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Abstract

The inherent characteristics of fuzzy logic theory makes it suit-
able for fault detection and diagnosis (FDI). Fault detection can
benefit from nonlinear fuzzy modeling and fault diagnosis can
profit from a transparent reasoning system, which can embed
operator experience, but also learn from experimental and/or
simulation data. Thus, fuzzy logic-based diagnostic is advan-
tageous since it allows the incorporation of a-priori knowledge
and lets the user understand the inference of the system. In this
paper, the successful use of a fuzzy FDI based system, based
on dynamic fuzzy models for fault detection and diagnosis of
an industrial servo-actuated valve is presented. Only real plant
data is used for the design and validation of the fuzzy FDI sys-
tem. The validation results show the effectiveness of this ap-
proach.

1 Introduction

There is an increasing demand for man-made dynamical sys-
tems to become safer and more reliable. These requirements
extend to process industry plants, which are basically con-
trolled by servo-actuated flow control valves. Taking into con-
sideration that malfunction of a valve in many hazardous ap-
plications can cause serious consequences, the fault diagno-
sis of industrial servo-actuated valve is a very important task.
When the malfunction is detected and isolated, a quick re-
sponse might prevent the monitored system from expensive
damages and loss of efficiency and productivity. A system
that includes the capacity of detecting, isolating and identify-
ing faults is called a fault diagnosis and isolation system (FDI)
[5]. During the years, many research has been carried out using
analytical approaches, based on quantitative models. The idea
is to generate signals that reflect inconsistencies between nor-
mal and faulty system operation. Such signals, the residuals,
are usually generated using analytical approaches, such as ob-
servers, parameter estimation or parity equations. Early detec-
tion and isolation of abrupt and incipient faults can be achieved
with model-based processing of all measured variables, using
either qualitative or quantitative modeling.

Generally, the methods of fault detection can be divided into
two groups: process variable monitoring and model based

methods, which are more complex. For a simple fault that can
be detected by a single measurement, a conventional threshold
check may be appropriated. However, since in complex indus-
trial systems it is usually very difficult to directly measure the
state of the process, more sophisticated solutions are needed. In
this case a model-based approach will be more suitable. This
requires process modeling, which proves to be a very demand-
ing task, especially when dealing with a nonlinear process.

The idea of model based fault detection is to compare output
signals of the model with the real measurements available in
the process, thereby generating the residuals, which are fault
indicators giving information about the location and timing of
a fault. This FDI approach requires precise mathematical rela-
tionships relating the model to the process, to allow the detec-
tion of small abrupt and incipient faults quickly and reliably.
Different methods of model estimation are available. The most
popular are analytical, being examples of these the Kalman fil-
ter, the Luenberger observer, between others [5]. However, the
requirements for precise and accurate analytical models imply
that any resulting modeling error will affect the performance of
the resulting FDI system. This is particularly true for dynami-
cally nonlinear and uncertain systems, which represent the ma-
jority of real processes. Therefore, the main assumption made
when using model based FDI approach is that a precise mathe-
matical model of the plant is required. This makes quantitative
model-based approaches very difficult to use in real systems,
since any un-modeled dynamics can affect the performance of
the FDI scheme. A way to overcome this problem is to de-
sign robust algorithms, where the effects of disturbances on the
residual are minimized, and the sensitivity to faults maximized.
Many approaches have been developed including unknown in-
put observers and eigenstructure assignment observers, as well
as frequency domain techniques for robust FDI filters, such as
the minimization of multi-objective functions, without much
success for nonlinear cases. Recently other methods like neu-
ral networks, expert systems, fuzzy systems and neuro-fuzzy
systems have been used with relative success [4].

