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Abstract

Synthesis and verification of discrete control logic by a com-
bined application of automata based supervisory control theory
and Petri nets is addressed. While supervisory control theory
is well suited to specification and design of the interlock part
of the control logic, the sequencing part can be more easily de-
scribed by Petri net models. The basic idea presented in the pa-
per is to design basic interlock logic by the use of supervisory
control theory and then to use the derived model of admissible
behaviour as a process model. The sequencing part is designed
in a form of a Petri net model which is verified against the pro-
cess model. The basic property of interest is the absence of
blocking. To study the interaction of the two models we use
an extension of Place/Transition nets which includes external
inputs and outputs, i.e., the Real-time Petri nets (RTPN). In or-
der to verify the nonblocking of the controller a new kind of
reachability analysis is proposed, which considers all possible
changes of the controller input and output signals.

1 Introduction

Programmable logic controllers (PLCs) are the primary imple-
mentation platform used in industrial automation. While the
functionality of PLCs is continuously expanding, the discrete
control logic remains the core of their operation. For a long
time, PLCs have been programmed in a rather intuitive way us-
ing specialised graphical programming languages such as lad-
der diagram. Recently, much attention has been given to formal
methods and their application in design and verification of PLC
programs [5].

A PLC may be treated as a kind of discrete event system, which
changes its state (and outputs) in response to changes on its in-
puts and time. The process under control, which is connected
to the controller by means of binary signals only, is viewed as
the same kind of system from the controller. In the control
theory there is a well established field - the supervisory control
therory - covering different aspects of control of the logical dis-
crete event systems, i.e., systems where the ordering of events
is of the primary concern [1]. If we are not interesting in the
time of the operation, systems controlled by PLCs fall into this
category. Within the supervisory control theory the controller

action is interpreted as a mechanism of enabling and disabling
events in the system. The theory enables an algorithmic syn-
thesis of a supervisor, given a process model and a specification
model [1, 11]. The theory uses the automata modelling frame-
work, where an automaton is interpreted as a generator of a
formal language. The synthesis of supervisory controllers by
the use of Petri nets has also been studied, e.g. [6].

Despite the sound theoretical foundation the application of the
above results to PLC programming is not straightforward. The
fundamental issue of investigation within the supervisory con-
trol theory is the restriction of the system’s behaviour. This is
well suited for designing interlocks that present a significant
part of discrete control logic. For the sequential part, however,
this seems less appropriate although some applications are re-
ported (e.g. [2, 9]).

Instead of specifying allowed event sequences the behaviour
of controlled system is more naturally described by a kind
of flowchart. For this purpose, an international standard IEC
61131-3 [7] defines the Sequential Function Chart, a spe-
cialised graphical programming language used for structuring
PLC programs. It is similar to Grafcet [4], which can be in-
terpreted as a special kind of Petri net. This makes Petri net
framework a good candidate for specifying event sequences in
a more compact notation.

In the paper we study a combined approach, where the super-
visory control theory is used to design the interlock part of the
control logic. The sequential part is designed by Petri nets, but
not in the sense of supervisor synthesis. Petri nets are used in a
sense of formal specification that is verified against the model
derived during the interlock synthesis. The remainder of the
paper is structured as follows. Section 2 gives basic notions of
automata models and supervisory control theory. The class of
Petri nets used for modelling the sequential specification is de-
scribed in section 3. Section 4 presents the proposed approach
of verification of the Petri net specification model. A simple
example is given to illustrate the approach.

2 Automata and supervisory control

Processes to be controlled may be modelled as generators of
formal languages [1]. Such a generator may be represented in
a form of a finite automaton with a partial transition function,
i.e., a transition structure where, in general, only a subset of a
total set of events can occur at each state.



A deterministic generator is defined as a five-tuple

G = (X ,Σ,δ,x0,Xm) (1)

where X is a set of states, Σ is a set of symbols, associated
with events in the generator. δ : X ×Σ → X is a state transition
function of G and is in general a partial function on its domain.
x0 is the initial state and Xm is a subset of states, called a set of
marker states, i.e., states with a special meaning.

