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Abstract

This paper addresses the fault tolerant estimation problem.
Fault tolerance is defined with respect to a given estimation
objective, namely a given functional of the system state should
remain observable when sensor failures occur. Three criteria,
which evaluate the system fault tolerance with respect to sensor
failures when a reconfiguration strategy is used, are introduced,
and it is shown that they can be used to define maintenance
policies. A ship boiler example is used for illustration.

1 Introduction

Control and monitoring of complex systems require the time
evolution of many variables to be known. Direct measures are
not always necessary, since some variables can be estimated us-
ing analytical redundancy or observers. Given a set of variables
to be estimated, the problem of defining the subset of variables
to be measured is known as the sensor network design prob-
lem, and it has been addressed by many authors, e.g. for a non
exhaustive list [1], [2], [3], [4], [5], [6], [10], [12], [13], [14],
[15], [16], [17], [21], [23].

The design of sensor networks can be based on different criteria
: observability [23], estimation accuracy [13], cost [15]. The
perspectives of fault detection and isolation [5], [6], reliability
and fault tolerance, have been recently increasingly considered
[22], [14], [20]. In fact, sensors faults may be avoided (up to a
certain degree) by the design of ad-hoc maintenance policy, or
they may be taken into account by means of fault tolerant esti-
mation. This paper presents the fault accomodation and sensor
reconfiguration strategies, which can be used to achieve fault
tolerant estimation. Using reconfiguration, only a subset of the
original sensor set is available at a given time : according to
the way this subset allows to estimate the state functional of in-
terest (if it does), the notions of minimal and redundant sensor
subsets are introduced and used to evaluate the fault tolerance
of the system with respect to sensor failures. Based on the fault
tolerance evaluation, maintenance policies can be designed.

The paper is organized as follows. Section 2 sets the fault toler-
ant estimation problem. Minimality and redundancy properties
are defined with reference to the observability of a functional
of the state in Section 3. In Section 4, the fault tolerance effec-

tiveness of the sensor network is evaluated using deterministic
and probabilistic criteria. Section 5 discusses the relations be-
tween fault tolerant sensor network design and the design of
condition based or systematic maintenance policies. A short
example is provided in Section 6.

2 Problem setting

Consider the continuous time deterministic system given by :

ẋ(t) = f(x(t), u(t)) (1)

y(t) = g(x(t)) (2)

z(t) = h(x(t)) (3)

where x ∈ Rn is the state vector, u ∈ Rm is the control input,
y ∈ Rp is the measurement vector, and z ∈ Rq is some func-
tional of the state, which is to be estimated. f, g, h are smooth
vector fields.

Although sensors always introduce measurement noises, and
the system model might include some stochastic behaviour, the
deterministic model (1) and (2) is used, because only struc-
tural properties, which are necessary conditions for the estima-
tion to be possibly performed, are considered. In fact, there is
no loss of generality because considering admissibility (related
with the estimation quality) instead of possibility would lead
exactly the same considerations.

2.1 The estimation problem

The estimation problem is as follows : using the outputs of
the sensor network defined by (2), estimate the functional of
the state defined by (3). It can be solved using algebraic or
observer based approaches. Observer based approaches [11]
proceed by designing a dynamic system

ζ̇(t) = ϕ(ζ(t), y(t), u(t)) (4)

ẑ(t) = γ(ζ(t), y(t), u(t))

such that, for any initial condition ζ(0), one has

lim
t→∞

(z(t) − ẑ(t)) = 0 (5)

Algebraic approaches first perform successive derivations of
y(t) in (2), and use (1) to obtain the equations

ȳ(t) = G(x(t), ū(t)) (6)



where, for any vector υ(t), ῡ(t) , (υτ (t), υ̇τ (t), ϋτ (t), ...)
τ

up to some order of derivation (which needs not to be specified
here), and τ stands for transposition. By different mechanisms
[8], [9], these equations are transformed into a system

Ψ(ȳ(t)) = Γ(z(t), ū(t)) (7)

Therefore, z is observable using the measurements y if an ob-
server (4) with property (5) can be built, or if the set of equa-
tions (7), can be solved for z.

