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Abstract

Coalgebraic methods provide new results and insights for
the supervisory control of discrete-event systems (DES).
In this paper a coalgebraic framework for the decentral-
ized control of DES is proposed. The paper is based on
the formalism developed for the supervisory control of
DES in the partial observation case, the notion of bisim-
ulation, and its generalizations (partial bisimulation, co-
observability and control relation). Local indistinguisha-
bility relations are used in the relational characterizations
of co-observability. Conjunctive and permissive (C&P) as
well as disjunctive and antipermissive (D&A) versions of
co-observability are captured by their corresponding re-
lations. Coinduction is used to define a new operation
on languages called C&P supervised product. Existence
of a supervisor that achieves a given specification in the
closed-loop system is equivalent to the existence of a par-
tial bisimulation relation, which is at the same time a co-
observability and control relation.

1. Introduction

Discrete-event (dynamical) systems (DES) can be studied
using coalgebraic techniques. DES are often represented
by automata viewed as a particular algebraic structure.
However, they may also be viewed as partial automata,
which are coalgebras of a simple functor of the category of
sets. Coalgebras are categorial duals of algebras (the cor-
responding functor operates from a given set rather than
to a given set).

This paper presents a formulation of decentralized control
of DES in terms of coalgebra. The basic formalism is the
one that has been developed by J.J.M.M. Rutten in [8] and
extended by the first author in [4] to partial observations,

i.e. partial automata as models for DES and partial au-
tomaton of (partial) languages as the final coalgebra. The
main advantage of the use of coalgebra is the naturally
algorithmic character of the results, there is a canonical
way how to check the properties like decomposability [6]
or co-observability for different control architectures by
constructing corresponding relations.

There are two control architectures for the decentralized
supervisory control as proposed by T.S. Yoo and S. Lafor-
tune in [13]: Conjuctive and permissive, referred to as
C&P, and disjunctive and antipermissive, referred to as
D&A. Coinduction is used to define operations on lan-
guages called C&P and D&A supervised product, which
represent the languages of the closed-loop system, where
the first language acts as a a specification language and
the second as an open-loop system language for both of
the control architectures.

The paper is organized as follows. Section 2 recalls par-
tial automata from [8] as the coalgebraic framework for
DES represented by automata. In Section 3 after intro-
ducing local weak transition structures on partial automata
we present an introduction to the decentralized supervi-
sory control. An alternative definition of co-observability
is presented, which is equivalent to C&P co-observability
of [13] and coincides with the original definition of co-
observability in the case of two local supervisors [10].
Section 4 contains the main results of the paper. First
relational characterizations of both C&P and D&A co-
observability are introduced. We present also a coinduc-
tive definition of the C&P supervised product that repre-
sent the closed-loop languages in the decentralized super-
visory control.

2. Partial automata

In this section we recall partial automata as coalgebras
with a special emphasis on the final coalgebra of partial
automata, i.e. partial automaton of partial languages. Let



A be an arbitrary set (usually finite and referred to as the
set of inputs or events). The empty string will be denoted
by ε. Denote by 1 = {∅} the one element set and by
2 = {0, 1} the set of Booleans. A partial automaton is
a pair S = (S, 〈o, t〉), where S is a set of states, and a
pair of functions 〈o, t〉 : S → 2 × (1 + S)A, consists of
an output function o : S → 2 and a transition function
S → (1 + S)A. The output function o indicates whether
a state s ∈ S is accepting (or terminating) : o(s) = 1,
denoted also by s ↓, or not: o(s) = 0, denoted by s ↑.
The transition function t associates to each state s in S a
function t(s) : A → (1 + S). The set 1 + S is the dis-
joint union of S and 1. The meaning of the state transition
function is that t(s)(a) = ∅ iff t(s)(a) is undefined, which
means that there is no a−transition from the state s ∈ S.
t(s)(a) ∈ S means that a−transition from s is possible
and we define in this case t(s)(a) = sa, which is denoted
mostly by s

a
→ sa. This notation can be extended by in-

duction to arbitrary strings in A∗. Assuming that s
w
→ sw

has been defined, define s
wa
→ iff t(sw)(a) ∈ S, in which

case swa = t(sw)(a) and s
wa
→ swa.

