
A COMPARISON OF SYNTHESIS TOOLS FOR SUPERVISORY
CONTROLLERS

A. Sanchez‡†∗, J. Reza‡, J. Douriet‡ and R. Gonzalez‡

‡ Depto. de Ingenieria Electrica y Computacion
Centro de Investigacion y Estudios Avanzados (Cinvestav)
Apdo. Postal 31-438, Guadalajara 45091, Jalisco, Mexico

†Instituto Mexicano del Petroleo
Eje Central Lazaro Cardenas 152, Mexico D.F. 007800, Mexico

Keywords: Discrete-event systems, supervisory synthesis

Abstract

This paper presents a numeric performance comparison of syn-
thesis tools for supervisory controllers. First, a BDD im-
plementation of supervisory synthesis operations is presented.
This implementation is based on a predicate representation of
SCT previously proved to be successful on establishing a sym-
bolic calculation framework. The implementation is compared
with UKDES and Supremica, two tools for supervisory con-
trol synthesis using explicit algorithms. Benchmark problems
are established for asynchronous product, synchronous prod-
uct and supremal controllable language calculations. Results of
numerical experiments are presented showing a better perfor-
mance of the symbolic implementation. However, for solving
industrial applications it is still needed to improve the compu-
tational performance as well as using other design approaches
(e.g. modularity and hierarchy).

1 Introduction

Supervisory Control Theory (SCT) [10] is recognized as one of
the most solid synthesis theories for discrete-event controllers.
The process is modeled using finite state machines (FSMs) and
their associated set of finite trajectories (i.e. *-languages). The
control mechanism is known as supervisor and controls the pro-
cess by synchronizing shared transitions. SCT guarantees the
existence of a supremal controllable language satisfying max-
imally a set of specifications, usually of safety nature. Appli-
cations have been reported in a wide range of areas such as
communication protocols, data base management, processing
and manufacturing systems [3].

Synthesis calculations are based on FSM operations and their
complexity is polynomial in the best of cases [13]. However, in
practice, it can be difficult to achieve efficient implementations.
Moreover, handling processes of realistic size may be ham-
pered by the state-explosion problem. Regarding the supre-
mal controllable language calculations, several alternatives can
be found in the open literature. Initially, a language fix–point
operator and an explicit algorithm were proposed by [14]. The
latter was implemented in the well-known TCT software. Non-

∗Corresponding author. e-mail address: arturo@gdl.cinvestav.mx

recursive formulas have been also devised for closed languages
with a temporal complexity ofO(mn2), wherem andn are the
state cardinality of the process and specification FSMs, respec-
tively [2].

The use of predicates and predicate transformers as a model-
ing framework for SCT has also been recognized as an useful
approach for considering structural properties of FSMs and for
avoiding the explicit enumeration of state spaces [7, 16]. A
predicate-based fix–point operator was implemented in a syn-
thesis tool[5] encoded symbolically with Binary Decision Dia-
grams (BDDs) and reportedly solved usingVer, a package for
BDD handling [6]. An example of 1.3×106 potentially reach-
able states was used to show the applicability of the approach.
The largest case solved used approximately 20 min and 7.7 Mb
of a DEC300. However details were not given as to asses the
performance of this approach and the associated tool.

Vector-addition systems have been also used to model DES [8].
In this case, the synthesis problem was posed as an LIP prob-
lem. The approach was applied to a manufacturing facility with
8.2×107 potential states.

Recently, a predicate-based incremental algorithm with vari-
able reordering was proposed [16]. The encoding is carried
out using integer decision diagrams (IDDs). Modularity in the
plant and specification is exploited and specific problems up
to 1023 potential states are solved in reasonable times and use
of memory. However, the synthesis algorithm produces as a
result the set of reachable and coreachable states of the supre-
mal controllable language generator. Moreover, the tool is not
currently available as a public domain software [15].

Public domain tools for supervisory control synthesis include:

• TCT, implements in C language the algorithms proposed
by Ramadge and Wonham using explicit calculations.
With a command-based terminal and simple syntax for
input information, TCT is available for several operating
platforms.

• Supremica ([1]) and UKDES ([4]), implement in C lan-
guage with a Java GUI explicit calculations of Ramadge
and Wonham’s algorithms.