Fuzzy techniques have received much attention due to their
fast and robust implementation, their capacity to embed a-
priori knowledge, their performance in reproducing nonlinear
mappings, and their abilities of generalization. Thus, fuzzy
logic techniques are now being investigated in the FDI research
community as a powerful modeling and decision-making tool,
along with neural networks and others more traditional tech-
niques such as non-linear and robust observers, parity space



methods and hypothesis-testing theory. To circumvent this pre-
cision modeling problem, more abstract models based on quali-
tative approaches may be used. Alternatively, fuzzy-logic rules
may be developed to either assist or replace the use of a model
for diagnosis. The key advantage of fuzzy logic is that it en-
ables the system behavior to be described by “if-then” rela-
tions. The main trend in developing fuzzy FDI systems has
been to generate residuals using either parameter estimation or
observers, and allocate the decision-making to a fuzzy-logic in-
ference engine. By doing so, it has been possible to combine
symbolic knowledge to quantitative information and, thereby,
minimize the false alarm rate. Indeed, the key benefit of fuzzy-
logic is that it lets the operator describe the system behavior or
the fault-symptom relationship with simple if-then rules. In this
paper a step forward approach will be presented. The symp-
toms will be generated using fuzzy observers and plant mea-
surements. The underlying idea is to predict the system outputs
from the available inputs and outputs of the process, thus iden-
tifying a fuzzy model directly from data. The residual will then
be a weighted difference between the predicted and the actual
outputs. In our approach fuzzy observers are built for normal
and faulty operations allowing the detection and isolation of the
considered faults.

The paper is organized as follows. The architecture for fault
detection and diagnosis proposed in this paper is described in
Section 2. This FDI structure needs the identification of fuzzy
models, which are briefly presented in Section 3. The pneu-
matic servo-actuated industrial valve used as test bed for the
FDI architecture is described in Section 4, and the respective
design of the FDI scheme for this system is explained in Sec-
tion 5. The validation results are presented in Section 6, and
some conclusions are drawn in Section 7.

2 Architecture for fault detection and diagnosis

This paper proposes a simple architecture to detect, isolate and
identify faults. The FDI system is based on fuzzy observers
(models) identified directly from data. The model-based tech-
nique uses a fuzzy model for the process running in normal
operation, and one observer (model) for each of the faults to
be detected. Suppose that a process is running, and n possible
faults can be detected. The fault detection and isolation system
proposed in this paper for these n faults is depicted in Fig. 1.
The multidimensional input, u, of the system enters both the
process and a model (observer) in normal operation. The vec-
tor of residuals ε is defined as

ε = y − ŷ , (1)

where y is the output of the system and ŷ is the output of the
model in normal operation. When any component of ε is bigger
than a certain threshold δ, the system detects faults. In this
case, n observers (models), one for each fault, are activated,
and n vectors of residuals are computed. Each residual i, with
i = 1, . . . , n is computed as

εFi = y − ŷFi , (2)

Figure 1: Fault detection and identification scheme.

where ŷFi is the output of the observer for the fault i. The
residuals εF1 , . . . , εFn are evaluated, and the fault or faults
detected are the outputs of the FDI system. In this paper, all
the models, i.e., the observer for normal operation and the ob-
servers for the n faults, are fuzzy models reproducing the dy-
namic behavior of the process, for each condition considered.
This technique revealed to be adequate to identify models ex-
tracted from real data, as in the example described in this paper.
Next section describes fuzzy modeling in detail.

3 Fuzzy Modeling

Fuzzy modeling often follows the approach of encoding expert
knowledge expressed in a verbal form in a collection of if–then
rules, creating a model structure. Parameters in this structure
can be adapted using input-output data. When no prior knowl-
edge about the system is available, a fuzzy model can be con-
structed entirely on the basis of system measurements. Note
that the fuzzy observers used in the architecture for fault de-
tection and diagnosis proposed in this paper are fuzzy models.
In the following, we consider data-driven modeling based on
fuzzy clustering [1, 8]. This approach avoids the well-known
bottleneck of knowledge acquisition. The fuzzy model is ac-
quired from sampled process data, utilizing the functional ap-
proximation capabilities of fuzzy systems.

Assume that data from an unknown system y = F (x) is ob-
served. The aim is to use this data to construct a deterministic
function y = f(x) that can approximate F (x). The function f
is represented as a collection of fuzzy if–then rules. Depend-
ing on the form of the propositions and on the structure of the
rule base, different types of rule-based fuzzy models can be
distinguished. The system to be identified can be represented
as a MIMO nonlinear auto-regressive (NARX) model. These
MIMO system can be decomposed into several MISO models,
without loss of generality [1]:

ŷ(k + 1) = f(x(k)), (3)

where x(k) ⊂ R
n is the state of the system and is represented

by previous inputs and outputs. Only MISO models are con-
sidered in the following for the sake of simplicity.