A homomorphism between partial automata S =
(S, 〈o, t〉) and S′ = (S′, 〈o′, t′〉) is a function f : S → S ′

with, for all s ∈ S and a ∈ A:

o′(f(s)) = o(s) and s
a
→ sa iff f(s)

a
→ f(s)a,

in which case: f(s)a = f(sa).

A partial automaton S ′ = (S′, 〈o′, t′〉) is a subautomaton
of S = (S, 〈o, t〉) if S′ ⊆ S and the inclusion function
i : S′ → S is a homomorphism.

2.1. Final automaton of partial languages

Below we define partial automaton of partial languages
over an alphabet (input set) A, denoted by L =
(L, 〈oL, tL〉). More formally, L = {Φ : A∗ → (1 +
2) | dom(Φ) 6= ∅ is prefix-closed}. To each partial lan-
guage Φ a pair 〈V, W 〉 can be assigned: W = dom(Φ)
and V = {w ∈ A∗ | Φ(w) = 1(∈ 2)}. Conversely,
to a pair 〈V, W 〉 ∈ L, a function Φ can be assigned :
Φ(w) = 1 if w ∈ V , Φ(w) = 0 if w ∈ W and w 6∈ V and
Φ(w) is undefined if w 6∈ W. Therefore we can write :

L = {(V, W ) | V ⊆ W ⊆ A∗, W 6= ∅, and W̄ = W}.

Transition function tL : L → (1 + L)A is defined
using the input derivatives. Recall that for any partial
language L = (L1, L2) ∈ L, La = (L1

a, L2
a), where

Li
a = {w ∈ A∗ | aw ∈ Li}, i = 1, 2. If a 6∈ L2 then

La is undefined. Given any L = (L1, L2) ∈ L, the partial
automaton structure of L is given by:

oL(L) =

{

1 if ε ∈ L1

0 if ε 6∈ L1

and

tL(L)(a) =

{

La if La is defined

∅ otherwise
.

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a 6= ∅, and

L2
a is prefix-closed. The following notational conventions

will be used: L ↓ iff ε ∈ L1 and L
w
→ Lw iff Lw is defined

iff w ∈ L2.

Recall from [8] that L = (L, 〈oL, tL〉) is final among all
partial automata: for any partial automaton S = (S, 〈o, t〉)
there exists a unique homomorphism l : S → L. Re-
call that the unique homomorphism l given by finality
of L maps a state s ∈ S to the partial language l(s) =

(L1
s, L

2
s) = ({w ∈ A∗ | s

w
→ and sw ↓}, {w ∈ A∗ | s

w
→

}).

Denote the minimal representation of a partial language L
by 〈L〉, i.e. 〈L〉 = (DL, 〈o〈L〉, t〈L〉〉) is a subautomaton
of L generated by L. This means that o〈L〉 and t〈L〉 are
uniquely determined by the corresponding structure of L.
The carrier set of this minimal representation of L is de-
noted by DL, where DL = {Lu | u ∈ L2}. Let us call
this set the set of derivatives of L. Inclusion of partial lan-
guages that corresponds to a simulation relation is always
meant componentwise.

3. Introduction to decentralized supervisory
control

Decentralized supervisory control arises because particu-
lar engineering systems have two or more local controllers
each receiving different partial observations of the system.
Since communication of the local observations is either
not possible or possible but costly, the partial observations
of the local controllers differ. As an example consider dif-
ferent radio stations in a communication network such as
a wireless local area network, where each station knows of
itself whether it wants to send a message but does not have
this information about other stations. Decentralized su-
pervisory control consists in considering local controllers
S1, . . . , Sn and breaking the set of controllable and ob-
servable events into locally controllable and locally ob-
servable events, denoted by Ac,i, and Ao,i, i = 1, . . . , n
respectively. The natural projections to locally observable
events are denoted by Pi : A∗ → A∗

o,i. The action of Pi

is simply to delete events that are not observable by Si.