The generator G is interpreted as a device, which enters state
x0 when switched on and changes its state according to its
state transition function. A symbol σi ∈ Σ is generated at ev-
ery transition. The transitions occur spontaneously and asyn-
chronously. The model does not include any event selecting
mechanism nor time.

A finite set of generator symbols, e.g. s = σ1σ2σ3σ4 is called
a string. The language generated by the generator G is L(G).
It is interpreted as a set of all finite event sequences (strings)
that may occur in the automaton. The language marked by G
is denoted by Lm(G) and consist of event sequences that end in
marker states.

The supervisory control concept deals with a discrete event
system whose behaviour is restricted by an external controller
called supervisor. The supervisor (Fig. 1) does not uniquely
determine the next event to occur in the system; it merely mon-
itors events generated by the system and determines the set of
allowable events that can occur at any instant (γi in Fig. 1).
The events that are not included in the set of enabled events
are disabled. The set of events in the system is divided into
a subset of controllable and a subset of uncontrollable events:
Σ = Σc ∪Σu, Σc ∩Σu = /0. The uncontrollable events are either
generated by the process itself and cannot be controlled or must
not be blocked by an external agent due to the safety of other
requirements.

The supervisor is computed based on the ’open-loop’ system
model and a specification model. Supervisory control synthe-
sis methods enable the computation of the supervisor that is
maximally permissive. That means the resulting closed-loop
system meets the demands about the system behavioural re-
strictions, while the supervisor never tries to block an uncon-
trollable event and at the same time does not restrict the system
more than necessary. The key issues are the concept of control-
lability and the concept of supremal controllable sublanguage
[1, 11].
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Figure 1: Supervisory control

3 Real time Petri nets

Petri nets as a tool for modelling and specification of manu-
facturing systems are described in a number of sources, such
as [3, 8]. A Place/Transition Petri net can be described as a
bipartite graph consisting of two types of nodes, places and
transitions. Nodes are interconnected by directed arcs. State of
the system is denoted by distribution of tokens (called mark-
ing) over the places. Formally, a Petri net is a five-tuple
PN = (P,T, I,O,m0), where

– P = {p1, p2, . . . , pk},k > 0 is a finite set of places,
– T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions (with

P∪T 6= /0 and P∩T = /0),
– I : P×T → N is an input function that specifies weights

of arcs directed from places to transitions,
– O : P×T → N is an output function that specifies weights

of arcs directed from transitions to places,
– m : P → {0,1,2, . . .} is a marking, m0 is the initial mark-

ing.

For the purpose of logical modelling required in sequential con-
trol specification and synthesis we use the class of ordinary
Petri nets. This means all the non-zero arc weights are equal
to one. The switching rule of an ordinary Petri net is given as
follows:

i) a transition is enabled if each of the input places of this
transition contains at least one token,

ii) an enabled transition may or may not fire, which depends
on an additional interpretation,

iii) a firing of a transition is immediate and removes a token
from each of the input places of the transition and adds a
token to each of the output places of the transition.

For the purpose of simulation and possible implementation
by industrial controllers, the input/output interpretation can
be added to resulting models. One of such extensions is a
class of Petri nets called Real-Time Petri Nets or RTPN [10].
Physical output functions are assigned to places and physical
input and timing variables are assigned to transitions of the
PN model. Formally, an RTPN is defined as an eight tuple
RT PN = (P,T, I,O,m0,D,Y,Z) where

– (P,T, I,O,m0) is as defined before;
– D : T → R+ is a firing time-delay function;
– Y : T → B is an input signal function, where B is the set

of Boolean expressions on input signals;
– Z : P → A×{0,1} is a physical output function, where A

is the set of output signals.

Several properties of Petri net models have been defined and
investigated by different authors. For the purpose of modelling
of industrial processes the most important properties are live-
ness, boundedness (safeness) and reversibility. Definition and
meaning of these properties can be found in [8].



