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Abstract

Monitoring large-scale systems is of fundamental importance
in modern infrastructures. Many of these large-scale systems
are complex interconnections of sub-components which inter-
act by means of communication channels with limited band-
width. Therefore the information must be encoded in order to
be transmitted. Given a class of encoders, the problem of de-
tecting faults affecting some of these sub-components starting
from the encoded information is studied, and a precise charac-
terization of a class of faults which can be detected is given.

1 Introduction

We are interested in the problem of detecting faults which occur
in systems of the form

x(k + 1) = Ax(k) + Bu(k) + Mm(k) , k ≥ 0 , (1)

wherex(k) ∈ Rn is the system state,u(·) : Z+ → Rm is a
vector-valued and measured input signal andm(·) : Z+ → R is
a fault signal. System (1) can be interpreted as a model of one
of many sub-components which comprise a complex system.
By fault it is meant a signal which is identically zero fromk =
0 through the unknown timēk−1 and which becomes non zero
for the first time at̄k. The time behavior ofm(·) is otherwise
unknown. The (fault) vectorM is nonzero to avoid triviality.

Were the measurements of system (1) available in the (non-
quantized) form

y(k) = Cx(k) , (2)

the solution of the problem of detecting the occurrence of the
fault would be a straightforward one. Indeed, in the hypothesis
of (C,A) observable, the diagnostic filter

ξ(k + 1) = (A−GC)ξ(k) + Bu(k) + Gy(k)
r(k) = y(k)− Cξ(k) ,

(3)

wherer(·) is the diagnostic signal (residual) andG is the gain
matrix for which all the eigenvalues ofA − GC lie within
the unitary ball, solves the detection problem (see e.g. [11]).
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Namely, the residualr(·) is zero (or, more realistically, asymp-
totically converges to zero) when no fault is present, and be-
comes nonzero when the fault occurs. The proof of this result
rests on showing that the device (3) gives rise to a law

r(·) = ϕ(y|[0,·], u|[0,·])

which cascaded to the system makes the fault-residual map in-
jective1, that is the (linear) map fromm(·) to r(·) is one-to-one
and as such non zero signalsm(·) necessarily yield non zero
signalsr(·).
In the present paper, however, we are concerned with mea-
surements which must be transmitted through communication
channels in order to be evaluated. This means that signaly(k)
is not directly accessible by the diagnostic device (possibly lo-
cated at a remote location) but must be encoded using a finite
setA of 2R + 1 words or symbols, whereR is a design param-
eter2. Control and estimation with quantized and/or encoded
measurements has attracted a good deal of interest in the re-
cent years (see, to cite a few, [8, 7, 6, 17, 18, 14, 2, 9, 16,
19, 20, 3, 1, 13] and references therein). Fault detection for
quantized systems has been studied for instance in [10, 15].
Here we consider a purely deterministic framework in which
the parameters of the quantizer on which the encoder is based
can be adjusted on-line, following in this respect previous work
(cf. e.g. [9, 17, 14]). In particular, of the many possible avail-
able approaches to tackle the problem, we adopt here the point
of view of [17] which is particularly suitable to our purposes.

Encoding signaly(k) is carried out by a device (encoder)

s(·) = ε(y|[0,·], u|[0,·]) ,

which outputss(k) ∈ A, one of the2R + 1 possible words.
Therefore, in the case of quantized measurements, the detection
device must rely ons(·) rather thany(·), and it will be better
described by a law of the form

r(·) = ϕ(s|[0,·]) .

Before being able to provide such a detection device, we spec-
ify the class of encoders (the lawε which mapsy andu into

1In the case of linear continuous-time systems, an elegant proof of this fact,
in weaker hypothesis, has been provided in [12]. In the case of discrete-time
linear systems, this well-known result can be given an elementary and standard
proof which is reported in the Appendix for the sake of completeness.