3.1 Takagi–Sugeno fuzzy model

We consider rule-based models of the Takagi-Sugeno (TS) type
[9]. It consist of fuzzy rules which each describe a local input-
output relation, typically in an affine form. The representation
of (3) as a TS model is given by

Ri : If x1 is Ai1and . . . and xn is Ainthen yi = aix + bi

(4)
with i = 1, 2, . . . , K . Here, Ri is the ith rule, Ai1, . . . , Ain are
fuzzy sets defined in the antecedent space, x = [x1, . . . , xn]T

is the antecedent vector, and yi is the rule output variable. K
denotes the number of rules in the rule base, and the aggregated
output of the model, ŷ, is calculated by taking the weighted
average of the rule consequents:

ŷ =
∑K

i=1 βiyi
∑K

i=1 βi

, (5)

where βi is the degree of activation of the ith rule:

βi = Πn
j=1µAij (xj), i = 1, 2, . . . , K, (6)

and µAij (xj) : R → [0, 1] is the membership function of the
fuzzy set Aij in the antecedent of Ri.

3.2 Identification by fuzzy clustering

The nonlinear identification problem is solved in two steps:
structure identification, and parameter estimation.

3.2.1 Structure identification

The designer must choose first the order of the model, and the
significant state variables x of the model. This step is crucial in
the identification of fuzzy observers for FDI, since the smaller
the vector x the faster the model. Note that fuzzy observers
for FDI must be both simple and accurate models in order to
detect the faults as fast as possible. To identify the model (4),
the regression matrix X and an output vector y are constructed
from the available data:

XT = [x1, . . . ,xN ], yT = [y1, . . . , yN ]. (7)

Here N � n is the number of samples used for identification.
The objective of identification is to construct the unknown non-
linear function y = f(x) from the data, where f is the TS
model in (3).

3.2.2 Parameter estimation

The number of rules, K , the antecedent fuzzy sets, A ij , and
the consequent parameters, ai, bi are determined in this step,
by means of fuzzy clustering in the product space of X × Y
[10, 11, 1]. Hence, the data set Z to be clustered is composed
from X and y:

ZT = [X, y] . (8)

Given Z and an estimated number of clusters K , the Gustafson-
Kessel fuzzy clustering algorithm [6] is applied to compute the

Figure 2: Diagram of the industrial servo-actuated pneumatic
valve considered.

fuzzy partition matrix U. This provides a description of the
system in terms of its local characteristic behavior in regions of
the data identified by the clustering algorithm, and each cluster
defines a rule. Unlike the popular fuzzy c-means algorithm [3],
the Gustafson-Kessel algorithm applies an adaptive distance
measure. As such, it can find hyper-ellipsoid regions in the
data that can be efficiently approximated by the hyper-planes
described by the consequents in the TS model.

The fuzzy sets in the antecedent of the rules are obtained from
the partition matrix U, whose ikth element µik ∈ [0, 1] is the
membership degree of the data object zk in cluster i. One-
dimensional fuzzy sets Aij are obtained from the multidimen-
sional fuzzy sets defined point-wise in the ith row of the parti-
tion matrix by projections onto the space of the input variables
xj :

µAij (xjk) = projN n+1
j (µik), (9)

where proj is the point-wise projection operator [7]. The point-
wise defined fuzzy sets Aij are approximated by suitable para-
metric functions in order to compute µAij (xj) for any value
of xj . In this paper like [1] after clustering The consequent
parameters for each rule are obtained as a weighted ordinary
least-square estimate. Let θT

i =
[
aT

i ; bi

]
, let Xe denote the

matrix [X;1] and let Wi denote a diagonal matrix in R
N×N

having the degree of activation, βi(xk), as its kth diagonal el-
ement as defined in (6). Assuming that the columns of Xe are
linearly independent and βi(xk) > 0 for 1 ≤ k ≤ N , the
weighted least-squares solution of y = Xeθ + ε becomes

θi =
[
XT

e WiXe

]−1
XT

e Wiy . (10)

Rule bases constructed from clusters are often unnecessary re-
dundant due to the fact that the rules defined in the multidimen-
sional premise are overlapping in one or more dimensions.



