
The sulfur dioxide bubbles react with the water to give a sul-
fur acid that neutralizes the (OH)� from the base. The liquid
inside the tank overflows it and leaves through the bottom at a
lower pH. A valve is used to manipulate the SO2 flowrate and



therefore, the pH of the output product. The reactions that take
place inside the reactor are:

H2O + SO2 �! SO3H2

SO3H2 () SO3H
� +H+

SO3H
� + CaOH� �! SO3Ca

Figure 4: Structure of the plant

A mathematical model of the process derived from first princi-
ples [14] can be summarized in the set of equations :

bdFs
dt

= �Fs + kFg
V
F
dX
dt

= �X + [CaOH�]i � �
F
Fs

dC
dt

= Fs
V
� V

F
FC
V

pH= � log [H+]

[H+]= X [-1 + sign(X)
q
1 + 4Kw

X2 ]=2

(6)

The first one gives the time evolution of Fs, the flow of sulfur
dioxide transferred to the liquid, with k the solution coefficient
and b the characteristic time to the solution. The magnitude
X is defined as X = [OH�] � [H+], V is the volume of the
reaction tank, � a dissociation constant, kw is the water ionic
product, [Ca(OH)�]i the input concentration of these ions and
the variableC is defined asC = [SO3H2]+[SO3H

�]. Finally
the constants � and kW are calculated as:

� =
�Keq+

p
K2
eq+4KeqC

2C

Keq = Zs exp
�Es
RT

kw = Za exp
�Ea
RT

(7)

with Keq the equilibrium coefficient of the reaction, Es and
Ea are the activation energies, and Za and Zs are constants.

The control aim is to maintain the pH at the output at a spec-
ified value despite the disturbances acting on the system. The
control variable is the SO2 flowrate and the main disturbances
is the pH (pHa) of the incoming flowrate F which is related
to the concentration [Ca(OH)�]i.

4.2 Control system design

The first step to apply the fuzzy IMC controller is to obtain a
suitable representation of the system. The strong nonlinearity
present in the system can be modelled by means of an ANFIS
network, where the gas flowrate (Fg) is the input to the system
and the pH is the output, in the following series-parallel model:

pH(t) = f(Fg(t); Fg(t� 1); pH(t� 1); pH(t� 2)) (8)

Here the ANFIS net has three membership functions of gaus-
sian type for each input, this gives a total number of 34=81
fuzzy rules. For training the network, suitable data is needed,
to get this, a step train in the manipulated input Fg is generated
with different amplitudes and frequencies, using a sampling
time of 30 seconds. After training, the desired and predicted
values for both training data and checking data are essentially
the same in Fig. 5. The fuzzy rules generated by the ANFIS
architecture are of the form:

If Fg(t) is A1 and Fg(t � 1) is B1 and pH(t � 1) is C1 and
pH(t � 2) is D1 then pH(t)= a1 � Fg(t) + b1 � Fg(t � 1) +
c1 � pH(t� 1) + d1 � pH(t� 2) + w0
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Figure 5: System output and ANFIS output for training data
and for validation data

The second step to apply the fuzzy IMC controller to the sul-
fitation tower is to obtain an inverse model of the plant, train-
ing another ANFIS network. Due to the highly non-linear be-
haviour of the system, the synthetic signal (Fig. 3) has to be
such that, it generates so much data in the critical non-linear
regions of operation. The ANFIS architecture used to generate
the inverse model is:

Fgs(t) = g(pHm(t� 1); pHm(t� 2); pHm(t� 3)) (9)

where Fgs is the synthetic signal and pHm is the output of
the model trained in the first step. Here, three membership
functions has been used for each input, and 33 = 27 fuzzy
rules are generated for the inverse model. After training the
final result is shown in Fig. 6 which shows the output of the
net and the non-linear simulation model, for both training and
validation data. Perfect matching is not possible since noise
and disturbances are included in the simulation.