The following notation will be used: {1, . . . , n} = Zn,
for any a ∈ A: Za

c = {i ∈ Zn : a ∈ Ac,i} and similarly
Za

o = {i ∈ Zn : a ∈ Ao,i}. Furthermore, we denote
Ac = ∪i∈Zn

Ac,i, Ao = ∪i∈Zn
Ao,i, Auc = A \ Ac, and

finally Auo = A \ Ao.

In the following definition we introduce the notion of
weak derivative (transition). Roughly speaking it disre-



gards locally unobservable events.

Definition 3.1. (Nondeterministic weak transitions.) For

an event a ∈ A define L
Pi(a)
⇒ if ∃s ∈ A∗ : Pi(s) =

Pi(a) and L
s
→ Ls. Denote in this case L

Pi(a)
⇒ Ls.

Remark 3.1. Let us introduce the notation for locally un-
observable events L

ε
⇒i as an abbreviation for ∃τ ∈ A∗

such that Pi(τ) = ε and L
τ
→. We write then L

ε
⇒i Lτ .

We admit τ = ε, hence L
ε
⇒i is always true. For a ∈ Ao,i

our notation means that there exist τ, τ ′ ∈ (A \ Ao,i)
∗

such that L
τaτ ′

→ Lτaτ ′ .

Co-observability

There are two control architectures for the decentralized
supervisory control [13]. The original control architecture
is called C&P (conjunctive and permissive). A local su-
pervisor Si is then represented as a mapping γC&P (Si, .) :
Pi(L(G)) → Γi, where Γi = {C ⊆ A : C ⊇ (A\Ac,i)}
is the set of local control patterns and γC&P (Si, s) rep-
resents the set of locally enabled events after Si has ob-
served string s ∈ A∗

o,i. The associated control law of the
local supervisor Si is

γC&P (Si, s) = (A \ Ac,i)∪

{a ∈ Ac,i : ∃s′ ∈ K2 ∩ P−1
i Pi(s) and s′a ∈ K2 }.

The control law of the conjunction of local supervisors
Si, i = 1, . . . , n is given by :

(
∧

i

γC&P Si)(w) = ∩n
i=1γC&P (Si, Pi(w)), w ∈ A∗.

According to [10] the necessary and sufficient condi-
tions for a given specification language K to be achieved
by a joint action of local supervisors are controllability,
Lm(G)−closedness, and co-observability. The definition
of co-observability from [10] can be extended from two to
n supervisors.

Definition 3.2. (Co-observability.) The language K ⊆
L = L(G) is called co-observable with respect to L and
Ao,i, i = 1, . . . , n if (∀s ∈ K2), (∀a ∈ Ac: sa ∈
L2) (∃i ∈ {1, . . . , n} : a ∈ Ac,i) such that the following
implication holds true:

(s′ ∈ K2 and Pi(s) = Pi(s
′) and s′a ∈ K2) ⇒ sa ∈ K2.

Note that the definition of co-observability has been orig-
inally formulated for two local supervisors in [10]. An
equivalent form of co-observability for two local supervi-
sors has been given in [11], which has been used to prove
that co-observability is decidable in a polynomial time.
Co-observability is needed for the existence of local su-
pervisors that jointly achieve a given language ([10]).

The control law of local supervisors associated to C&P
architecture is called permissive, since the default action
is to enable an event whenever a local supervisor has an
ambiguity what to do with this event. It should be clear
that with the permissive local policy we always achieve all
strings in the specification language K, i.e. K is always
contained in the language of the closed-loop system. The
only concern is safety, which is expressed by the following
definition of C&P co-observability [13], which states that
there always exists a local supervisor that is sure to disable
an event resulting in an illegal string.

Definition 3.3. (C&P co-observability.) K ⊆ L is said
to be C&P co-observable with respect to L and Ao,i, i =
1, . . . , n if for all s ∈ K2, a ∈ Ac such that sa ∈ L2 \K2

∃i ∈ {1, . . . , n} : a ∈ Ac,i and (P−1
i (Pi(s))a∩K2 = ∅.

