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Abstract

This paper presents the optimal regulator for a linear system
with time delay in control input and a quadratic criterion. The
optimal regulator equations are obtained using the duality prin-
ciple, which is applied to the optimal filter for linear systems
with time delay in observations. Performance of the obtained
optimal regulator is verified in the illustrative example against
the best linear regulator available for linear systems without
delays. Simulation graphs and comparison tables demonstrat-
ing better performance of the obtained optimal regulator are
included.

1 Introduction

Although the optimal control (regulator) problem for linear
system states was solved, as well as the filtering one, in 1960s
[15, 11], the optimal control problem for linear systems with
delays is still open, depending on the delay type, specific sys-
tem equations, criterion, etc. Such complete reference books in
the area as [12, 13, 17, 7, 5] discussing the maximum princi-
ple [14] or the dynamic programming method [18] for systems
with delays, note that finding a particular explicit form of the
optimal control function might still remain difficult. A partic-
ular from of the criterion must be also taken into account: the
studies mostly focused on the time-optimal criterion (see the
paper [19] for linear systems) or the quadratic one [9, 6, 21].
Virtually all studies of the optimal control in time-delay sys-
tems are related to systems with delays in the state (see, for
example, [1]), although the case of delays in control input is no
less challenging, if the control function should be causal, i.e.,
does not depend on the future values of the state. An immense
bibliography existing for the robust control problem for time
delay systems (such as [8, 16]) is not discussed here.

This paper concentrates on the solution of the optimal control
problem for a linear system with delay in control input and a
quadratic criterion, which is based on the duality principle in
a closed-form situation [3] applied to the optimal filter for lin-
ear systems with delay in observations, obtained in [2]. Taking

into account that the optimal control problem can be solved
in the linear case applying the duality principle to the solution
of the optimal filtering problem [15], this paper exploits the
same idea for designing the optimal control in a linear system
with time delay in control input, using the optimal filter for
linear systems with delay in observations. In doing so, the op-
timal regulator gain matrix is constructed as dual transpose to
the optimal filter gain one and the optimal regulator gain equa-
tion is obtained as dual to the variance equation in the optimal
filter. The results obtained by virtue of the duality principle
could be rigorously verified through the general equations of
the maximum principle [20, 14] or the dynamic programming
method [4, 18] applied to a specific time-delay case, although
the physical duality seems obvious: if the optimal filter exists
in a closed form, the optimal closed-form regulator should also
exist, and vice versa [3]. It should be noted, however, that ap-
plication of the maximum principle to the present case gives
one only a system of state and co-state equations and does not
provide the explicit form of the co-state vector. So, the duality
principle approach actually provides one with the explicit form
of the optimal control and co-state vector, which would be then
substituted into the equations given by the rigorous optimality
tools and thereby verified.

Finally, performance of the obtained optimal control for a lin-
ear system with time delay in control input and a quadratic cri-
terion is verified in the illustrative example against the best lin-
ear regulator available for linear systems without delays. The
simulation results show small but definite advantage of the ob-
tained optimal regulator in both the criterion value and the
value of the controlled variable.

It should be noted that the paper considers the case of one fixed
delay in control input, however, the delay value can also be
variable: neither the resulting equations nor the derivation tech-
nique would be changed. Moreover, it is clear how to obtain the
optimal regulator for a linear system with various delay values
in control inputs, including a control input without delay, using
the duality principle approach. The results should be formal-
ized and revealed soon.

The paper is organized as follows. Section 2 states the optimal
control problem for a linear system with time delay in control
input and describes the duality principle for a closed-form sit-
uation [3]. For reference purposes, the optimal filtering equa-



tions for a linear state and linear observations with delay [2]
are briefly reminded in Section 3. The optimal control problem
for a linear system with time delay in control input is solved
in Section 4, based on application of the duality principle to
the optimal filter of the preceding section. Section 5 presents
an example illustrating the quality of control provided by the
obtained optimal regulator for linear systems with time delay
in control input against the best linear regulator available for
systems without delays. Simulation graphs and comparison ta-
bles demonstrating better performance of the obtained optimal
regulator are included.