This paper presents a BDD-based implementation, termed
SSPC, of a predicate-based framework for calculating the

supremal controllable language. Following [16], predicates
are built for modeling FSMs and defining the required opera-
tions for calculating the supremal controllable language. These
include: synchronous and asynchronous products, image and
pre-image calculations and the fix-point operator proposed by
[5]. The performance of synchronous and asynchronous prod-
ucts as well as the supremal controllable language calcula-
tions are compared with their counterparts in UKDES V1.0 and
Supremica V1104.

In the next section, the predicate-based operations mentioned
previously for the calculation of the supremal controllable lan-
guage are presented together with details of their implementa-
tion using BDDs. Section 3 shows the results of the bench-
marking using specific examples for each exercise. Perfor-
mance is characterized by CPU usage and calculation time vs.
state space size of FSMs used as input data. A PC Pentium
4, 1.4 Ghz with 640 Mb RAM was used for all benchmark
runs. UKDES and SSPC were executed on Mandrake Linux
8.2 operating system, while Supremica was executed on Win-
dows 2000.

2 Predicate representation of FSM operations
and their BDD implementation

As suggested by [7] and [16], predicates can be used to express
structural properties of FSMs. LetPr be a predicate defined
over a state set of an FSMM = {Q, Σ, δ, q0, Qm} such that
Pr : Q → {0, 1}. Thus,Pr identifies a subset of states

‖Pr‖ := {q ∈ Q|Pr(q) = 1} (1)

In the same fashion, predicateRe : Q × Σ × Q −→ {0, 1}
defines a relation subset such that

‖Re‖ := {(q, σ, q′) ∈ Q× Σ×Q|Re(q, σ, q′) = 1}
Thus, an FSMM and its associated languagesL(M), Lm(M)
can be represented byM ′ = {Q, Σ, ‖T‖, ‖I‖, ‖Mr‖} with

• T : Q × Σ × Q −→ {0, 1} as the transition relation.
The triplet (q, σ, q′) satisfiesT if and only if there is a
transitionσ such thatq′ = δ(q, σ), with q, q′ ∈ Q and
σ ∈ Σ.

• I : Q −→ {0, 1} as the initial state predicate.q satisfiesI
if and only if q = q0.

• Mr : Q −→ {0, 1} as the marked states predicate such
thatq satisfiesMr if and only if q ∈ Qm.

2.1 BDD Encoding

The implementation was carried out in C using the BDD pack-
age Buddy [9]. Separated variable blocks were defined, in this
order, for transitions, plant and specification state sets. In the
case of plant and specification blocks, a sub-block is assigned
to each FSM modeling a plant component or specification. In

each sub-block all source states are codified by even variables
and destination states are captured by odd variables.

2.2 Image and Pre-image of a Relation

Given a predicatePr and a transition relationT , the image
Img‖Pr‖ and pre-imagePre‖Pr‖1 for obtaining state succe-
sors and predecessors are defined as:

Img‖Pr‖ := {q′ ∈ Q|(q, σ, q′) ∈ ‖T‖ for some
σ ∈ Σ and someq ∈ ‖Pr‖}
Pre‖Pr‖ := {q ∈ Q|(q, σ, q′) ∈ ‖T‖ for some
σ ∈ Σ and someq′ ∈ ‖Pr‖}
Thus, the definitions of reachability and coreachability can be
written in terms of predicates.

Definition 1 Reachability

Given an FSMM = {Q, Σ, ‖T‖, ‖I‖, ‖Mr‖}, the set ob-
tained by the succesive computation of the image, starting from
the initial state, is given by

‖Al‖ :=
∞⋃

i=0

Imgi‖I‖ (2)

whereImgi‖I‖ is inductivey defined as

Img0‖I‖ := ‖I‖,
Imgk+1‖I‖ := Img(Imgk‖I‖)

Definition 2 Coreachability

In the same fashion, for an FSMM = {Q, Σ, ‖T‖,
‖I‖, ‖Mr‖}, the subset obtained by the calculation of the pre-
image starting with the marked set is given by

‖Co‖ :=
∞⋃

i=0

Prei‖Mr‖ (3)

wherePrei‖Mr‖ is defined inductively as in the case of reach-
ability.

The calculation of the reachable and coreachable subsets is
straightforward from the definition as shown in the following
pseudo-code.