It has been shown in [1] that C&P-co-observability co-
incides for two supervisors with the ’classical’ definition
of co-observability introduced in [10]. We will show that
the definition of co-observability above (definition 3.2) is
equivalent to C&P-co-observability and can thus be con-
sidered as an extension of the definition given in [10] to
an arbitrary number of local supervisors.

Lemma 3.2. Co-observability is equivalent to C&P co-
observability.

Proof. Co-observability can be captured by the following
condition:
(∀s ∈ K2), and (∀a ∈ Ac : sa ∈ L2 ) (∃i ∈ {1, . . . , n} :
a ∈ Ac,i) such that the following implication holds true:
(

s′ ∈ K2 and Pi(s) = Pi(s
′) and s′a ∈ K2

)

⇒ sa ∈ K2.

It can be written as:
(∀s ∈ K2), (∀a ∈ Ac such that sa ∈ L2) (∃i ∈
{1, . . . , n} : a ∈ Ac,i) such that the following impli-
cation holds true:

(s′ ∈ K2 and Pi(s) = Pi(s
′) and sa 6∈ K2) ⇒ s′a 6∈ K2,

which is equivalent to

(∀s ∈ K2), (∀a ∈ Ac such that sa ∈ L2 \ K2) (∃i ∈
{1, . . . , n} : a ∈ Ac,i)

∀s′ ∈ K2 with Pi(s) = Pi(s
′) we have s′a 6∈ K2.

This can be written in the following equivalent form: ∀s ∈
K2 ∀a ∈ Ac such that sa ∈ L2 \ K2

∃i ∈ {1, . . . , n} : a ∈ Ac,i and P−1
i (Pi(s))a ∩ K2 = ∅.

But this is the definition of C&P co-observability.



There is a natural counterpart of the C&P control archi-
tecture, called D&A (disjunctive and antipermissive). The
D&A control architecture is given by the following con-
trol law for local supervisors Si and s ∈ A∗

o,i

γD&A(Si, s) = Auc ∪ {a ∈ Ac,i : ∀s′ ∈ K2 with

Pi(s
′) = Pi(s) we have s′a ∈ L2 ⇒ s′a ∈ K2 }.

Note that ∀i ∈ Zn : γD&A(Si, s) ∩ (Ac \ Ac,i) = ∅. The
disjunction of local supervisors Si, i = 1, . . . , n is given
by :

(
∨

i

γD&A(Si, w)
)

= ∪n
i=1γD&A(Si, Pi(w)), w ∈ A∗.

The antipermissive control law of local supervisors (lo-
cal decision rule) means that the default action is to dis-
able an event whenever a local supervisor has an ambigu-
ity what to do with this event or if he can not control a
globally controllable event. The advantage of this archi-
tecture is that we are sure to synthesize a safe behavior.
The only concern is that we do not necessarily achieve
the whole language K, but in general only a sublanguage.
The corresponding condition that ensures together with
controllability and Lm(G)−closedness that language K
is achieved is called D&A co-observability [13].

Definition 3.4. (D&A co-observability.) K ⊆ L is said
to be D&A co-observable with respect to L and Ao,i, i =
1, . . . , n if for all s ∈ K2, a ∈ Ac such that sa ∈ K2

∃i ∈ Za
c such that P−1

i (Pi(s) ∩ K2)a ∩ L2 ⊆ K2.

4 Decentralized supervisory control and
coalgebra

We have presented in [4] a coalgebraic approach to the
supervisory control of DES with partial observations. It
is possible to formulate basic concepts of the decentral-
ized supervisory control using coalgebra. First observe
that the concept of observational indistinguishability re-
lation can be easily extended to the family of observation
indistinguishability relations associated to local observers.
For partial automaton S with initial state so we define for
i ∈ Zn:

Definition 4.1. (Observational indistinguishability rela-
tion on S.) A binary relation Auxi(S) on S is called an
observational indistinguishability relation if the following
three conditions hold:

(i) 〈s0, s0〉 ∈ Auxi(S)

(ii) If 〈s, t〉 ∈ Auxi(S) then : (s
ε
⇒i

s′ for some s′ ∈ S and t
ε
⇒i t′ for some t′ ∈ S ) ⇒

〈s′, t′〉 ∈ Auxi(S)

(iii) If 〈s, t〉 ∈ Auxi(S) then ∀a ∈ Ao,i : (s
a
→

sa and t
a
→ ta ) ⇒ 〈sa, ta)〉 ∈ Auxi(S).