In the sequel, only structural properties are considered, namely
the permanence of the observability of z when sensors fail.
Therefore, it is assumed that some condition exists, which al-
low to decide whether the functional of the state z is, or is not,
observable using the set of sensors I , {1, ...p} or a given sub-
set of sensors J ⊆ I . For example, for linear systems defined
by

ẋ(t) = Ax(t) + Bu(t) (8)

y(t) = Cx(t) (9)

z(t) = Hx(t) (10)

this condition writes [20]:

ImH ⊆ Ω(J) (11)

where
Ω(J) = ⊕i∈JΩ(i)

is the space covered by the subset of sensors, J ⊆ I, and ⊕ is
the direct sum of the subspaces Ω(i), which are defined by

Ω(i) = span
{

ci, ciA, ...ciA
νi−1

}

where ci, i ∈ I is the ith row of C, and νi is the individual
observability index of sensor i, given by :

νi = dim span
{

ci, ciA, ...ciA
n−1

}

2.2 Fault tolerant estimation

Let I = {1, ...p} be the sensors available in the nominal sys-
tem, leading to the measurement equation (2), and assume that
the functional z is observable by I . Suppose now that sensor
failure(s) occur(s) at time tf , so that the set of sensors I can be
decomposed into the normal and the faulty ones: I = In ∪ If .
Therefore, the measurement equations (2) can be written

yn(t) = gn(x(t)) (12)

yf (t) = gf (x(t)) (13)

where yn (resp. yf ) represent the normal (resp. the faulty) out-
puts of the sensors I and gn (resp. gf ) are the normal (resp. the
faulty) measurement equations. Fault tolerance can be seeked
following two different strategies, namely fault accomodation
or system reconfiguration [19].

In fault accomodation, it is assumed that the FDI algorithms
are able to detect the fault (hence it is known that I contains

faulty sensors), to isolate it (hence the decomposition of I into
In and If is known) and also to identify the vector field yf =
gf (x(t)) (hence the new measurement equations are known).
The estimation of the functional z is still possible provided the
system (1), (12), (13), (3) is observable. This strategy deserves
two remarks :

1. It cannot be used if the FDI algorithm is not able to identify
the new vector field yf = gf (x(t)) with good accuracy,

2. According to the form of the vector field yf = gf (x(t)) the
solution may or may not exist, and therefore no structural con-
clusion (which would hold whatever the faults on the sensors
of Jf ) can be drawn.

The second strategy is system reconfiguration, where the faulty
sensors If are switched off. The problem is to assess the pos-
sibility of estimating z by using only the remaining sensors In,
which is indeed true, provided that system (1), (12), (3) is ob-
servable. Note that the reconfiguration strategy only needs fault
detection and isolation : the associated fault tolerance property
is a structural one, since it only depends on the triple (1), (12),
(3) and not on the kind of fault which affects the sensors If . In
the sequel, only the reconfiguration strategy is considered.

3 Minimality and redundancy

3.1 Definitions

Let J ⊆ I be a subset of sensors. Introduce the notation
P (z/J) = 1 if z is observable using J , and P (z/J) = 0
otherwise. Let 2I be the set of all subsets of I , then P (z/J)
induces a two-class partition

2I = 2I+ ∪ 2I−

where 2I+ contains all the subsets of sensors by which z is ob-
servable. From the partial order associated with set-inclusion,
minimal elements can be defined on 2I+.

Definition. J ∈ 2I+ is a minimal sensor set (MSS), iff ∀K ⊂
J K /∈ 2I+. It is a redundant sensor set (RSS), iff it is not
minimal.

Let I be a sensor network, which (hopefully) includes some
MSS (or RSS). The set of the MSS (resp. of the RSS) included
in I is noted as MSS(I) (resp. RSS(I)).

Assume that at time t, the system is operating with a subset of
sensors J ∈ MSS(I). By the definition, z is no longer ob-
servable by the remaining ones if any sensor of J fails. On the
contrary, if the system is operating with a RSS subset of sen-
sors, there exists subsets of sensors which can be lost without
destroying the observability of z, and the estimation procedure
(whatever the actual algorithm which is used) can be reconfig-
ured so as to still provide the functional estimate using only the
remaining sensors. Note that the definition of RSS just states
that such subsets exist, and does not give any detail about their
number or their size.