4 Verification of a Petri net control specification

The aim of the verification is to answer a question whether a
specification model is correct. This is done by examination
of various properties of the model, such as stability, absence
of deadlocks, etc. In our case we limit our investigation to
the study of a single property, i.e., we check if the Petri net
specification is not blocking the system operation.

The non-blocking property of a Petri net is traditionally re-
garded as the absence of deadlocks and closely related to a
concept of liveness. A Petri net is said to be live when it is
possible to ultimately fire any transition of the net by progress-
ing through some firing sequence, starting from any marking
that is reachable from a given initial marking [8]. A live Petri
net guarantees a deadlock-free operation.

When examining the Petri net specification of a logic con-
troller, the property of liveness is not enough to ensure the non-
blocking operation due to external inputs and outputs and their
interrelations. We can say the liveness of a PN is a necessary
but not sufficient condition for the non-blocking operation of a
related controller.

To examine the possible blocking of the controller the relation
between inputs and outputs must be taken into account. In other
words, instead of analysing the ’open-loop’ model of the con-
troller we have to study the ’closed-loop’ model of the control
system. Such an approach may be considered a model-based
approach to verification, according to classification in [5].

4.1 Modelling a process under control

The key to success of such a verification approach is a model
of the process under control, which is not readily available in
many cases. In certain cases, however, we can use models that
are developed during initial stages of the control logic design.

A multistage approach to design of the control logic is schemat-
ically shown in Fig. 2 [9]. One of the key points of the ap-
proach is that the specifications are split up in two parts. The
first part involves prevention of undesired behaviour. It is com-
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Figure 2: Proposed control structure

posed of the so-called interlocks that implement measures to
assure safety, co-ordinate subprocesses, etc. The second part
deals with the sequential specification and defines prescribed
order of tasks. The sequencing part of the control logic is only
synthesized after the interlock part has been designed.

The set of interlock supervisors may be designed within a
framework of supervisory control theory. Result of the synthe-
sis of the interlock part is a model of admissible behaviour, i.e.,
the model of all possible event sequences in the controlled sys-
tem that comply with the interlock specification. This model
can be used as an ’open-loop’ process model when designing
the sequencing part of the control logic.

4.2 Petri net specification of the sequencing part of the
control logic

The sequencing controller plays a different role than the inter-
lock supervisors. Instead of permitting or disabling the occur-
rence of events in the system it has to actively trigger events
that result in a state change of the actuating elements of the
process. The controller actively drives the process through a
desired event sequence. The design of the sequencing part of
the control logic may also be performed within the supervi-
sory control theory, e.g. [2, 9], but the design approach is not
that straightforward as with the interlock part. Here we explore
an alternative way where we formalize the specification by the
Petri net. The notation of RTPN is used to include controller
input and output signals into a specification model.

Other modelling and specification approaches, e.g. finite au-
tomata, could be used to perform this task. As we require the
Petri net models of the control logic are bounded, or even safe
in most cases, the descriptive power of such a model is the
same as that of a finite automaton. The main advantage of the
Petri net approach is that the representation of the state of the
system is distributed over places of the net. This enables a com-
pact representation of concurrency and synchronisation, which
makes Petri net models easy to understand. Another advan-
tage of the Petri net representation is the straightforward path
from the developed specification models to the industrial im-
plementation. This is due to the closed relationship between
SFC, Grafcet and Petri nets, which enables a SFC to be di-
rectly redrawn from a Petri net model and some of the classical
properties of Petri nets can be applied also to SFCs [3, 4].

4.3 Verification of a RTPN

A basic analysis approach for the study of the so-called be-
havioural properties of Petri nets is the construction of the cov-
erability tree or coverability graph [8]. For a bounded Petri net
the coverability tree is called the reachability tree and the cover-
ability graph is called the reachability graph, since they contain
all possible reachable markings. In this case all the behavioural
properties (inluding liveness) can be checked by exploring the
reachability tree or reachability graph.