In Fig. 1 there are two filters F and Fr, the first one is to
reduce the noise and disturbances before to feedback the signal
in order to avoid stability problems, and the latter is a filter to
smooth the reference signal. In this work the filters used are:



Parameter Value
Plant output residue 0.01
Reference residue 0.0

Window size 40

Table 1: Threshold and window values

Fr = 1

F = 10
�6

z+10�6
(10)
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Figure 6: System output and ANFIS inverse model output for
training data and for validation data sets

Finally, the response to reference changes and disturbances for
this fuzzy IMC structure apply to the sulfitation plant is shown
in Fig. 7. It is possible to see that the controller response is not
the same in all the operation points, specially for the change
from pH = 8 to pH = 7, that is slower and with a large
overshoot, but by the way the results are quite adequate.
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Figure 7: Fuzzy IMC controller response to changes in the ref-
erence and disturbances in pHa

4.3 Fault tolerant control experiments

In order to implement the FDI scheme explained in section 3.1,
to the sulfitation plant the thresholds and the window were set
to the values showed in table 1.

The experiments have shown that the delay in fault detection is
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Figure 8: Residues evolution during reference change and fault
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Figure 9: Membership functions of the input to the fuzzy infer-
ence system used to reconfigure the IMC controller

seven sample times. The fault detection system is able to de-
tect faults in sensors, actuators and in the system itself, that is,
additive and multiplicative faults, but until now no diagnostic
scheme has been implemented. Figure 8 shows the system be-
haviour, residues and alarm evolution under fault and reference
change conditions. At time 1000 there is a reference change
and at 2000 there is a multiplicative fault, simulated as a step
in the temperature shown in eq 7. It can be seen how both the
reference and system residues become greater than zero at time
1000. Otherwise, when a fault occurs, only the system output
residue is greater than zero. In the case of a reference change,
the memory effect provided by the windowed reference avoid
a false alarm.

The qualitative model used in this application is the eq. 5,
where the input to the system is the gas flowrate Fg and the
output is the pH . In order to calculate the parameter Lr, a
Takagi-Sugeno type fuzzy inference system has been designed.
The input to this inference system is the pH reference, and it
has 4 membership functions defined in Fig. 9, the output is the
Lr parameter and it is a linear combination of the inputs and
the rules are:

If pHreference is very � acid then Lr = 1
If pHreference is little � acid then
Lr = 6 � input� 34
If pHreference is neutral then Lr = 2
If pHreference is basic then Lr = 6 � input� 34

Some experiments have been carried out to prove the fault tol-
erant control system designed. Figure 10 shows the plant out-
put behaviour when the reference is set to 6:5. Fault time is



0 1000 2000 3000 4000 5000 6000 7000
5

5.5

6

6.5

7

7.5

8
pH

Time

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

F
S

O
2

Figure 10: Fault at t = 2000 and pHref = 6:5
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Figure 11: Fault at t = 2000 and pHref = 8:0

2000 s. Immediately after the fault detection, the accommo-
dation begins. At time 3300 the output has reached again the
reference. Once a time the system is accommodated, the action
of the rule expressed in eq. 5 is canceled. Since this equation
changes the controller rules, the controller is unable of repro-
ducing accurately the system dynamic, unless eq. 5 will be
applied indefinitely, each time an error occurred in the system.
In figure 11 results for a fault at reference 8:0 are shown. In
this case accommodation is reached at time 2800. The control
degradation is very severe, but the fuzzy inference system re-
configures the IMC controller to reach again the reference. By
the way, it is possible to see that the controller is not very good
when the system reach the value of pH = 7, the response is
very oscillatory. This shows that the problem is not yet solved
and more studies are necessary to improve this response.

5 Conclusions

A fault tolerant fuzzy IMC controller is presented in this paper.
The method consists of three parts. The first one is to calcu-
late a direct model and an inverse model of the process using a
neural network (ANFIS), which implements a fuzzy inference
system. These models are used directly in the IMC structure.
The second part is essentially a fault detection and identifica-
tion (FDI) algorithm, based on the direct model to identify the
faults in the system. Finally the third part is the modification

of the consequent parameters of the fuzzy rules that conform
the inverse plant model in terms of a qualitative plant model
and information received from the FDI unit. This methodology
is applied to a sulfitation process with good results, except for
some values of the reference as pH = 7. But the drawback of
this method is that knowledge of the process with faults in nec-
essary. This information is not so easy to get in the industrial
plant, so the method need to be improved.
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