Since we work with the final automaton of partial lan-
guages, and for K ⊆ L, it is not in general true that 〈K〉 is
a subautomaton of 〈L〉, the following concept is needed.

Definition 4.2. A binary relation Auxi(K, L) ⊆ (DK ×
DL)2, i ∈ {1, . . . , n} is called an observational indis-
tinguishability relation with respect to Pi if the following
three conditions hold :

(i) 〈(K, L), (K, L)〉 ∈ Auxi(K, L)

(ii) If 〈(M, N), (Q, R)〉 ∈ Auxi(K, L) then :
[ (M, N)

ε
⇒i (M ′, N ′) for some (M ′, N ′) ∈

DK × DL and (Q, R)
ε
⇒i (Q′, R′) for some

(Q′, R′) ∈ DK × DL)] ⇒
〈(M ′, N ′), (Q′, R′)〉 ∈ Auxi(K, L)

(iii) If 〈(M, N), (Q, R)〉 ∈ Auxi(K, L) then
∀a ∈ Ao,i : [(M, N)

a
→ (Ma, Na) and

(Q, R)
a
→ (Qa, Ra))] ⇒ 〈(Ma, Na), (Qa, Ra)〉 ∈

Auxi(K, L).

For 〈(M, N), (Q, R)〉 ∈ DK × DL we write
(M, N) ≈K,L

Aux(i) (Q, R) whenever
〈(M, N), (Q, R)〉 ∈ Auxi(K, L). Similarly as for the
centralized Aux(K) we have:

Lemma 4.1. For given partial languages K, L:
〈(M, N), (Q, R)〉 ∈ Auxi(K, L) iff there exist two
strings s, s′ ∈ K2 such that Pi(s) = Pi(s

′) and
M = Ks, N = Ls, Q = Ks′ , and R = Ls′ .

Now the C&P co-observability can be formulated within
the coalgebraic framework.

Definition 4.3. (C&P Co-observability relation.) Given
two (partial) languages K and L, a binary relation
CO(K, L) ⊆ DK×DL is called a C&P co-observability
relation if for any 〈M, N〉 ∈ CO(K, L) the following
items hold:

(i) ∀a ∈ A : M
a
→ ⇒ N

a
→ and 〈Ma, Na〉 ∈

CO(K, L)

(ii) ∀a ∈ Ac : N
a
→ ⇒

[

(∃i ∈ {1, . . . , n} :
a ∈ Ac,i) such that (M ′ ∈ DK, N ′ ∈

DL : (M ′, N ′) ≈K,L

Aux(i) (M, N) and M ′ a
→) ⇒

M
a
→

]

.

For M ∈ DK and N ∈ DL we write M ≈CO(K,L) N
whenever there exists a C&P co-observability relation
CO(K, L) on DK×DL such that 〈M, N〉 ∈ CO(K, L).
In order to check whether for a given pair of (partial) lan-
guages (K and L), K is C&P co-observable with respect



to L and Ao,i, i = 1, . . . , n, it is sufficient to establish
a C&P co-observability relation O(K, L) on DK × DL
such that 〈K, L〉 ∈ O(K, L). Indeed, we have:

Theorem 4.2. A (partial) language K is C&P co-
observable with respect to L (where K ⊆ L) and Ao,i, i =
1, . . . , n iff K ≈CO(K,L) L.

Proof. (⇒) Let K be C&P co-observable with respect to
L. Denote

CO(K, L) = {〈Ku, Lu〉 ∈ DK × DL | u ∈ K2 }.