2Of course, if the communication channel has a limited bandwidth (BW
bits/sec), thenR and the available bandwidth of the channel are closely inter-
twined: The numberlog2(2R + 1) must be less than or equal to BW.



s) which is of interest in this paper. This is done in the next
section. The definition of the fault detection problem with en-
coded full-state information is introduced in Section 3, where
a solution is also proposed. The fault detection problem in the
case of encoded partial-state information is dealt with in Sec-
tion 4. Conclusions are drawn in Section 5.

2 Encoder

Assumption.First of all we introduce an assumption (which
can be relaxed) concerning the dynamic matrix of system (1):

Assumption 1 A is in Jordan canonical form and has all real
eigenvalues.

In other words, we consider henceforth the following form for
A:

A = block.diag(J1, . . . , Jν)

where theJi’s are Jordan blocks, i.e.

Ji =




λi 1 . . . 0
0 λi . . . 0
...

...
...

...
0 0 . . . λi


 ∈ Rni×ni ,

ν∑

j=1

nj = n .

Associated toA we also define the matrices

Ā = block.diag(J̄1, . . . , J̄ν) ,

with

J̄i =




|λi| 1 . . . 0
0 |λi| . . . 0
...

...
...

...
0 0 . . . |λi|


 ,

and
F = block.diag(F1, . . . , Fν) ,

Fi =




1/2Ri 0 . . . 0
0 1/2Ri . . . 0
...

...
...

...
0 0 . . . 1/2Ri


 ∈ Rni×ni .

The integersRi, i = 1, . . . , ν, satisfy the inequality ([17])

Ri > max{0, log2 |λi|} . (4)

We now turn our attention to the encoder. Were we free to
design an encoder only for monitoring purposes, the problem
would be easily solvable using a simple setA with two words.
For instance, in the case of full-state measurements, we might
easily think of an encoder of the form

x̄(k + 1) = Ax̄(k) + Bu(k) , x̄(0) = x(0)

s(k) =
{

0 if x(k)− x̄(k) = 0
1 if x(k)− x̄(k) 6= 0 .

(5)

A decision device would infer the occurrence of the fault by
simply assessing the value ofs(k) (s(k) = 1 fault, s(k) = 0

no fault). Notice however that we donot design an encoder
for fault detection. Our interest here is investigating the pos-
sibility of detecting faults using encoded informationgiven a
specific encoder. This point of view stems from the fact that
an encoder must help for a wide range of purposes such as ob-
servation and control, and not only monitoring. Of course we
might append device (5) to an existing encoder, but this would
result not only in a more complex encoder but also in the need
for an additional bit to encode the information generated by the
“fault encoder”, thus contradicting the principle of keeping the
number of bits needed for a reliable transmission as small as
possible. Thus, in the following we are going to introduce an
encoder already presented in the literature and dissert on the
possibility of inferring fault occurrence using only information
encoded by this device.

Quantizer.The functioning of the encoder is heavily based on
the quantizer. This is a device which at each time step divides
the state spaceRn into a finite set of (quantization) regions (in
this case,2R +1 regions) and then associates to the state at that
time the word inA representing the region to which the state
belongs. In formula, a quantizer is simply a map

Q : Rn → A .

There are many ways to partition the state space into regions
and many choices for the quantizer. As usual in this paper, we
choose to follow the simplest way suggested in [17]. At each
time stepk a hyper-rectangle (quantization region)Ω(k) ⊂ Rn

is defined by specifying its centroidCNT (k) ∈ Rn, range
vectorL(k) ∈ Rn (Li(k), thei-th component of vectorL(k),
gives the length of thei-th side of the hyper-rectangle). The
quantization regionΩ(k) is thenuniformlypartitioned into2R

subregionsΩi(k), whereR =
∑ν

i=1 niRi, and the valuesRi

are those required to satisfy the inequality (4). (Notice that,
while CNT andL are time-varying quantities, the rate vec-
tor is taken constant for all the times.) In particular, for each
i = 1, . . . , n, thei-th side of the hyper-rectangle is uniformly
divided intoR`i+1 parts, wherè i is a positive integer satis-
fying 0 ≤ `i ≤ ν − 1 and such that the the indexi is equal
to n1 + . . . + n`i + j, with n0 = 0 and1 ≤ j ≤ n`i+1. If
the purpose is to encode the statex(k) and this lies within the
sub-regionΩi(k) for somei = 1, . . . , 2R, then the encoder
will generate a symbols(k) which is (for instance) the binary
representation of the indexi. On the other hand, if the state
x(k) does not lie within the quantization regionΩ(k), that is
no indexi = 1, . . . , 2R exists such thatx(k) ∈ Ωi(k), then
an overflow symbol will be generated, that iss(k) will be the
binary representation of the index0.