2 Optimal control problem for linear system
with time delay in control input

Consider a linear system with time delay in control input

dx(t) = (a0(t)+a1(t)x(t))dt +B(t)u(t −h)dt, (1)

with the initial conditionx(s) = φ(s), s ∈ [−h,0], wherex(t) ∈
Rn is the system state,u(t) ∈ Rm is the control variable, and
φ(s) is a piecewise continuous function given in the interval
[−h,0]. Existence of the unique solution of the equation (1)
is thus assured by the Caratheodori theorem (see, for example,
[10]). The quadratic cost function to be minimized is defined
as follows:

J =
1
2
[x(T )]T ψ[x(T )]+

1
2

∫ T

t0

uT (s)R(s)u(s)ds+
1
2

∫ T

t0

xT (s)L(s)x(s)ds, (2)

whereψ, R, L are positive (nonnegative) definite symmetric
matrices, andT > t0 is a certain time moment.

The optimal control problem is to find the controlu(t), t ∈
[t0,T ], that minimizes the criterionJ along with the trajectory
x∗(t), t ∈ [t0,T ], generated upon substitutingu∗(t) into the state
equation (1). To find the solution to this optimal control prob-
lem, the duality principle [15] could be used. For linear sys-
tems without delay, if the optimal control exists in the opti-
mal control problem for a linear system with the quadratic cost
function J, the optimal filter exists for the dual linear system
with Gaussian disturbances and can be found from the optimal
control problem solution, using simple algebraic transforma-
tions (duality between the gain matrices and between the gain
matrix and variance equations), and vice versa. Taking into
account the physical duality of the filtering and control prob-
lems, the last conjecture should be valid for all cases where
the optimal control (or, vice versa, the optimal filter) exists in
a closed finite-dimensional form [3]. This proposition is now
applied to the optimal filtering problem for linear system states
over observations with delay, which is dual to the stated opti-
mal control problem (1),(2), and where the optimal filter has
already been obtained (see [2]).

3 Optimal filter for linear state equation and
linear observations with delay

In this section, the optimal filtering equations for a linear state
equation over linear observations with delay (obtained in [2])
are briefly reminded for reference purposes. Let the unobserv-
able random processx(t) be described by an ordinary differen-
tial equation for the dynamic system state

dx(t) = (a0(t)+a(t)x(t))dt +b(t)dW1(t), x(t0) = x0, (3)

and a delay-differential equation be given for the observation
process:

dy(t) = (A0(t)+A(t)x(t −h))dt +F(t)dW2(t), (4)

wherex(t) ∈ Rn is the state vector,y(t) ∈ Rm is the observation
process, the initial conditionx0 ∈ Rn is a Gaussian vector such
thatx0, W1(t), W2(t) are independent. The observation process
y(t) depends on the delayed statex(t−h), whereh is a fixed de-
lay shift, which assumes that collection of information on the
system state for the observation purposes is possible only after
a certain timeh. The vector-valued functiona0(s) describes
the effect of system inputs (controls and disturbances). It is
assumed thatA(t) is a nonzero matrix andF(t)FT (t) is a posi-
tive definite matrix. All coefficients in (3)–(4) are deterministic
functions of appropriate dimensions.

The estimation problem is to find the estimate of the system
statex(t) based on the observation processY (t) = {y(s),0 ≤
s ≤ t}, which minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t))]

at each time momentt. In other words, our objective is to find
the conditional expectation

m(t) = x̂(t) = E(x(t) | FY
t ).

As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimate variance.

The solution to the stated problem is given by the following
system of filtering equations, which is closed with respect to
the introduced variables,m(t) andP(t):

dm(t) = (a0(t)+a(t)m(t))dt+ (5)

P(t)exp(−
∫ t

t−h
aT (s)ds)AT (t)×

(
F(t)FT (t)

)−1(dy(t)− (A0(t)+A(t)m(t −h))dt).

dP(t) = (P(t)aT (t)+a(t)P(t)+b(t)bT (t)− (6)

P(t)exp(−
∫ t

t−h
aT (s)ds)AT (t)

(
F(t)FT (t)

)−1×

A(t)exp(−
∫ t

t−h
a(s)ds)P(t))dt



The system of filtering equations (4) and (5) should be com-
plemented with the initial conditionsm(t0) = E[x(t0) | FY

t0
] and

P(t0) = E[(x(t0)−m(t0)(x(t0)−m(t0)
T | FY

t0
]. As noted, this

system is very similar to the conventional Kalman-Bucy filter,
except the adjustments for delays in the estimate and variance
equations, calculated due to the formula Cauchy for the linear
state equation.