3.2 The different versions of the estimation service

Consider a RSS J such that |MSS(J)| = 1, and let J∗ be
that MSS. Then, the failure of any subset of J\J∗ can be tol-
erated, since z is still observable using the sensor set J∗. On
the contrary, any sensor of J∗ is a critical resource : the esti-
mation of z cannot be performed any more when it is lost. It
follows that the design of an estimation algorithm can be based
on any super-set of J∗, thus providing possibly as many dif-
ferent estimators as the number of super-sets of J∗ which exist
in J (namely, 2|J\J∗|). Intelligent sensors use these different
estimators, which are called the different versions of the esti-
mation service [18]. The different versions which result from
the sensors of J\J∗ do not increase the fault tolerance of the
estimation service with respect to J∗ (since any failure in J∗

is fatal), but they might be justified in applications, because
they might increase the estimation performances. Therefore,
failures in the sensors of J\J∗ would result in the running of
versions which are still able to provide the estimation service
(z is still observable), but with degraded performances (smaller
super-sets are used).

For a RSS J such that |MSS(J)| > 1, the situation is analyzed
similarly. Let J∗

k ∈ MSS(J), k = 1, ... |MSS(J)|. Then,
any super-set of J∗

k can be used for estimating z (thus provid-
ing a number of different versions), but the fault tolerance of
the estimation is improved since failures of sensors in J∗

k can
now possibly be tolerated. Indeed, as long as |MSS(Jn)| ≥ 1,
where Jn ⊂ J is the set of the remaining sensors, there is still
at least one set which allows to estimate z. Critical sensor
subsets are those whose simultaneous unavailability result in
|MSS(Jn)| = 0.

4 Evaluating the fault tolerance capability

Let J ⊆ I be the subset of sensors available at time t. (J, t)
characterizes the state of the sensor network, and z can be esti-
mated as long as the set

E(z, t) , MSS(J) ∪ RSS(J)

is not empty. Therefore, evaluating the fault tolerance capabil-
ity of the sensor network at any time t rests on evaluating the
size of the set E(z, t), which can be done using two different
approaches.

1) Weak (resp. strong) redundancy degrees are associated with
the maximum (resp. the minimum) number of sensors which
can be lost before E(z, t) = ∅. Their evaluation needs no
model of the sensor losses. 2) When sensor reliabilities are
known, the ”size” of E(z, t) can be evaluated by the time which
will (in probability) elapse untill it becomes empty. In that case,
significant measures are the sensor network reliability, or the
mean time to non observability.

4.1 Redundancy degrees

Let K ∈ MSS(J). The quantity |J\K| is the maximal
number of sensors which can be lost s.t. z can still be es-

timated by K. In the ”best” situation, as many losses as
|J | − minK∈MSS(J) |K| can be accepted, which is the defi-
nition of the weak redundancy degree WRD(J, t):

WRD(J, t) = |J | − min
K∈MSS(J)

|K| (14)

From the definition of WRD(J, t) it follows that

∃J ′ ⊂ J such that |J ′| = WRD(J, t) and J\J ′ ∈ MSS(J)
(15)

Of course, in many cases, z will no longer be observable af-
ter less than WRD(J, t) sensor losses. The strong redundancy
degree SRD(J, t) evaluates the maximal number of sensors
which can be lost while keeping z observable for sure (i.e. con-
sidering the worst case situation). This means that the follow-
ing statement is true

∀J ′ ⊂ J such that |J ′| = SRD(J, t) then J\J ′ ∈ RSS(J)
(16)

or, in other terms,

SRD(J, t) = |J | − max
J∗∈RSS(J)

|J\J∗| − 1 (17)

Comparing WRD and SRD obviously gives

∀J ⊆ I, SRD(J, t) ≤ WRD(J, t)

SRD(J, t) = WRD(J, t) = 0 iff J ∈ MSS(I)

4.2 Reliability of the estimation service

Sensor losses are events whose probability can be evaluated.
Assume such data are available, then :

- R(J0, t0, t), is the probability for the estimation of z to be
possible during the time interval [t0, t[, given the sensor net-
work initial state (J0, t0),

- MTTNO(J0, t0), is the mean time to fail in the estimation
of z, i.e. the mean time to non observability, starting with the
state (J0, t0).