0 1000 2000 3000 4000 5000 6000 7000
48

50

52

54

56

Fl
ow

0 1000 2000 3000 4000 5000 6000 7000
−3

−2

−1

0

1

2

R
es

id
ua

ls

Figure 3: Validation of the flow output. Top: Flow output.
Bottom: Flow residuals.

4 Description of the process

A pneumatic servo-actuated industrial control valve is used
as test bed of the fault detection and diagnosis approach pro-
posed in this paper [2]. The valve is situated on the outlet
of thick juice from the fifth section of evaporation station of
the Lublin Sugar Factory in Poland. The actuator-valve is de-
picted in Fig. 2. The actuator consists of three main parts:
control valve, V; pneumatic servomotor, S; and positioner, P.
Furthermore, each of the three main parts contains other com-
ponents shown in Fig. 2, which are the following: positioner
supply air pressure, PSP; air pressure transmitter, PT; volume
flow rate transmitter, FT; temperature transmitter, TT; rod posi-
tion transmitter, ZT; electro-pneumatic converter, E/P; cut-off
valves, V1 and V2; by-pass valve, V3; pneumatic servomotor
chamber pressure, Ps; and controller output, CVI.

The designer of the system must choose carefully the most rele-
vant variables in order to keep the models (observers) as simple
as possible. Therefore, the parameters of models identified for
the valve have been carefully chosen. Namely, the variables to
be considered in the models and the orders for each variables
have been selected in order to minimize the complexity of the
models, which must still be very accurate to detect and identify
correctly the faults.

5 Design of the FDI system

This section presents the design of the fuzzy observers for the
FDI scheme presented in Section 2. Fuzzy models for the nor-
mal operation and for each fault considered were identified us-
ing the Fuzzy Modeling and Identification Toolbox [1]. Real
data for the industrial servo-actuated valve have been used.
This data obtained from the Lublin sugar factory including nor-
mal operation and operation with faults. Considering all the
factory constraints and the difficulties to obtain the faults oper-
ation in this paper are used only two faults. From a thorough
analysis of the variables described in Section 4, it can be con-
cluded that for FDI purposes, the most relevant variables are the
flow process value, PV, and the servomotor rod displacement,
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Figure 4: Validation of the rod displacement output. Top: Rod
displacement output. Bottom: Rod displacement residuals.
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Figure 5: Identification (id.) and validation (val.) of input
data.(See Table 1).

X. Therefore, these variables have been considered as outputs
of the fuzzy model identified for normal operation. Moreover,
the variables that revealed also to be relevant for this model are
the following: pressure inlet valve, P1; pressure outlet valve,
P2; temperature at the inlet, T; and control value for the inlet
valve, CV.

Three clusters revealed to be sufficient for each output, and as
so, the TS fuzzy observer has 6 rules, 3 for each output. The
clusters are projected into the product-space of the space vari-
ables and the fuzzy sets Aij are determined, with i = 1, . . . , K
and j = 1, . . . , n, where n = 6 is the size of the state vector, in
this case. The rules for the output PV and for the output X are
not included due to lack of space.

The set of identification data used to build the valve model in
normal operation contains 7000 samples. The same number of
data points is used for validation. Figures 3 and 4 presents both
the validation of the fuzzy model under normal operation, and
the residuals obtained for these data. The variance accounted
for (VAF) obtained for each output, flow and rod displacement,
are 91.2 and 86.9, respectively. Thus, the models are very ac-
curate as desired.
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Figure 6: Identification (id.) and validation (val.) of output
data.(See Table 1).

