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Abstract

Fuzzy modelling together with Parallel Distributed Compensa-
tion (PDC)-based system analysis and controller/observer de-
sign techniques have emerged among the methods for develop-
ing fault detection and isolation (FDI). This paper provides a
comparison of fuzzy logic modelling approaches for FDI of
complex systems. The work is motivated by the modelling
issues of the Takagi-Sugeno (T-S) fuzzy inference operator-
based approximation structure that is essential for the imple-
mentation of a PDC system. The paper focuses on an appli-
cation study of fault diagnosis for an industrial actuator sys-
tem, conducted within the framework of the European study
DAMADICS.

1 Introduction

Computational intelligence techniques have been recently in-
vestigated as an extension of traditional model-based fault di-
agnosis methods [1, 2]. The purpose of this paper is to compare
two fuzzy logic-based modelling approaches, typically consid-
ered for FDI of complex (difficult to model) dynamic systems.
The work is developed within the framework of a European
Research Training Network studyDAMADICS (home page:
http://diag.mchtr.pw. edu.pl/damadics/). The comparison is
based on an application study of an electro-pneumatic valve
actuator applied in a sugar factory process in Lublin, Poland.
These modelling approaches are termed Tensor Product Trans-
formation (TPT) and Identification Package (IP). The detailed
description of the TPT and the IP is beyond the scope of this
paper and can be found in [3, 4, 5, 6]. The common primary
goal of these modelling approaches is to represent a dynamic
system by a TSK fuzzy model introduced by Takagi, Sugeno
and Kang, see [10]. However, they have different properties
in various modelling and implementation aspects that will be
analysed in this paper. In the following, some aspects of TPT
and IP are outlined as a basis for a comparative study.

With regard to implementation aspects, the TSK fuzzy mod-
els, have exponential computational complexity with their ap-
proximation accuracy. Furthermore, the TSK fuzzy model is
”nowhere dense in the modelling space” if the number of rules
is bounded. This implies that in pursuit of good modelling ac-

curacy we should, in general face the exponential explosion of
the TSK fuzzy modelling complexity. Hence, the task is to
find an optimal trade-off between the modelling accuracy and
processing complexity. This task plays an important role in
many real systems with time-consuming implementation fea-
tures. The processing time in fault diagnosis systems can be
crucial in preventing and avoiding system shutdown, break-
down and even catastrophes. It is in the light of this application
challenge that we here compare the TPT and IP approaches and
describe how the approximation trade-off can be investigated.

Furthermore, the ability to deal with non-linearity and
multiple-model complexity has resulted in an increased atten-
tion to PDC analysis and design techniques for FDI systems
[4]. An important issue arising from this is the identified fuzzy-
inference model structure can be linked with alternative analy-
sis and design techniques. This paper investigates how effec-
tively the TPT and IP approaches can be linked with/related to
the PDC computational framework [7].

All the TPT, IP and PDC designs illustrated in the paper are
executed numerically by computer without analytic and heuris-
tic derivations. If we can determine an immediate links be-
tween these approaches then we may be able to design self-
developing and learning FDI fault detection systems.

2 Nomenclature

In this section we introduce the notations being used in
the paper: {a, b, . . .}: scalar values. {a,b, . . .}: vec-
tors. {A,B, . . .}: matrices. {A,B, . . .}: tensors.
RI1×I2×···×IN :vector space of real valued(I1×I2×· · ·×IN )-
tensors. The subscript defines the lower order: for example, an
element of the matrixA at row-column numberi, j is symbol-
ized as(A)i,j = ai,j . Systematically, theith column vector
of A is denoted byai, i.e. A =

[
a1 a2 · · ·]. ¦i,j,n, . . .:

are indices. ¦I,J,N , . . .: index upper bound: for example:
i = 1..I, j = 1..J , n = 1..N or in = 1..In. A(n): n-
mode matrix of tensorA ∈ RI1×I2×···×IN . A ×n U: n-
mode matrix-tensor product.A⊗n Un: multiple product as
A×1 U1 ×2 U2 ×3 ..×N UN . FDI: Fault Detection and Iso-
lation. TPT: Tensor Product Transformation; IP: Identification
Package. TSK: Takagi Sugeno Kang.



3 System Description

A detailed system description of the benchmark study and real
measured training data sets of the industrial sugar factory pro-
cess considered in the framework of theDAMADICS EU RTN
contract are available on the home page ofDAMADICS. This
section gives a brief introduction to the elements of the process
upon which the application study is based.