Encoder.The role of the encoder is that of updating the values
of the quantitiesCNT, L at each time step ([14, 17]). Before
writing the update laws, we introduce a new assumption which
will be relaxed later on.

Assumption 2 C = In.



The update laws are as follows ([17]):

CNT (k + 1) = Ax̂(k) + Bu(k)
L(k + 1) = ĀFL(k) ,

(6)

with initial conditionsCNT (0) = 0 and Li(0) ≥ 2|xi(0)|
for eachi = 1, 2, . . . , n. At each timek ≥ 0, the quan-
tity x̂(k) is the centroid of the sub-regionΩj(k), for some
j = 1, 2, . . . , 2R, in which the statex(k) lies. Of coursêx(k)
is well-defined only if the statex(k) lies in the quantization
regionΩ(k). If this is actually the case, thei-th entry, with
i = 1, 2, . . . , n, of the difference|x(k)− x̂(k)| turns out to be
less than or equal toLi(k)/2R`i

+1 by construction, with index
`i defined as before (cf. the description of the quantizer above).

3 Fault Detection

Having introduced the encoder, we are now ready to turn our
attention to the problem of fault detection. We define more
formally our goal:

Definition. Consider system (1) and encoder (6). The fault
detection problem with encoded full-state information is said
to be solvable with respect to a classM of faults if there exists
a law

r(·) = ϕ(s|[0,·]) ,

that, when cascaded to (1), (6), satisfies the properties:

(i) r(·) = 0 if m(·) = 0;

(ii) r(·) 6= 0 if m(·) ∈M andm(·) 6= 0./

We briefly explain the reason why the fault detection problem
in the case of encoded measurements is expressed with respect
to a specific class of faults. We have discussed in the intro-
ductory section how in the case of non-encoded measurements
the observability property makes it possible to design a simple
detection filter able to revealany fault (at least theoretically)
by creating a one-to-one map from the fault to the diagnostic
signal. In the case of encoded measurements this is not pos-
sible anymore, and in particular there are faults which cannot
be distinguished at all. This can be illustrated by means of the
following simple example.

Example. Consider the scalar system

x(k + 1) = ax(k) + m(k) ,

wherea = 2λ, 0 < λ < 1 andx(0) > 0. Assume that starting
from the timek̄ at which the fault occurs the time behavior of
the fault satisfies the following inequality:

− x(0)
2(1−λ)k

≤
k−1∑

j=k̄

ak−1−jm(j) < 0 , k > k̄ . (7)

There are several non-zero fault signals with this property. En-
code the informationx(k) by means of the encoder (6), for

which L(0) = 2x(0) andR = 1. In particular any time the
information lies in the interval[CNT, CNT + L/2], it is en-
coded using the same symbol. Now consider the case in which
no fault occurs in the system. In thisfault-freecase the dynam-
ics of the system are of course those described by the equation

xff (k + 1) = axff (k) .

Choosexff (0) = x(0) and use (6) to encodexff (k) as well.
It is not difficult to see that the sequences of words generated
during the two (respectively, faulty and fault-free) experiments
areexactlythe same. This is readily derived from the equalities

CNT (k) + L(k)/2 = xff (k) for all k ≥ 0 ,

and

x(k) = xff (k) +
k−1∑

j=k̄

ak−1−jm(j) for k > k̄ ,

and
L(k) = 2(λ−1)k+1x(0) . /

The previous result suggests that not all the faults can be de-
tected, especially those whose magnitude is too small. In this
section a result is stated which characterizes a classM of faults
with respect to which the fault detection problem with encoded
full-state information is solvable.