Let us show that CO(K, L) is a C&P co-observability re-
lation.
Let 〈M, N〉 ∈ CO(K, L). We can assume that M = Ks

and N = Ls for s ∈ K2. We must show that conditions
(i) and (ii) are safisfied.
(i) Let M

a
→ for a ∈ A. Notice that K ⊆ L implies that

for any u ∈ K2, Ku ⊆ Lu. In particular N
a
→, because

M = Ks ⊆ Ls = N and it follows from the definition of
CO(K, L) that 〈Ma, Na〉 ∈ CO(K, L).
(ii) Let N

a
→ for a ∈ Ac. Then we have sa ∈ L2 and

recall that s ∈ K2. Then by C&P co-observability of K
with respect to L there exists i ∈ Za

c such that whenever
there is a string s′a ∈ K2 with Pi(s

′) = Pi(s), then also
sa ∈ K2. Using Lemma 4.1 this means that there exists
i ∈ Za

c such that whenever (M ′, N ′) ≈K,L

Aux(i) (M, N) :

M ′ a
→, then M

a
→. Indeed this means that there exist

s′, s′′ ∈ A∗: M ′ = Ks′ , N ′ = Ls′ , M = Ks′′ = Ks,
N = Ls′′ = Ls, and Pi(s

′′) = Pi(s
′). Note that it can be

that s = s””. We have s′′ ∈ K2 and s′′a ∈ L2. By ap-
plying the co-observability of K, where s′′ plays the role
of s, it follows that s′′a ∈ K, i.e. Ks′′ = M

a
→. Hence

CO(K, L) is a C&P co-observability relation.

(⇐) Let K ≈CO(K,L) L. Let us show that K is C&P co-
observable with respect to L. For this purpose, let s ∈ K2

and a ∈ Ac such that sa ∈ L2. Then s ∈ K2 ∩ L2,
i.e. L

s
→ and K

s
→, whence from (i) of definition 4.3

inductively applied Ks ≈CO(K,L) Ls. Now, sa ∈ L2

means that Ls
a
→, hence by definition of 4.3 there exists

i ∈ Za
c such that whenever (M ′, N ′) ≈K,L

Aux(i) (Ks, Ls) :

M ′ a
→, then Ks

a
→. According to Lemma 4.1 we have for

Pi(s
′) = Pi(s) that (Ks′ , Ls′) ≈K,L

Aux(i) (Ks, Ls). Also

notice that s′a ∈ K2 is equivalent to Ks′

a
→. But this

means that there exists i ∈ Za
c such that whenever there

is a string s′a ∈ K2 with Pi(s
′) = Pi(s), then also sa ∈

K2, i.e. K is C&P co-observable with respect to L and
Ao,i, i = 1, . . . , n.

D&A co-observability can be characterized by relations as
well. We define

Definition 4.4. (D&A co-observability relation.) Given
two (partial) languages K and L, a binary relation

DC(K, L) ⊆ DK × DL is called a D&A co-
observability relation if for any 〈M, N〉 ∈ DC(K, L) the
following items hold:

(i) ∀a ∈ A : M
a
→ ⇒ N

a
→ and 〈Ma, Na〉 ∈

DC(K, L)

(ii) ∀a ∈ Ac : M
a
→ ⇒ {∃i ∈ Za

c such that (M ′ ∈

DK, N ′ ∈ DL: (M ′, N ′) ≈K,L

Aux(i) (M, N)

and N ′ a
→) ⇒ M ′ a

→}.

D&A co-observability relation corresponds to D&A
co-observability in the sense of definition 3.5.

Theorem 4.3. A (partial) language K is D&A co-
observable with respect to L (where K ⊆ L) and Ao,i, i =
1, . . . , n iff there exists a D&A co-observability relation
D(K, L) ⊆ DK × DL such that 〈K, L〉 ∈ D(K, L).

Proof. Similar to that of the preceding theorem, namely it
relies on Lemma 4.1.

The definition of supervised product for DES with partial
observations [5] extends to the decentralized control in the
case of C&P control architecture. Local Auxi(K, L) are
involved therein. The corresponding co-observability and
controllability theorem can then be easily formulated in
the coalgebraic framework.