These two evaluations can be easily computed as follows. Let
K ⊆ J0 be any subset of sensors. The probability for the esti-
mation of z to be possible during the time interval [t0, t[ using
K is given by :

R(K, t0, t) = P (z/K)r(K, t0, t) (18)

where P (z/K) = 1 if K is a MSS or a RSS and P (z/K) =
0 otherwise, and r(K, t0, t) is the reliability of the set of sen-
sors K, which is defined as the probability that no sensor of K
fails during the interval [t0, t[. If sensor failures are indepen-
dent one has :

r(K, t0, t) = Πk∈Krk(t0, t)Πk/∈K(1 − rk(t0, t)) (19)

where rk(t0, t) is sensor k reliability, which is often modelled
using the Poisson distribution:

rk(t0, t) = e−λk(t−t0) (20)



where λk is sensor k failure rate, supposed to be constant.

Now, considering the whole set J0,

R(J0, t0, t) =
∑

K⊆J0

R(K, t0, t) (21)

follows from the fact that all its subsets K are exclusive. Fi-
nally, the mean time to non observability asociated with the
initial sensor network state (J0, t0) is defined by :

MTTNO(J0, t0) =

∫ ∞

0

R(J0, t0, t)dt (22)

5 Sensor network and maintenance design

The result of a design algorithm is a set of sensors I, with
specific properties (state - or functional of the state - observ-
ability, faults detectability and isolability, reliability, minimum
cost, etc., see e.g. [1], [2], [3], [4], [5], [6], [10], [12], [13],
[14], [15], [16], [17], [21], [23]). When fault tolerance is
considered, the produced sensor network I must fulfill one or
more of the following design requirements (T is a given time -
[t0, T ] is, for example, the duration of the system mission - and
S∗

1 , S∗
2 , R∗,M∗ are given design parameters) :

SRD(I, t0) ≥ S∗
1 (23)

WRD(I, t0) ≥ S∗
2 (24)

R(I, t0, T ) ≥ R∗ (25)

MTTNO(I, t0) ≥ M∗ (26)

Algorithms which take such requirements into account have al-
ready been presented (see e.g. [12]), and will not be discussed
here. However, the influence of a more general setting of the
problem, including maintenance, will be considered. Indeed,
the previous discussion addresses the fault tolerant estimation
problem by analyzing a sensor set, initially in the state (I, t0),
in which sensors are lost as time increases. Maintenance opera-
tions, by which sensors are restored to an operational state were
not considered, thus limiting the scope of the results to sen-
sor networks of embedded autonomous systems, where main-
tenance operations cannot take place at all (e.g. satellites) or
embedded systems where maintenance cannot take place dur-
ing the time of a given mission (e.g. transportation systems).
Let us now include maintenance considerations.

5.1 Condition based maintenance

Consider a given sensor network (I, t0). Since the FDI algo-
rithms detect and isolate the sensor faults, the state (J, t) of
the sensor network is known at all times. Therefore, perform-
ing the on-line evaluation of the fault tolerance capability as-
sociated with this state provides indicators for condition based
maintenance. Let s∗, r∗,m∗ be design parameters. Then main-
tenance should take place when one or several of the three fol-
lowing conditions become true.

1) SRD(J, t) ≤ s∗ means that without maintenance, the sen-
sor network state is such that it will tolerate no more than s∗

extra sensor failures (for example, if s∗ = 0, maintenance is
decided when the sensor network state becomes a MSS, i.e.
the next failure is fatal).

2) R(J, t0, T ) ≤ r∗ means that, without maintenance, the prob-
ability that the estimation will remain possible untill time T
becomes too low. Computing the threshold r∗ is obviously the
main problem to be solved in that case.

3) MTTNO(J, t) ≤ m∗ can be interpreted in the same way
: without maintenance, the requirement (26) cannot be satis-
fied. Note that this means m∗ ≤ M∗ − t, but computing the
threshold should take more complex features into account, for
example the mean time to repair.

5.2 Systematic maintenance

Considering not only failure rates, but also repair / replace-
ment rates in the computation of the reliability or the mean
time to non observability, allows to design systematic mainte-
nance policies which insure the desired requirements. Indeed,
defining a given rate for systematic maintenance can be mod-
elled by a repair/replacement rate µ which will ”compensate”
the degradation rate λ, thus leading to perform all the above
evaluations using the modified Poisson law

rk(t0, t) = e−(λk−µk)(t−t0)

instead of (20). Note that this case is not really concerned with
fault tolerance, but merely with fault avoidance. It may require
complex tradeoffs, since the same result (e.g. a given mean
time to non observability, or a given probability that the mission
will be successfully achieved) can be obtained in two ways :

1) by using more redundancy, namely by designing a redundant
sensor network whose sensors are not individually reliable, but
where the estimation service exists under many versions,

2) by using more maintenance, which results in less sensors,
but individually more available, as the result of more repair /
replacement.