Proposition 1 Let Assumptions 1 and 2 hold. There exists a
positive real number̄m for which the law

r(k) = ϕ(s(k)) =
{

0 if s(k) 6= 0
1 if s(k) = 0

solves the fault detection problem with encoded full-state infor-
mation with respect to the class

M = {m(·) : Z+ → R, ∃k̄ ∈ Z+ k̄ 6= 0 s.t.

|m(k̄)| ≥ m̄ andm(k̄) = 0 ∀0 ≤ k < k̄} .

Proof. We show first that property (i) in the definition of
the fault detection problem with encoded full-state information
holds3. To see this, notice that ifm(·) = 0, then the dynamics
of the system becomes

x(k + 1) = Ax(k) + Bu(k) . (8)

Also observe that by construction at timek = 0 the state lies
within the quantization regionΩ(0). By induction this is true
for eachk ≥ 0. Indeed, let the following hold for somek:

|xi(k)− CNTi(k)| ≤ Li(k)/2 , ∀i = 1, . . . , n ,

3The first part of the proof is basically taken from [17]. We report it here
for the sake of completeness and to introduce relations which will be used to
prove that also property (ii) in the definition of the fault detection problem with
encoded full-state information holds.



and consider the difference|xi(k + 1) − CNTi(k + 1)|. This
satisfies (Assumption 1 is used here)

|xi(k + 1)− CNTi(k + 1)| = |∑n
j=1 aij(xj(k)− x̂j(k))|

≤ ∑n
j=1 āij |xj(k)− x̂j(k)| .

(9)
Since by the inductive hypothesisx(k) ∈ Ω(k), we have

|xj(k)− x̂j(k)| ≤ Lj(k)/2R`j
+1 , ∀j = 1, . . . , n . (10)

Therefore

|xi(k + 1)− CNTi(k + 1)| ≤ ∑n
j=1 āij · Lj(k)/2R`j

+1

= (ĀFL(k)/2)i

= Li(k + 1)/2 ,
(11)

that isx(k + 1) lies within the quantization region. Hence, so
far asm(·) = 0, no overflow word is generated by the encoder,
that iss(k) 6= 0 for all k ≥ 0, and as a consequence,r(k) = 0
for all k ≥ 0.
We now turn to the proof of property (ii). Let̄k > 0 be an
integer for whichm(k̄) = m̄ 6= 0, with

m̄ > min
1 ≤ i ≤ n,
Mi 6= 0

sup
0<k<∞

{ Li(k)
|Mi| } , (12)

andm(k) = 0 for 0 ≤ k < k̄. Now

|xi(k̄ + 1)− CNTi(k̄ + 1)| ≥ |Mim(k̄)|−
|∑n

j=1 aij(xj(k̄)− x̂j(k̄))| , ∀i = 1, . . . , n .
(13)

Since at timēk no fault is present, from the inequality in (16)
and from (10) and (11), we have

|
n∑

j=1

aij(xj(k̄)− x̂j(k̄))| ≤ Li(k̄ + 1)/2 .

On the other hand|m(k̄)| ≥ m̄ and hence

|xi∗(k̄ + 1)− CNTi∗(k̄ + 1)| > Li∗(k̄ + 1)/2 ,

wherei∗ is the index at which minimum is achieved in (12).
This means that at timēk + 1 the system state is driven outside
the quantization region and the encoder generates the overflow
symbol, that iss(k̄ + 1) = 0 and the fault is detected at this
time. /

Remark. The classMwith respect to which the fault detection
problem is solvable is not void. As a matter of fact, from the
inequality (12), we see that̄m is finite and more specifically
bounded from below by a function which is in turn bounded
for all k ≥ 0 and actually converges to zero ask tends to in-
finity. The same inequality along with inequality (13) point
out how a fault which occurs later on is more likely to be de-
tected. The rate of decay of the lower bound onm̄ can be made

faster by increasing the transmission rate, thus confirming that
a higher transmission rate may improve the detection capabil-
ity embedded in the encoder without modifying the structure of
the encoder itself./