3.1 General introduction of the sugar process

The sugar factory plant produces 50,000 tonnes of sugar an-
nually and consists of a large number of evaporation plants,
boiler houses, heaters and valves. As a raw feedstock to the
production of sugar, sugar beet is farmed and supplied to the
factory. Raw syrup is obtained from thin sliced beets using ex-
tractors. After cleaning, decalcifying and processing the syrup,
the syrup containing14% of sugar is condensed to70% so-
lution using the evaporation station. Waste steam from the
steam turbine is used as a heat source for the complete pro-
cess. A mixture of granulated sugar and syrup is obtained after
the crystallisation process in syrup boilers. For further details
the reader is referred to [8].

3.2 Actuator faults in the system

The local PI controller loop that controls the syrup levels in the
evaporator is throttling the syrup flow by acting on the control
valve (see later). The set point syrup level in the evaporator
should be controlled within the limits of a few %. The alarms
are set when the syrup level is outside set limits. Both situations
are dangerous for the process and process operators. In the case
of too low a syrup level in the evaporator, the danger of explod-
ing the boiler due to its overheating occurs. From knowledge of
the syrup volume in the evaporator one can easily deduce that a
dangerous situation could be detected by alarm analysis within
30s, giving further 30s for operator intervention. Shortening
the analysis time may be the crucial point in this case. This is
principally the task of advanced on-line FDI. The application
of new diagnostic algorithms in smart embedded control ele-
ments may bring significant increase to overall system safety,
reliability and economy [4, 9] whilst also providing a powerful
tool for local performance monitoring.

3.3 FDI scheme of the electro-pneumatic valve actuator

This subsection focuses on the definition of an FDI scheme for
electro-pneumatic valve actuator described above, as a crucial
part of the process. The modelling techniques of the next sec-
tions are compared using this industrial actuator system exam-
ple, as a basis for the FDI tasks described in [5] and in [6]. The
whole valve assembly consists of 3 main parts, see Figure 1.

The PI block controls the positioner and actuator output to reg-
ulate the flow through the valve. Pneumatic pressure is applied
to the servomotor diaphragm to control the stem position that
changes the flow as depicted in the block labelled ”internal PI”.
The positioner adjusts this pressure input to the servomotor to

Figure 1: Main parts of the valve assembly

obtain the correct stem position of the actuator, see Figure 2.
The valve is the final element in the assembly that alters the
flow according to the valve stem position, see Figure 1.

Figure 2: The servomotor and valve assembly

The following faults are detected and isolated:

• Control valve faults F1: Valve clogging F2: Valve plug
or valve seat sedimentation F3: Valve plug or valve
seat errosion F4: Internal leakage (valve tightness) F5:
Medium evaporation or critical flow

• Positioner fault F6: Rod displacement sensor fault Gen-
eral faults / external faults F7: Unexpected pressure drop
across valve F8: Fully or partly opened bypass valves F9:
Flow rate sensor fault

The FDI scheme uses fuzzy models to identify the faulty and
the fault-free behaviour of the system. The FDI residual signals
are generated by the fuzzy models of the plant that approximate
the non-linear electro-pneumatic valve by means of local linear
models. Each local model is a linear approximation of the pro-
cess in an I/P subspace and the selection of the local model
is fuzzy. The optimal structure found for the fuzzy models is
as follows [5,6]: Fuzzy models with a 4-input 2-output struc-
ture and fuzzy rules are constructed to generate the residuals
(r1, r2, , rN ). The inputs of the model are: the control value
(u1), inlet pressure (u2), outlet pressure (u3) and temperature
(u4), while the outputs are: the stem displacement of electro-
pneumatic servo motor (y1) and 1-liquid flow through the valve
(y2).



3.4 Fuzzy model applied in the FDI scheme

This subsection is intended to specify the fuzzy model form
that is utilised in the FDI scheme of the electro-pneumatic valve
actuator. Assume a given dynamic model:

sx(t) = A(p(t))x(t) + B(p(t))u(t) (1)

y(t) = C(p(t))x(t) + D(p(t))u(t),

where the non-linear system matrix is:

S(p(t)) =
(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

and vectorsx(t), u(t) and y(t) respectively, are the state,
input and output vectors; and wheresx(t) = ẋ(t) is for a
continuous-time system orsx(t) = x(t + 1) is for a discrete-
time system, further,p(t) is time-varying and is bounded by
theN -dimensional spacep(t) ∈ Ω : [a1, b1] × [a2, b2] × .. ×
[aN , bN ] ⊂ RN . P(t) may, for instance, include some ele-
ments ofx(t) or u(t).