The main disadvantage of this approach is that it is an exhaus-
tive method since all possible markings of the net have to be



enumerated. It is therefore appropriate for relatively small-size
models.

The first step in the proposed verification approach is the con-
struction of the reachability graph of the Petri net. Only the
(P,T, I,O,m0) part of the RTPN is considered at this step. Safe-
ness and liveness of the net are checked from the graph.

In the second step, inputs and outputs of the RTPN and the
above described model of the admissible behaviour are taken
into account. The reachability graph is expanded by all event
sequences possible between any two transition firings. This
considers both changes of the controller outputs (controllable
events) due to defined output signal function of the RTPN as
well as changes of the controller inputs (uncontrollable events)
that result from the process dynamics. It is assumed that an
attempt to perform the output function is always made before
firing any enabled transition of the RTPN.

Events that are considered here are defined as changes of a state
of a binary signal. Therefore, two events are related to any in-
put or output of the controller. During the construction of the
graph, an information on the state of the signals has to be kept,
based on the past occurrences of related events. In the case the
process model does not contain all the events related to con-
troller inputs/outputs, the unmodelled events are not considered
during the construction of the graph.

In the described way a new kind of reachability graph is de-
rived. A set of nodes is associated with every reachable mark-
ing and the transitions between the nodes are of two types:

– transitions of a RTPN connect nodes associated with dis-
tinct markings,

– transitions related to events in a model of admissible be-
haviour connect nodes associated with the same marking.

Since the derived graph includes input and output events we
will call it the IO-reachability graph of a RTPN under supervi-
sion. It must be noted that we only consider ordering of events,
while timing information of a RTPN is omitted.

Finally, the IO-reachability graph is used to analyse a potential
blocking of a controller. Here we apply the following defini-
tion.

Definition: A control specification given as a RTPN is said to
be nonblocking under supervision, when a corresponding IO-
reachability graph:

(i) contains all transitions of the RTPN, i.e. every transition
appears at least once as a label of an edge in the graph and

(ii) may be interpreted as a nonblocking automaton, given
Xm = {x0}. In the interpretation of the graph as an au-
tomaton, transitions of a RTPN are considered as addi-
tional events in the system. �

For an exact definition of nonblocking see [1]. Roughly speak-
ing, the automaton is said to be non-blocking, if it is capable
to reach a marker state from any reachable state. In our case,
since Xm = {x0}, the automaton is non-blocking, when it is
able to return to initial state from any reachable state. This also

implies, that a corresponding RTPN can always return to the
initial state. Since we also request that all transitions are con-
tained in the IO-reachability graph, any transition of the RTPN
can eventually be fired, starting at any reachable marking. We
can say such a RTPN is live under supervision.

4.4 Example

To illustrate the proposed concept of verification we present a
simple example. We consider a part of a laboratory scale mod-
ular production line. The line is composed of five working sta-
tions and every working station is further composed of a set of
pneumatic pistons, gears, two state sensors, electro-pneumatic
actuators, which form a mechanical setup that can be controlled
by a PLC to perform a required operation.

To simplify the presentation we will only consider a small part
of the distribution station, consisting of a pneumatic piston, that
takes a workpiece from the input buffer and a manipulator that
transports the workpiece further. The setup is shown in Fig. 3.

The pneumatic piston is equipped by two limit switches, indi-
cating backward (sb) and forward (s f ) position. The backward
position is also the initial position of the piston. The switches
are wired to a power supply and the controller in a standard
way so that the controller receives logical 1 when the limit is
reached and logical 0 otherwise. The piston has a single actua-
tor (a f ), it moves in the forward direction when a f = 1 and in
the backward direction when a f = 0. Movement of the piston
is limited to the distance between the two limit switches. The
automaton modelling the behaviour of the piston is shown in
Fig. 4. Every input/output signal is modelled by two events.
One indicates the transition of the signal form 0 to 1, e.g. a f 1,
the other from 1 to 0, e.g. a f 0. The change of the state of the
actuating signal is possible in any moment, while the possible
change of the state of the sensing signal depends on the state of
the actuator and the current position of the piston. The initial
state of the automaton is designated by arrow pointing to the
state while no marker states are designated. At this point we
assume all states are marked.