The example and the proposition in this section illustrate two
limit situations. In the first one, the fault is such that the state
of the system remains in the same quantization sub-region that
it would have occupied if no fault have occurred. In the sec-
ond situation, the fault steers the state of the system outside the
quantization region and the occurrence of the fault becomes
evident. The most intriguing situation is the intermediate one
when the fault causes the state to jump into quantization sub-
regions which are adjacent or otherwise close to the one the
state would lie in the un-faulty situation. We do not address
further this issue here and it will be the object of investigation
in a different paper.

4 Fault Detection from Output Measurements

In this section we consider the same problem as in the previous
section, except that we replace the knowledge of the full state
x(k) with the knowledge of the outputy(k) = Cx(k). In this
case the problem is defined as the problem of fault detection
with encoded partial-state information. To deal with this case,
another class of encoders must be considered. These encoders
present the following additional dynamics ([17]):

x̄(k + 1) = Ax̄(k) + Bu(k) + G(y(k)− Cx̄(k)) , (14)

with G chosen so thatA − GC is asymptotically stable (we
are assuming that(C, A) is observable). The statēx, which
asymptotically estimatesx, feeds the encoder (6), in the sense
that nowx̂ is the centroid of the regionΩi(k) wherex̄(k) (and
not x(k)) lies. Another modification of the encoder is needed
for accommodating the case of partial-state information. Let
µ < 1, ` be positive numbers for which the inequality

|GC(x(k)− x̄(k))| ≤ `µk

is satisfied for allk ≥ 0. Then replace the second difference
equation in (6) with the following ([17])

L(k + 1) = ĀFL(k) + 2`µk




1
...
1


 .

The overall structure of the encoder in this case then becomes

CNT (k + 1) = Ax̂(k) + Bu(k)
x̄(k + 1) = (A−GC)x̄(k) + Bu(k) + Gy(k)
L(k + 1) = ĀFL(k) + 2`µk

[
1 . . . 1

]T
,
(15)

with initial conditionsCNT (0) = 0 andLi(0) ≥ 2|x̄i(0)|, for
eachi = 1, 2, . . . , n, and wherêx(k) is the centroid of the sub-
regionΩi(k) in which x̄(k) lies. If x̄(k) ∈ Ωi(k), the word
s(k) generated by the encoder is the binary representation of
the indexi, or it is the binary representation of0 in the case



x̄(k) 6∈ Ω(k), whereΩ(k) is the quantization region at time
k, that is the hyper-rectangle with centroidCNT (k) and range
vectorL(k) defined by equations (15).

A result substantially analogous to the case of full-state mea-
surements holds.

Proposition 2 Consider system (1) with partial-state measure-
mentsy(k) = Cx(k) and encoder (15). Let Assumption 1 hold
and assume the pair(C,A) to be observable. There exists a
positive real number̄m for which the law

r(k) = ϕ(s(k)) =
{

0 if s(k) 6= 0
1 if s(k) = 0

solves the fault detection problem with encoded partial-state
information with respect to the class

M = {m(·) : Z+ → R, ∃k̄ ∈ Z+ k̄ 6= 0 s.t.

|m(k̄)| ≥ m̄ andm(k̄) = 0 ∀0 ≤ k < k̄} .

Proof. It is easily derived from the proof of Proposition 1. In
particular, if 4 m(·) = 0, then it is proven by induction that
x̄(k) lies within the quantization region at each timek. The
argument by induction assumes that the thesis holds true at time
k, that is

|x̄j(k)− x̂j(k)| ≤ Lj(k)/2R`j
+1

for all j = 1, . . . , n, and shows that the same holds true at time
k + 1, as it is seen from the following inequality, which holds
for eachi = 1, . . . , n:

|x̄i(k + 1)− CNTi(k + 1)| = |∑n
j=1 aij(x̄j(k)− x̂j(k))

+GC(x(k)− x̄(k))| ≤ (ĀFL(k)/2)i + `µk = Li(k + 1)/2 .
(16)

Therefore, ifm(·) = 0, thens(·) = 0 and alsor(·) = 0.
In the casem(·) 6= 0, denote as before bȳk > 0 the smallest
integer for whichm̄ := m(k̄) is different from zero and let

m̄ > min
1 ≤ i ≤ n,
Mi 6= 0

sup
0<k<∞

{ Li(k)
|Mi| } .