The TSK model (1) by linguistic rules such as:

IFw1,i1(p1)ANDw2,i2(p2)AND...ANDwN,iN (pN ) (3)

THENSi1,i2,..,iN .

whose explicit form via product-sum-gravity inference opera-
tor [10] is: (

sx(t)
y(t)

)
= (4)

=

(
I1∑

i1=1

I2∑

i2=1

..

IN∑

iN=1

N∏
n=1

wn,in(pn(t))Si1,i2,..,iN

)(
x(t)
u(t)

)
.

wn,i(pn) denotes thei-th membership function of then-th vari-
able. MatricesSi1,i2,..,iN

are the system matrices of the con-
sequent systems. To avoid complicated indexing, and facilitate
further reading let us introduce the following tensor operation
notation by re-writing (4) in the form:

(
sx(t)
y(t)

)
= S N⊗

n=1
wn(pn(t))

(
x(t)
u(t)

)
. (5)

Here, the row vectorwn(pn) ∈ RIn contains the antecedent
membership functionswn,in(pn), theN + 2 -dimensional co-
efficient tensorS ∈ RI1×I2×···×IN×O×I is constructed from
the consequent system matricesSi1,i2,...,iN

∈ RO×I . The first
N dimensions ofS are assigned to the dimensions ofp(t). Let
us define an important characteristic of the antecedent fuzzy
sets, which is referred to asRuspini-partition:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0, 1]; (6)

∀n, pn(t) :
In∑

i=1

wn,i(pn(t)) = 1.

When the antecedent fuzzy sets fulfill (6) the consequent sys-
tems define a fixed polytope, where the system varies in:

S(p) ∈ {S1,S2, . . . ,SR}. MatricesSr ∈ RO×I are also
termed vertex systems. Actually, the plolytope defines the con-
vex hull of the vertex systems:

S(p(t)) = co{S1,S2, . . . ,SR}w(p(t)).

4 Identification by TP Transformation: TPT

The primary purpose of the TPT is to transform a state-space
dynamic model, given over a bounded domainΩ, to TSK
model form (5). The symbolic notation of the model is:

(tradeoff,wn=1..N (pn(t)),S) = (7)

= TP transf(S(p(t)), Ω, options),

whereS(p(t)) ∈ RO×I is from the state-space model (2), and
Ω ⊂ RN denotes the bounded domain which the transforma-
tion is performed over. ”options” is to define constrains on
the characteristics of the resulting membership functions, see
later in the Section 6. The resulting functionswn=1..N (pn(t))
and tensorS can be substituted immediately into (5). ”trade-
off” defines the relation between the number of rules and the
approximation error.

5 Identification Package: IP

IP has three components ( see, [5,6]) such as prod-
uct space clustering [11], which is also available in
the form of MATLAB program on the internet page
(http://dutera.et.tudelft.nl/ babuska/), and tree-like algorithms
(LOLIMOT) algorithm defined in [12] and a final tuning by
learning algorithms [2]. The main components of the IP serve
different approximation purposes such as optimal clustering,
complexity reduction and transparency.

Let the symbolic notation of the IP be:

(tradeoff,S) = IP (training data,mf type, R), (8)

The input of the identification algorithm is the training data
set, denoted by ”training data” that are generated from the
measurements of the sugar plant. ”mf type” is to define the
function type of the antecedent membership functions.R is
the interval of the number of the resulting rules which we are
interested in. Along the same line of reasoning as above the
output parameter ”tradeoff ” defines the relation between the
number of antecedent fuzzy sets and the approximation error.
S defines the fuzzy system consequents. The shape of the an-
tecedent fuzzy sets are defined according to the selected num-
ber of rules and the set ”mf type”.

6 Comparison of the identification methods

This section considers the approximation and implementation
aspects of the TPT and IP methods as discussed in the intro-
duction.



6.1 General approximation properties of TSK fuzzy
model

In this subsection we refer to papers that claim that the com-
plexity requirements of TSK systems (i.e. the number of fuzzy
rules in the model) grows exponentially in terms of the num-
ber of variables. Investigtors also generally claim that multi-
variable real-valued continuous functions cannot be approxi-
mated arbitrarily well by TSK fuzzy model if the number of
fuzzy rules is bounded. These claims lead to the necessary
trade-off between approximation complexity and accuracy and
hence to the trade-off between identification complexity and
accuracy. This work provides the proof for theno-where dense-
nessof the TSK fuzzy model when it has a bounded number of
fuzzy rules.