Reachable set

Reached = (*BDDInitialStateSystemSpec);
do {
ReachedBefore = Reached;
/* Image calculation */
Reached = Reached &

(*BDDTranRelationSystemSpec);
Reached = bdd_exist(Reached,

1The transition relation used is inferred from the context

(*BDDCurrentSystemSpecSet)
& (*BDDTransitionSet));

tmp = bdd_replace(Reached,
changePairSystemSpecF);

Reached = ReachedBefore | tmp;
} while(ReachedBefore != Reached);

return Reached;

Coreachable set

co_Reached = (*BDDMarkedStatesSystemSpec);
do {
co_ReachedBefore = co_Reached;
co_Reached = bdd_replace(co_Reached,

changePairSystemSpecB);
/* Preimage calculation */
tmp = (*BDDTranRelationSystemSpec)

& co_Reached;
tmp = bdd_exist(tmp,

(*BDDNextSystemSpecSet)
& (*BDDTransitionSet));

co_Reached = co_ReachedBefore | tmp;
} while(co_ReachedBefore != co_Reached);

return co_Reached;

Definition 3 Asynchronous product

Let two FSMsM1 = {Q1,Σ1, ‖T1‖, ‖I1‖, ‖Mr1‖}, M2 =
{Q2, Σ2, ‖T2‖, ‖I2‖, ‖Mr2‖}, with Σ1 ∩ Σ2 = ∅. The asyn-
chornous productM = M1 ‖ M2 = {Q, Σ, ‖T‖, ‖I‖, ‖Mr‖}
is given by:

Q := {Q1 ×Q2}
Σ := Σ1 ∪ Σ2

‖I‖ := {(q1, q2) ∈ Q|q1 ∈ ‖I1‖ andq2 ∈ ‖I2‖}
‖Mr‖ := {(q1, q2) ∈ Q|q1 ∈ ‖Mr1‖ andq2 ∈ ‖Mr2‖}
‖T‖ := {((q1, q2), σ, (q′1, q2))|(q1, σ, q′1) ∈ ‖T1‖} ∪
{((q1, q2), σ, (q1, q

′
2))|(q2, σ, q′2) ∈ ‖T2‖}

The corresponding algorithm is obtained directly from the
definition. Its time complexity isO(|Q1|card(‖T2‖) +
card(‖T1‖)|Q2|).

Definition 4 Exact synchronous product

Let M1 and M2, two FSMs as in the previous defini-
tion with Σ1 ∩ Σ2 6= ∅. The exact synchronous product
M = M1§M2 = {Q, Σ, ‖T‖, ‖I‖, ‖Mr‖} is defined as:

Q := {Q1 ×Q2}
Σ := Σ1 ∩ Σ2

‖I‖ := {(q1, q2) ∈ Q|q1 ∈ ‖I1‖ andq2 ∈ ‖I2‖}
‖Mr‖ := {(q1, q2) ∈ Q|q1 ∈ ‖Mr1‖ andq2 ∈ ‖Mr2‖}
‖T‖ := {((q1, q2), σ, (q′1, q

′
2))|(q1, σ, q′1) ∈ ‖T1‖ and

(q2, σ, q′2) ∈ ‖T2‖}

The algorithm is obtained in a straightforward fash-
ion from the definition. The time complexity is
O(max(card(‖T1‖), card(‖T2‖))).

2.3 Fix-point operator for supremal controllable sublan-
guage

Let P = {Q, Σ, ‖TP ‖, ‖IP ‖, ‖MrP ‖} and E =
{X, Σ, ‖TE‖, ‖IE‖, ‖MrE‖} the plant and specification
FSMs. The starting point for calculating the supremal control-
lable language can be the synchronous product of these two
FSMs

PE = P §E = {Q×X, Σ, ‖TPE‖, ‖IPE‖, ‖MrPE‖} with
‖IPE‖ := {(q, x) ∈ Q×X|q ∈ ‖IP ‖ andx ∈ ‖IE‖}
‖MrPE‖ := {(q, x) ∈ Q×X|q ∈ ‖MrP ‖ andx ∈ ‖MrE‖}
‖TPE‖ := {((q, x), σ, (q′, x′))|(q, σ, q′) ∈ ‖TP ‖ and
(x, σ, x′) ∈ ‖TE‖}
Thus, the transition relation‖TPE‖ is a function with domain
W := Q×X×Σ×Q×X. Now, let‖TZ‖ be a transition rela-
tion defined on the same domain.‖TZ‖ establishes the relation
between a plant and specification states. Using this predicate
representation, a slightly rewritten version of the fix-point op-
eratorΩ : 2W −→ 2W proposed by [5] is:

Ω(‖TZ‖) := ‖TPE‖ ∩ ‖TZ‖ −
{((q, x), σu, (q1, x1)) ∈ {TZ}|(q, x) ∈ K1, σu ∈ Σu} −
{((q, x), σ, (q1, x1)), ((q1, x1), σ, (q, x))
∈ ‖TZ‖|(q, x) 6∈ ‖Co‖}
where

K1 := {(q, x)|∃(q, σu, q2) ∈ ‖TP ‖, σu ∈ Σu and
((q, x), σu, (q2, x2)) 6∈ ‖TZ‖

K1 is the set of state pairs(q, x) from which at least one uncon-
trollable transition is enabled fromq in the process FSM and is
not enabled in the equivalent state of‖TZ‖. ‖Co‖ guarantees
that all states in each iteration are coreachable.

It can be demonstrated that this fix–point operator produces the
supremal controllable language [11]. The FSM thus obtained
is

Z := {QZ , Σ, ‖TZ‖, ‖IZ‖, ‖MrZ‖} (4)

with
QZ := {(q, x)|((q, x), σ, (q′, x′)) or
((q′, x′), σ, (q, x)) ∈ ‖TZ‖}
‖IZ‖ := {(q, x) ∈ QZ |(q, x) ∈ ‖IPE‖}
‖MrZ‖ := {(q, x) ∈ QZ |(q, x) ∈ ‖MrPE‖}

The corresponding pseudo-code follows.

S = S_ant =
(*BDDTransitionRelationSystemSpec);
do {

S_ant = S;
/* Calculate the set of states in

the transition relation */
cstates = bdd_exist(S,

(*BDDSetNextSystemSpec)
& (*BDDSetTransition));

nstates = bdd_exist(S,

(*BDDSetCurrentSystemSpec)
& (*BDDSetTransition));

states = cstates |
bdd_replace(nstates,
changePairSystemSpecF);

/* Calculate the uncontrollable
transitions from all the states */

uncontSys = states &
(*BDDTransitionRelationSystem)
& (*BDDUncontrollable);

uncontS = states & S
& (*BDDUncontrollable);

uncontSys = bdd_exist(uncontSys,
(*BDDSetNextSystemSpec));

uncontS = bdd_exist(uncontS,
(*BDDSetNextSystemSpec));

/* Calculate the problematic
transitions */

badTransitions = uncontSys -
uncontS;

/* Calculate the problematic states */
badStates = bdd_exist(badTransitions,

(*BDDSetTransition));

/* Erase uncontrollable states */
S = S & !badStates;
badStates = bdd_replace(badStates,

changePairSystemSpecB);
S = S & !badStates;

/* Set co-reachability */
co_ReachableStates =

Get_co_ReachableStates(S,
(*BDDMarkedStatesSystemSpec),
(*BDDSetCurrentSystemSpec),
(*BDDSetNextSystemSpec),
(*BDDSetTransition));

S = S & co_ReachableStates;
} while (S != S_ant);

/* TRIM the superstructure controller */
ReachableStates =

GetReachableStates(S,
(*BDDInitialStateSystemSpec),
(*BDDSetCurrentSystemSpec),
(*BDDSetNextSystemSpec),
(*BDDSetTransition));

3 Benchmarking

3.1 Asynchronous Product

The benchmark for the asynchronous product operations is
taken from [12]. It consists of a tank that is pressurized to a
set (i.e. normal) value using a solenoid valve operated by an
on-off button. Pressure is measured using a sensor with three
states (i.e. low, normal and high). The objective is to synthesize
a control device to supervise the proper operation of the tank.

The process components and their associated FSM models are
shown in figure 1. The asynchronous product of the three com-
ponents is used as the basis to obtain the process model. The
size of the process is increased by including extra tank blocks
in parallel. Thus, space size of the final result increases in pow-
ers of 12. The results for memory usage and CPU time required
are shown in table 1.