Analogously to what has been done in the proof of Proposi-
tion 1 one can see that, denoted byi∗ the index at which the
minimum in the latter expression is achieved, then

|x̄i∗(k̄ + 1)− CNTi∗(k̄ + 1)| > Li∗(k̄ + 1)/2 ,

which shows how at timēk + 1 the statēx(k̄ + 1) does not be-
long to the quantization region and therefore an overflow sym-
bol is generated revealing the occurrence of the fault./

In particular the expression for̄m is exactly the same as that in
(12). However, because now the value ofLi(k) is larger than
before due to the presence of the forcing term

2`µk
[

1 . . . 1
]T

,

4As in the case of full-state information, this part of the proof is substan-
tially taken from [17] and is given here to introduce relations useful in the
second part of the proof.

m̄ in the case of partial-state measurements will be larger than
in the case of full-state measurements. That is, the use of
partial-state rather than full-state measurements reduces the
classM of detectable faults.

5 Conclusions

In this paper we have considered the problem of detecting faults
starting from encoded measurements. A class of fault signals
whose occurrence can be inferred from this kind of informa-
tion has been clearly characterized. To ease the treatment we
have considered discrete-time systems with a dynamic matrix
in Jordan form. The latter assumption can be relaxed and the
results can be adapted to the case of continuous-time systems
following the approach in [9]. Extensions to more complex
(nonlinear) classes of systems are also possible combining the
nonlinear fault detection techniques of [4] with the approach
of [9]. Modifications of existing encoders and/or decoders can
enlarge the classes of faults detectable through quantized mea-
surements. Furthermore, they can allow to deal with distur-
bances and noise in an “optimal” way, by discriminating be-
tween faults (we want to detect) and disturbances (we want
to reject) and reducing the influence of noise in the detection
process (cf. [5]). Using the methods of [11] and [4] it is also
possible to deal with the case of multiple faults. We have con-
sidered here only the so-called ([17]) primitive quantizers and
Class 1 encoders. Analogous considerations can be extended
to different quantizers and encoders which have been presented
in the literature. We have not extensively discussed the role of
transmission rate in the process of detecting faults for a given
encoder: One can easily envision the case in which a larger
transmission rate can affect (improve) the fault detection pro-
cess.
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A Appendix

Let ξ(0) = x(0). Easy computations yield the following ex-
pression forr(k), k ≥ 0:

r(k) =
k−1∑

j=0

CAk−1−jBm(j)

= C

k−1∑

j=0

Ak−1−jBm(j) .

We aim to prove thatr(·) = 0 if and only if m(·) = 0. The “if”
part of the implication is trivial. As far as the “only if” part is
concerned observe that, ifr(·) = 0 then

φ(k) :=
k−1∑

j=0

Ak−1−jBm(j) ∈ ker{C}

for all k ≥ 1. Vectorφ(k) belongs to theA-invariant subspace

span{B, AB, . . . , An−1B}

for all k ≥ 1. On the other hand, because of the observabil-
ity assumption, the largestA-invariant subspace contained in
ker{C} is the origin{0}. Therefore, one concludes that

φ(k) =
k−1∑

j=0

Ak−1−jBm(j) = 0

for all k ≥ 1. Fork = 1, this yieldsBm(0) = 0 and therefore
m(0) = 0 (B is a nonzero vector). Fork = 2, and keeping in
mind thatm(0) = 0, one obtainsBm(1) = 0, that ism(1) =
0. Iterating these arguments for allk, one obtains thatm(k) =
0 for all k ≥ 0.
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