6.2 Essential difference between TPT and IP

• The TPT is a numeric algorithm and does not require any
constrains on the form ofS(p(t)). This can be determined
by analytic or other intelligent computational techniques.
Therefore, the main purpose of the transformation isnot
to extract the TSK model from the training data, but rather
to convert various different identified model forms to a
common form of (5).

• IP functions with training data. Its main objective isto
approximate the sampled real system in the from of (5)
from the training data set.

6.3 Characteristic of the resulting membership functions

• In the case of TPT the shape and type of the antecedent
fuzzy sets are defined by the TPT method according to
the application system under investigation, it cannot be
predefined by the user. However, the parameter ”op-
tion:{Minimal,Ruspini}” in (7) let us set constrains on the
antecedent fuzzy sets. ”Minimal” means that the mini-
mum number of basis function is applied on all dimen-
sions in the sense that the equality:

B⊗
n

wn(pn) = C ⊗
n

vn(pn),

where wn,in(pn) and B ∈ RI1×I2×..×IN are resulted
by TPT, has no solution for basisvn,in(pn) and tensor
B ∈ RJ1×J2×..×JN if ∃n : Jn < In. Note that the re-
sulting basis functionswn,in(pn) cannot be interpreted as
fuzzy sets in general since they are bounded by[−1, 1].
”Ruspini”-option means that the resulting basis functions
fulfill the conditions ofRuspini-partition (6). In this case
the basis functions can, hence, be viewed as member-
ship functions of fuzzy sets. With this option the number
of basis functions may increase with one on the dimen-
sions from the ”Minimal” basis. The resulting member-
ship functions are in numeric form, the analytic form is
not provided. It is rather complicated to find the analytic
form via curve-fitting techniques, for instance see Figure
5. We also should remark here that the resulting fuzzy sets
do not have nice transparency of the system.

• IP results in membership functions whose analytic type is
defined by the user. It hence means that the real system is
represented over the transparency predefined.

Let the IP be executed on the valve actuator described in Sec-
tion 3, with ”mf type”= Double Gaussian membership func-
tions and withR = [1, 10]. If 10 rules are allowed then one
obtains membership functions depicted on Figure 3. If 5 rules
are allowed then one obtains sets depicted in 4.
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Figure 3: Result of the Identification Package for 10 rules
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Figure 4: Result of the Identification Package for 5 rules

We can observe that the type of the antecedent fuzzy sets are
kept on both Figures 3 and 4, only their parameters are modi-
fied.

Let the 10 rules resulted by the IP be converted toRuspini-
partition by the TPT. The result is depicted on Figure 5).

When we compare Figures 3 and 5), we can see that the an-
tecedent fuzzy sets resulted by the TPT have not so nice trans-
parency.

One of the most important conclusions of the comparison can
also be drawn here. If there exists an exact representation by
(5) of the system with a finite number of rules then the TPT cer-
tainly finds it. It is capable of revealing and extracting the ten-
sor product structure of the system, and determining the shape
of antecedents, accordingly. However, the IP can find the exact
representation only if the user somehow hits upon the proper
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Figure 5: Result of the TPT for 10 rules

shape of the sets, which is usually by chance if we have no
sufficient information about the tensor product structure of the
system, which is usually the case. Therefore, the IP cannot
generally find the exact representation with a finite number of
rules. Consequently, TPT is capable of approximating the sys-
tem without error if the system has tensor product structure,
while the IP approach practically cannot. For example, the TPT
is capable of exactly (without approximation error) decompos-
ing the functiony = f(x1, x2) = (1 + x−2

1 + x−1.5
2 )2, Ω :

x1 ∈ [1, 5], x2 ∈ [1, 5] into 9 rules, see [3]. The IP is not able
to find 9 rules with zero approximation error if we set the an-
tecedent fuzzy sets, e.g. to be Gaussian type, since the function
f(x1, x2) does not involve Gaussian structure in its analytic
form. In the case of IP the question is how to predefine the
antecedent structure of the functionf(x1, x2).