V1

Gas

ON/OFF
BUTTON

Controllable Transition
Uncontrollable Transition

B1PS

21 22

11 12

Procedural
Controller

33

3431

32

Open

Closed

Low

OK

High

On

Off

Figure 1: Pressurized tank system

Minimum memory quotas for SSPC and Supremica are due
to software implementation. Regarding SSPC, table 1 also
presents the number of BDD-nodes vs. number of states of
the resultant FSM. Notice that in this case the relation is linear.

3.2 Exact synchronous Product

FSMsM1 andM2 shown in figure 2 conform the first block of
the benchmark FSMs for the exact synchronous product. Sub-
sequent blocks are built by duplicatingM1 andM2 of the pre-
vious block but with different transition labels and then per-
forming the asynchronous product between duplicated FSMs.
Table 2 shows the results for this operation and the number of
BDD-nodes vs. number of states of the resultant FSM.

0

13
 14

2

13
 14

1
 3

11

12

11

12

(a) M1

0

1

12
11

12,13,

14

(b) M2

Figure 2: Basic FSMs for the benchmark of the exact syn-
chronous product

3.3 Supremal controllable sublanguage

The example used is taken from [16]. It consists of a production
line with two machinesM1, M2 and a test unit connected by
two one-part buffersB1, B2 as shown in figure 3. The control-
lable transitions are the inputs to machines or test units. Once a
part is in the test unit, it can be accepted or rejected and repro-
cessed by returning to bufferB1. Initially, the machines and
test units are idle and buffers are empty. A cycle is completed
when the production line returns to its initial state. The syn-
thesis objective is to find a supervisor that guarantees proper
operation of the buffers (not underflow or overflow). The FSM
models for the line transfer components and the specification
are shown in figures 4 and 5, respectively. Uncontrollable tran-
sitions are depicted as shadow arrows. The FSM candidate for
supervisor is built by first performing the asynchronous prod-
uct of all components and then synchronizing with the specifi-
cation FSM. In order to test the effect of size, production lines
were added working in parallel with no relation among them.
Table 3 shows the results for memory usage and CPU time con-
sidering all states as marked.

4 Conclusions

Results show a considerable better performance of the sym-
bolic implementations when compared with their explicit coun-
terpart in the synchronous and asynchronous products. In the
case of the computations of supremal controllable languages,
the difference was of up to four orders of magnitude for this
particular example. Neither variable reordering, modularity or
incremental solutions were exploited. Thus, it is expected a
much better performance once these aspects are considered.

Acknowledgements.
The authors wish to express their gratitude to Dr. Alan Hu for his gen-
erous advice. AS kindly acknowledges partial financial support from
Conacyt, Mexico in the form of a sabbatical fellowship and project
365935U

M1
 M2
 TU
B1
 B2

11
 12
 13
 14
 15
 16

17

Figure 3: Production line system

0

1

11
 12

M1

(a) M1

0

1

13
 14

M2

(b) M2

0

1

16
 17
15

TU

(c) TU

Figure 4: Production line components

0

14
 15

2

14
 15

1
 3

13

12

17

13

12

17

11,16

11,16

11,16
 11,16

Figure 5: Production line specification (all states are marked)

References
[1] K. Akesson, H. Flordal, and M. Fabian,Exploiting modularity

for synthesis and verification of supervisors, 15th IFAC World
Congress. Barcelona, Spain, July 2002.

[2] R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W. M.
Wonham,Formulas for calculating supremal controllable and
normal sublanguages, Syst. and Cont. Lett.15 (1990), 111–117.

[3] C. G. Cassandras and S. Lafortune,Introduction to discrete event
systems, Kluwer Academic, 1999.

[4] V. Chandra, B. Oruganti, and R. Kumar,Ukdes: A graphical
software tool for the design, analysis and control of discrete
event systems, IEEE Transactions on Control Systems Technol-
ogy, Submitted, 2000.

[5] G. Hoffmann and H. Wong–Toi,Symbolic synthesis of supervi-
sory controllers, Proc. of the 1992 American Control Confer-
ence, June 24-26 1992, pp. 2789–2793.

[6] A. J. Hu,Techniques for efficient formal verification using binary
decision diagrams, Technical Report CS-TR-95-1561, Stanford
University Department of Computer Science, 1995.

[7] R. Kumar and V. K. Garg,Modeling and control of logical dis-
crete event systems, Kluwer Academic Publisher, 1995.