In the sequel we need also another type of auxiliary re-
lation Auxi(S) for the special case S = 〈K〉. We will
write Auxi(K) instead of Auxi(〈K〉). Now we are pre-
pared to give the coinductive definition of the C&P super-
vised product. However, the coinductive definition con-
siders arguments from Pwr(suffix(K)) rather than from
DK. In fact we will work with unions of the form
∪j∈Za

c
∪

Mj

m=1Ksj,m
∈ Pwr(suffix(K)) that will be associ-

ated to Ls ∈ DL where Pj(sj,m) = Pj(s) for all j ∈ Za
c

and m = 1, . . . , Mj . In order to keep the notation simple,
we will use an extension of Auxi(K) to such unions of
derivatives and denote the extended relation in the same
way. A natural extension of Lemma 4.1 holds. First we
give a definition of local supervised products denoted by
K/iL.

Definition 4.5. (Local supervised products.) Define first
for all M ∈ Pwr(suffix(K)) and N ∈ DL:

(M/iN)a =

(1) Ma/iNa if M
a
→ and N

a
→;

(2) (∪{M ′:M ′≈K
Aux(i)

M}M
′
a)/iNa if M 6

a
→ and ∃(M ′ ∈

DK : M ′ ≈K
Aux(i) M such that M ′ a

→

and N
a
→ and a ∈ Ac,i ∪ Ao,i;



(3) 0/iNa if M 6
a
→ and ∀M ′ ∈ DK : M ′ ≈K

Aux(i)
M :
M ′ 6

a
→ and N

a
→ and a ∈ (A \ Ac,i) ∩ Ao,i;

(4) M/iNa if M 6
a
→ and N

a
→ and a ∈ (A \ Ac,i) ∩

(A \ Ao,i);

(5) ∅ otherwise

and (M/iN) ↓ iff N ↓.

Now we define C&P decentralized supervised product:
K/C&P

Dec L = ∩i∈Zn
(K/iL).

Decentralized version of partial bisimulation corresponds
to the necessary and sufficient conditions for a given lan-
guage to be achieved by the joint action of local supervi-
sors using the C&P control architecture.

Definition 4.6. (C&P partial bisimulation.) A binary re-
lation R(K, L) ⊆ DK × DL is called a C&P partial
bisimulation if for all 〈M, N〉 ∈ R(K, L):

(i) o(M) = o(N) (M ↓ iff N ↓)

(ii) ∀a ∈ A : M
a
→ ⇒ N

a
→ and 〈Ma, Na〉 ∈

R(K, L)

(iii) ∀u ∈ Auc : N
u
→ ⇒ M

u
→

(iv) ∀a ∈ Ac : N
a
→ ⇒

[

(∃i ∈ Za
c ) such that

(M ′ ∈ DK, N ′ ∈ DL : (M ′, N ′) ≈K,L

Aux(i)

(M, N) and M ′ a
→) ⇒ M

a
→

]

.

Denote K ≈C&P L if there exists a C&P partial bisimu-
lation R such that 〈K, L〉 ∈ R:

Theorem 4.4. K = K/C&P
Dec L iff K ≈C&P L iff (i) K is

L1-closed (K1 = K2 ∩L1), (ii) controllable with respect
to L and Auc, and (iii) C&P co-observable with respect
to L and Ao,i, i = 1, . . . , n.

We have shown in [3] a difficulty while trying to define
an antipermissive (centralized) supervised product. The
same difficulty appears in the decentralized D&A control
architecture. Note however that using a suitable automa-
ton representation closed-loop languages under D&A de-
centralized control architecture can be computed.

5. Conclusion

Decentralized supervisory control of DES has been treated
by coalgebraic techniques. Both types of co-observability
known from the literature have been characterized by ap-
propriate relations in this framework. Another approach,
based on the finality of the automaton of partial languages,
consists in using coinductive definitions for describing
closed-loop language under C&P control architecture. It

gives at the same time algorithms for the computation of
closed-loop languages. It has been shown in [12] that un-
like the exact matching problem, the inclusion problem of
the decentralized control is undecidable. Therefore it is of
interest to look for special subproblems that are decidable.
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