6.4 Immediate link to PDC design

• PDC analysis and design techniques assumes the ”Rus-
pini ”-partitions of the antecedent fuzzy sets. The benefit
of the ”Ruspini”-option of TPT is that the PDC design
can be immediately be executed on the resulting fuzzy
rule base. The previous subsection concluded that TPT
can find an exact representation. This property may play
a crucial role in PDC design when an exact representation
(or very small error) of the model is needed. [3] gives
examples about dynamic systems that are represented ex-
actly by the TSK model as a consequence of applying
the TP transformation. The direct link between TPT and
the PDC structure facilitates the design of automatic self-
developing methods, see the examples of [3].

• The antecedent fuzzy sets by IP fits the requirement of
PDC only if we set ”mf type” accordingly to (6). For
instance the antecedent fuzzy sets on Figure 3 and 4 do
not fulfill (6), they need further transformations, which
are generally not trivial and may unnecessarily increase
the number of rules, see [3].

6.5 Trade-off between approximation complexity and ac-
curacy

Both of the identification techniques serve the approximation
trade-off via determining a relation between the number of
rules and the approximation error. This helps us with reducing
the fuzzy rule base complexity via discarding rules according
to an acceptable reduction error.

• TPT assigns one weighting value to each antecedent fuzzy
set. When we discard the antecedent fuzzy sets, the reduc-
tion error is bounded by the sum of the weighting values
assigned to the discarded antecedents.

• IP also indicates the relation between the number of rules
and the modelling accuracy.

Figure 6 shows the ”trade-off relation” offered by the IP. By
the help of Figure 6 we can easily optimize the approxima-
tion trade-off. In order, to perform the comparison on the same
approximated model let the TPT be executed on the 10 rules
resulted by the IP. Figure 7 presents the ”trade-off” relation of-
fered by the TPT. Figure 7 shows two curves. The upper one is
the estimated error bound during the transformation, whilst the
lower one is the actual reduction error. We can conclude that
the two ”trade-off relations” defined by the two identification
techniques significantly differ.In the present case the IP is
rather advantageous.
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Figure 6: Trade-off by the Identification Package

In the following, we outline the reason of this significant differ-
ence. The core of the TPT is the Higher Order Singular Value
Decomposition (HOSVD). The rank of a given tensor can be
decreased via HOSVD. It is simply done by discarding sin-
gular values. The error, in a least-squares sense, between the
given tensor and its lower ranked variant is bounded by the sum
of the discarded singular values. This property is utilised in a
large variety of complexity reduction techniques as well as in
the TPT. One important point should be noted here. It is not
guaranteed by the HOSVD that the lower ranked variant is the
possible best approximation of the given tensor subject to the
lower rank constrain even in the case when the smallest singu-
lar value is discarded, except in the two-dimensional case. This
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Figure 7: Trade-off by the TPT

means that we can find a tensor with the same lower rank that
is closer to the given tensor in the sense of least-squares error.
This fact explains why the trade-off relation of the TPT differs.
The retraining of the TP transformed rule base yields an ap-
proximation error that is numerically equivalent to the error of
the IP.

7 Conclusion

In this paper we have compared two TSK fuzzy model identi-
fication techniques in readiness for application to an FDI task
in a system which has model-complexity. We can first con-
clude that although these two approaches have some common
modelling aims and shows similar features they have signif-
icantly different modelling roles and cannot be mutually re-
placed. They can however be linked, since the purpose of
IP is to extract the identified model from the training data,
whilst the TPT has the role of transforming an already iden-
tified model into the TSK fuzzy model form with various ad-
vantageous properties. It has been pointed out that if we utilise
the TSK fuzzy model-based approach to FDI we should face
the approximation trade-off in the modelling phase. It has also
been concluded that the IP generally offers advantageous ap-
proximation trade-off. The TPT may need further training and
it has also been shown that it can certainly find the exact rep-
resentation with a finite number of rules, whenever the TPT
exists. If we would like to extract transparency from the rule
base then the use of the IP technique is suggested in this paper.
A significant conclusion in the sense of FDI design is that the
use of further PDC-based analysis is well supported by TPT.
Having these conclusions, we may be motivated to extend the
TPT with the clustering and the retraining phase of IP, thus
bringing together their joint advantages. Future work may fo-
cus on the development of an identification method that starts
with training data and results in a fuzzy rule base whereupon
PDC can readily be executed. This approach would be of value,
for example for the multiple-model strategy required for FDI of
a very non-linear actuator system as typified by the case of the
sugar factory study.
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