In the case of a constant matrixa in the state equation, the opti-
mal filter takes the especially simple form (exp(−∫ t

t−h aT ds) =
exp(−aT h))

dm(t) = (a0(t)+am(t))dt +P(t)exp(−aT h)AT (t)× (7)
(
F(t)FT (t)

)−1(dy(t)− (A0(t)+A(t)m(t −h))dt),

dP(t) = (P(t)aT +aP(t)+b(t)bT (t)− (8)

P(t)exp(−aT h)AT (t)
(
F(t)FT (t)

)−1
A(t)exp(−ah)P(t))dt.

Thus, the equation (5) (or (7)) for the optimal estimatem(t) and
the equation (6) (or (8)) for its covariance matrixP(t) form a
closed system of filtering equations in the case of a linear state
equation and linear observations with delay.

4 Optimal control problem solution

Let us return to the optimal control problem for the linear state
(1) with time delay in linear control input and the cost function
(2). This problem is dual to the filtering problem for the lin-
ear state (3) and linear observations with delay (4). Since the
optimal filter gain matrix in (4) is equal to

Kf = P(t)exp(−
∫ t

t−h
aT (s)ds)AT (t)(F(t)FT (t))−1,

the gain matrix in the optimal control problem takes the form
of its dual transpose

Kc = (R(t))−1BT (t)exp(
∫ t

t−h
a(s)ds)Q(t),

and the optimal control law is given by

u∗(t) = Kcx = (R(t))−1BT (t)exp(
∫ t

t−h
a(s)ds)Q(t)x(t), (9)

where the matrix functionQ(t) is the solution of the following
equation dual to the variance equation (6)

dQ(t) = (−aT (t)Q(t)−Q(t)a(t)+L(t)−

Q(t)exp(
∫ t

t−h
aT (s)ds)B(t)R−1(t)×

BT (t)exp(
∫ t

t−h
a(s)ds)Q(t))dt, (10)

with the terminal conditionQ(T ) = ψ.

Upon substituting the optimal control (9) into the state equation
(1), the optimally controlled state equation is obtained

dx(t) = (a0(t)+a(t)x(t)+B(t)(R(t))−1BT (t)×

exp(
∫ t

t−h
a(s)ds)Q(t)x(t)dt, x(t0) = x0,

Note that if the real state vectorx(t) is unknown (unobserv-
able), the optimal controller uniting the obtained optimal filter
and regulator equations, can be constructed using the separa-
tion principle [15] for time delay systems, which should also
be valid if solutions of the optimal filtering and control prob-
lems exist in a closed finite-dimensional form.

The results obtained in this section by virtue of the duality prin-
ciple could be rigorously verified through the general equations
of the Pontryagin maximum principle [20, 14] or Bellman dy-
namic programming [4, 18]. It should be noted, however, that
application of the maximum principle to the present case gives
one only a system of state and co-state equations and does not
provide the explicit form of the co-state vector. So, the duality
principle approach actually provides one with the explicit form
of the optimal control and co-state vector, which would be then
substituted into the equations given by the rigorous optimality
tools and thereby verified.

5 Example

This section presents an example of designing the regulator for
a system (1) with a criterion (2), using the scheme (9)–(10), and
comparing it to the regulator where the matrixQ is selected as
in the optimal linear regulator for a system without delays.

Let us start with a scalar linear system

ẋ(t) = x(t)+u(t −0.1), (11)

with the initial conditionsx(s) = 0 for s ∈ [−0.1,0) andx(0) =
1. The control problem is to find the controlu(t), t ∈ [0,T ],
T = 0.25, that minimizes the criterion

J =
1
2
[x(T )− x∗]2 +

1
2

∫ T

0
u2(t)dt, (12)

whereT = 0.25, andx∗ = 10 is a large value ofx(t) a priori
unreachable for timeT . In other words, the control problem is
to maximize the statex(t) using the minimum energy of control
u.

Let us first construct the regulator where the control law and
the matrixQ(T ) are calculated in the same manner as for the
optimal linear regulator for a linear system without delays in
control input, that isu(t) = (R(t))−1BT (t)Q(t)x(t) (see [15] for
reference). SinceB(t) = 1 in (11) andR(t) = 1 in (12), the
control law is actually equal to

u(t) = Q(t)x(t), (13)

whereQ(t) satisfies the Riccati equation

Q̇(t) = (−aT (t)Q(t)−Q(t)a(t)+L(t)−
Q(t)B(t)R−1(t)BT (t)Q(t)),

with the terminal conditionQ(T ) = ψ. Sincea(t) = 1,B(t) = 1
in (11), andL = 0 andψ = 1 in (12), the last equation turns to