[8] Y. Li and W. M. Wonham,Control of vector discrete–event sys-
tems. ii.– Controller synthesis, IEEE Transactions on Automatic
Control39 (1994), no. 3, 512–531.

[9] J. L. Nielsen,Buddy: Binary decision diagram package, release
2.0, IT University of Copenhagen (ITU), 2001.

[10] P. J. Ramadge and W. M. Wonham,Supervisory control of a
class of discrete–event processes, SIAM Journal of Control and
Optimization25 (1987), no. 1, 206–230.

[11] J. Reza,Sintesis de controladores de procedimientos utilizando
tecnicas de calculo simbolico (in spanish), Master’s thesis, Cin-
vestav, 2002.

[12] A. Sanchez, G. Rotstein, N. Alsop, and S. Macchietto,Synthesis
and implementation of procedural controllers for event–driven
operations, AIChE Journal45 (1999), no. 8, 1753–1775.

[13] J. N. Tzitziklis,On the control of discrete–event dynamical sys-
tems, Math. Control Signal Systems2 (1989), 95–107.

[14] W. M. Wonham and P. J. Ramadge,On the supremal controllable
sublanguage of a given language, SIAM Journal of Control and
Optimization25 (1987), no. 3, 637–659.

[15] Z. Zhang,personal communication, 2002.

[16] Z. Zhang and W. M. Wonham,Synthesis and control of discrete-
event systems, ch. STCT: An efficient algorithm for supervisory
control design, Kluwer Academic, 2002.

Memory Usage, Mb CPU Time, s # nodes
blocks |Q| SSPC UKDES Suprm SSPC UKDES Suprm SSPC

1 12 < 13 < 1 0.3 < 0.01 << 1 0.2 62
3 1,728 < 13 24 7 1 < 0.01 2.2 510
4 20,736 < 13 300 108 0.01 375 19.1 878
5 248,832 13.5 N/D N/A 0.05 N/A N/A 1,382
10 6.19×1010 16 N/A N/A 0.05 N/A N/A 5,366
20 3.83×1021 19 N/A N/A 0.45 N/A N/A 21,134
40 1.46×1043 26 N/A N/A 3.5 N/A N/A 82,800

Table 1: Memory usage in Mb, CPU time in seconds and number of nodes for asynchronous product

Memory Usage, Mb CPU Time, s # nodes
blocks |Q1| |Q2| |QSY NC | SSPC UKDES Suprm SSPC UKDES Suprm SSPC

1 4 2 4 < 13 < 1 0.06 < 0.01 << 1 0.04 26
3 64 8 64 < 13 < 1 0.88 <0.01 < 1 0.3 481
5 1,024 32 1,024 13.5 17 5 0.02 2 1.2 3,156
7 16,384 128 16,384 14.5 288 68 0.2 650 43 16,581
8 65,536 256 65,536 17 N/A N/A 0.8 N/A N/A 36,765
10 1.04×106 1024 1,048,576 35 N/A N/A 12 N/A N/A 174,673
12 1.67×107 4096 1.67×107 130 N/A N/A 86 N/A N/A 806,402
14 2.68×108 16384 2.68×108 400 N/A N/A 736 N/A N/A 3,653,044

Table 2: Memory usage in Mb, CPU time in seconds and number of nodes for exact synchronous product.

CPU Time, s Memory Usage, Mb # nodes
blocks |QP | |QE | |QSUP | SSPC UKDES Suprm SSPC UKDES Suprm SSPC

1 8 4 10 < 0.01 < 0.01 0.07 < 13 < 1 0.3 76
2 64 16 100 0.02 1 0.9 < 13 6.6 2.8 665
3 512 64 1,000 0.2 3,302 1,524 13.5 88 98 3,830
4 4,096 256 10,000 1.7 N/A N/A 14.5 N/A N/A 19,347
5 32,768 1,024 100,000 12 N/A N/A 21.5 N/A N/A 92,445
6 262,144 4,096 1,000,000 112 N/A N/A 55 N/A N/A 428,275
7 2,097,152 16,384 10,000,000 933 N/A N/A 227 N/A N/A 1,944,427

Table 3: Memory usage in Mb, CPU time in seconds and number of nodes for the calculation of the supremal controllable
sublanguage.

	Session Index
	Author Index