From the set of possible faults, two were considered: F17,
which is an unexpected pressure change across the valve re-
flected either in the upstream or downstream pressure, and F19,
which is a flow sensor fault. Figures 5 and 6 shows 3000 input
and output data samples collected from the industrial servo-
actuated valve. The sampling time is 1s. The faults F17 and
F19 are located at the sampling points presented in Table 1,
which has two faulty windows for each fault. Therefore, one
part was used for identification, noted as (id.) in and the other
for validation, noted as (val.) in Table 1. Two fuzzy observers

Faults Samples
begin end

F17 (val.) 80 94
F17 (id.) 493 515
F19 (id.) 1782 1817
F19 (val.) 2277 2315

Table 1: Faults in real data.

have been identified, one for each fault. Again, a thorough
analysis of the variables described in Section 4 has been made,
and the more relevant ones have been chosen. Only two clus-
ters are now sufficient for each output, and as so, the TS rules
for the fuzzy observer F17 has 4 rules, 2 for each output. The
rules for the output PV are the following:

1. If PV(k) is A11 and X(k) is A12 and P1(k + 1) is A13

and P2(k + 1) is A14 then
PV(k + 1) = 1.23PV(k) + 4.74 · 10−2X(k)
−0.138P1(k + 1) + 0.459P2(k + 1) − 68.8

2. If PV(k) is A21 and X(k) is A22 and P1(k + 1) is A23

and P2(k + 1) is A24 then
PV(k+1) = −0.67PV(k)−2.9X(k)+6.1·10−3P1(k+1)
−7.17 · 10−2P2(k + 1) + 2.91 · 102

The fuzzy rules for the output X are:
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Figure 7: Residuals using the fuzzy observer under normal op-
eration. Top: Flow. Bottom: Rod displacement.

1. If X(k) is A11 and P1(k + 1) is A12 then
X(k + 1) = 0.96X(k) + 3.77 · 10−2P1(k + 1) − 0.18

2. If X(k) is A21 and P1(k + 1) is A22 then
X(k + 1) = 0.48X(k) + 0.1P1(k + 1) − 17.9

The VAF obtained for each output, flow and rod displacement,
are 95.3 and 93.7, respectively. Thus, the fuzzy observer F17
is again very accurate as desired.

Three clusters are considered for each output, and as so, the
TS rules for the fuzzy observer F19 has 6 rules, 3 for each
output. The rules for the output PV and for the output X are
not included due to lack of space.

The VAF obtained for each output, flow and rod displacement,
are 93.2 and 98.9, respectively. Again, the fuzzy observer F19
is very accurate as desired.

6 FDI validation

The FDI system proposed in this paper, which is presented in
Fig. 1, was applied to the industrial valve to detect and identify
the faults F17 and F19 based on real data. Two fuzzy models
were identified, one for each fault. The residuals obtained us-
ing the fuzzy model in normal operation, are shown in Fig. 7.
It can be seen that both residuals ε present four zones with
large values. This result confirm the four faults in the real data.
When the block Fault Detection in Fig. 1 detects faults, the
faulty models, in our case the fuzzy observers for F17 and F19,
are activated. When the plant data used corresponding to nor-
mal plant operation the block Fault Detection no detects fault
and the faults observers are not activated.

The real data and the residual εF17 obtained for fault F17 con-
sidering the output rod displacement are depicted in Fig. 8. It
is clear that the residual is very close to zero, and thus the fault
F17 is isolated using the fuzzy observer. The figure for the out-
put flow and it residual are not included due to lack of space.
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Figure 8: Output and residual obtained using the fuzzy ob-
server F17. Top: rod displacement. Bottom: rod displacement
residuals.
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Figure 9: Output and residual obtained using the fuzzy ob-
server F19. Top: flow. Bottom: flow residuals.

Further, the real data and the residual εF19 obtained for fault
F19 considering the output flow are shown in Fig. 9. Again,
the residual is very close to zero, and the fault F19 is iso-
lated using the fuzzy observer. The figure for the output rod
displacement and it residual are not included due to lack of
space. Considering the obtained results, it can be concluded
that the FDI system proposed in this paper was able to detect
and identify the faults selected (F17 and F19) in the industrial
servo-actuaded pneumatic valve, using fuzzy observers identi-
fied from real data.

7 Conclusions

This paper proposes a simple FDI scheme using fuzzy ob-
servers to compute the residuals. The fuzzy observers are iden-
tified from real input-output data of a possibly faulty system.
The application to a pneumatic servomotor actuated industrial
valve shown that the FDI scheme was able to detect two differ-

ent faults. Future work will consider the extension of the pro-
posed FDI scheme to a large number of faults, and the inclusion
of incipient faults to be detected, isolated and identified.
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