D i s t r i b u t i o n T e s t i n g
D i s t r i b u t i o n   
p i s t o n

M a n i p u l a t o r

Figure 3: Part of the production line
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Figure 4: Model of the pneumatic piston
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Figure 5: Model of the manipulator

The manipulator consists of a bidirectional pneumatic gear,
which moves the arm with a gripping device. The full model
may be found in [9]. Here we use a simplified model shown in
Fig. 5. We consider only one sensor, which indicates the posi-
tion of the manipulator at the input buffer (physically this is the
left position, therefore sl) and one actuator, which forces the
manipulator to move toward the input buffer (al). We assume
the manipulator moves away form the buffer when al = 0.

The interlock specifications for the two devices are shown in
Fig. 6. The first automaton shown in Fig. 6 models the require-
ment that the manipulator must be kept away from the piston,
when the later is moving. The second automaton models the re-
quirement that the piston must not start moving forward, when
the manipulator is taking a workpiece.

The specifications are obviously not controllable, since some
of the uncontrollable events are disabled in certain states. Su-
pervisory control theory is applied to calculate the maximally
permissive supervisor, which results, when applied to the paral-
lel composition of the above models, in a model of admissible
behaviour, shown in Fig. 7. The admissible behaviour model of
the piston and the manipulator is a behaviour, which does not
violate the constraints imposed by specification in Fig. 6 and
at the same time retains as many of the event sequences in the
system as possible. In the presented case we actually imposed
mutually exclusive operation of the two devices.

Now, consider two sequential specifications, given by two
RTPN models shown in Fig. 8. The input/output signal func-
tions for the first specification are as follows: Y (t1)= 1, Y (t2) =
sl, Y (t3) = s f , Y (t4) = sb AND NOT sl; Z(p2) = (al,1),
Z(p3) = (a f ,1), Z(p4) = (al,0), Z(p5) = (a f ,0). The in-
put signal functions for the second specification are Y (t1) = 1,
Y (t2) = s f AND sl, Y (t3) = sb AND NOT sl; while output
signal functions are the same. No firing delays are defined:
D(ti) = 0,∀ti. Reachability graphs for the two Petri nets are

S 0 S 1
S - { s l 1 } S - { s f 1 , s l 0 }s l 1

s l 0

S 1
S - { s b 0 } S - { s b 1 , s l 1 }s b 0

s b 1
S 0

Figure 6: Interlock specifications
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Figure 7: Admissible behaviour

show in Figs. 9 and 10. By the inspection of the two graphs we
can prove that both Petri nets are safe and live.

IO-reachability graph for the first sequential specification is
shown in Fig. 11. The controller is not blocking. This may
be surprising because the interlock supervisor enforces the mu-
tually exclusive operation of the piston and manipulator while
the Petri net specifies a parallel operation. The controller is not
blocking because the Petri net is drawn in such a way that the
two parallel activities only synchronize after both devices are
back in the initial state.

If we require the synchronisation of activities in between,
the controller blocks, which is clearly seen from the IO-
reachability graph for the second sequential specification,
shown in Fig. 12. In this case the liveness of the related Petri
net is not sufficient for the non-blocking operation of the con-
troller. The blocking is only visible after the construction of
the IO-reachability graph.

5 Conclusions

The presented approach enables a detailed analysis of the po-
tential blocking in the control logic that is built on the basis
of Petri net specifications. The main advantage of the ap-
proach is that the relations among input and output signals of
the controller are taken into account, which is not possible by
classical methods of the Petri net analysis. The drawback of
the approach is the complexity of the resulting IO-reachability
graphs, which limits the approach to analysis problems of a
small size.
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Figure 8: Two sequential specifications
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Figure 9: Reachability graph for the first RTPN
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