6 Application example

Consider the fourteenth-order model of a ship boiler described
by [7]. Figure 1 shows the process, which implements a ther-
modynamic cycle in which the hot water tank is supplied with
pre-heated water from the condenser by means of a turbo pomp,
the produced steam is overheated before it supplies the group of
high and low pressure turbines, and the relaxed steam is cooled
in the condenser.

The main controls are QEA (the water flow), QC (the fuel
flow), and QED (the flow of overheating water). QV is the
steam flow at the output of the superheater. In [7], a linear
model is used around an operating point, and the measured
variables are NB (the water level in the hot water tank), PS

(the steam pressure at the output of the superheater), TS (the
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Figure 1: The ship boiler

steam temperature at the output of the superheater).

For our illustration, assume that there are six possible sensors,
labelled {a, b, c, d, e, f}, such that

yτ = (x1, x3 − x4, x6 + x7, x10, x12, x14)

while the functional of the state to be estimated is defined by

zτ = (x2, x3, x4, x9, x10, x11, x12, x13, x14)

It is also assumed that the reliability of each sensor k ∈
{a, b, c, d, e, f} can be modeled using the Poisson distribution,
by rk(t) = exp−λt, and that the failure rates of the sensors are
all equal to λ = 0.4 × 10−5H−1 (for simplicity, t0 = 0). The
fault tolerant sensor network design problem is stated as fol-
lows : select a subset of sensors such that its strong redundancy
degree is at least equal to 1 and its weak redundancy degree at
least equal to 3 and the mean time before the observability of
z is lost is at least equal to 3 × 105H (when no maintenance is
done).

The sensor network design algorithm presented in [12] exhibits
three minimal solutions which satisfy the requirements, namely
{a, b, c, f} , {a, c, d, f} , and {b, c, d, f}. They all have the
same performances, namely WRD = 3, SRD = 1, R =
e−λt + 2e−2λt − 3e−3λt + e−4λt, MTTNO = 3.13× 105H .
The strong redundancy degree is 1 since z becomes unobserv-
able when sensor f is lost. The weak redundancy degree is
3 since {a, b, c} , {a, c, d} , and {b, c, d} can be lost without
changing the observability status of z (in fact, z is observable
through f alone).

Assume the sensor network that has been implemented is
{a, b, c, f} and that maintenance is decided on sensor network
states (J, t) such that J is a MSS. Then maintenance should
be undertaken (at latest) when the lost sensors are {a, b, c}
or {a, f} or {b, f}, since the three MSS are {f} , {b, c} and
{a, c} .

7 Conclusion

Multisensor systems can accept sensor failures as long as their
objective (estimate some functional of the system state) can
still be achieved. In this paper, the fault tolerant estimation
problem is addressed by means of the reconfiguration of the
sensor network, a strategy by which only the subset of healthy
sensors is used. Although it might seem quite drastic, the main
interest of this strategy is that it needs neither fault models nor
fault identification, and therefore it provides structural results
and properties, i.e. fault tolerance properties which do not de-
pend on the kind and size of the faults, but only on the subset
of the faulty components.

Fault tolerant estimation first rests on the existence of different
means by which the sensor network can provide the estima-
tion service. It has been shown how different versions of this
service can be obtained, provided the sensor network includes
redundant sensor subsets. This provides a simple and efficient
means of characterizing and evaluating the fault tolerance ca-
pability, either by using deterministic criteria such as the weak
and strong redundancy degrees, or by using probabilistic ones,
based on reliability considerations.

When maintenance operations are not considered, the results
only apply to autonomous / embedded systems. However, in-
cluding maintenance is possible, and can be done by perform-
ing on-line evaluation of the sensor network fault tolerance ca-
pability as sensor failures occur, thus providing indicators for
condition based maintenance, or by considering not only fail-
ure rates, but also repair / replacement rates in order to design
systematic maintenance policies which would ensure the spec-
ified requirements. This obviously introduces the necessity of
a multicriteria evaluation of the sensor network since the im-
provement of the operation time can be obtained either by us-
ing a sensor network with higher fault tolerance, or by applying
a higher cost maintenance policy.
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