Q̇(t) = −2Q(t)− (Q(t))2, Q(0.25) = 1. (14)



Upon substituting the control (13) into (11), the controlled sys-
tem takes the form

ẋ(t) = x(t)+Q(t)x(t −0.1). (15)

The results of applying the regulator (13),(14) to the system
(11) are shown in Fig. 1, which presents the graphs of the
controlled state (15)x(t) in the interval[0,T ], the shifted ahead
by 0.1 criterion (12)J(t−0.1) in the interval[0.1,T +0.1], and
the shifted ahead by 0.1 control (13)u(t −0.1) in the interval
[0,T ]. The values of the state (15) and the criterion (12) at the
final momentT = 0.25 arex(0.25) = 1.5097 andJ(0.25) =
72.5174.

Let us now apply the regulator (9)–(10) for linear systems with
time delay in control input to the system (11). Sincea(t) =
1 and h = 0.1 in (11) and, therefore, exp(

∫ t
t−h aT (s)ds) =

exp(0.1), the control law takes the form

u∗(t) = exp(0.1)Q(t)x(t), (16)

whereQ(t) satisfies the Riccati equation

Q̇(t) = −2Q(t)− (exp(0.1)Q(t))2, Q(0.25) = 1. (17)

Upon substituting the control (16) into (11), the controlled sys-
tem takes the form

ẋ(t) = x(t)+exp(0.1)Q(t)x(t −0.1). (18)

The results of applying the regulator (16),(17) to the system
(11) are shown in Fig. 2, which presents the graphs of the con-
trolled state (18)x(t) in the interval[0,T ], the shifted ahead
by 0.1 criterion (12)J(t − 0.1) in the interval[0.1,T + 0.1],
and the shifted ahead by 0.1 control (16)u∗(t − 0.1) in the
interval [0,T ]. The values of the state (18) and the criterion
(12) at the final momentT = 0.25 arex(0.25) = 1.5394 and
J(0.25) = 72.1265. There is a certain improvement in the val-
ues of the controlled state to be maximized and the criterion
to be minimized, in comparison to the preceding case, due to
the optimality of the regulator (16),(17) for linear systems with
time delay in control input.

6 Appendix

Proof of the optimal control problem solution. Define the
Hamiltonian function [20, 14] for the optimal control problem
(1),(2) as

H(x,u,q, t) =
1
2
(uT R(t)u+ xT L(t)x)+

qT [a0(t)+a1(t)x+B(t)u1(u)], (19)

whereu1(u) = u(t −h). Applying the maximum principle con-
dition ∂H/∂u = 0 to this specific Hamiltonian function (19)
yields

∂H/∂u = 0⇒ R(t)u(t)+(∂u1(t)/∂u)T BT (t)q(t) = 0.

Upon denoting(∂u1(t)/∂u) = M(t), the optimal control law is
obtained as

u∗(t) = −R−1(t)MT (t)BT (t)q(t).

Taking linearity and causality of the problem into account, let
us seekq(t) as a linear function inx(t)

q(t) = −Q(t)x(t), (20)

whereQ(t) is a square symmetric matrix of dimensionn. This
yields the complete form of the optimal control

u∗(t) = R−1(t)MT (t)BT (t)Q(t)x(t). (21)

Note that the transversality condition [20, 14] forq(T ) implies
thatq(T ) =−∂J/∂x(T ) =−ψx(T ) and, therefore,Q(T ) = ψ.

Using the co-state equationdq(t)/dt = −∂H/∂x, which gives

−dq(t)/dt = L(t)x(t)+aT
1 (t)q(t), (22)

and substituting (20) into (22), we obtain

Q̇(t)x(t)+Q(t)d(x(t))/dt = L(t)x(t)−aT
1 (t)Q(t)x(t). (23)

Substituting the expression for ˙x(t) from the state equation (1)
into (23) yields

Q̇(t)x(t)+Q(t)a1(t)x(t)+Q(t)B(t)u(t −h) =

L(t)x(t)−aT
1 (t)Q(t)x(t). (24)

In view of linearity of the problem, differentiating the
last expression inx does not imply loss of generality.
Upon taking into account that(∂u(t − h)/∂x(t)) = (∂u(t −
h)/∂u(t))(∂u(t)/∂x(t)) = M(t)R−1(t)MT (t)BT (t)Q(t) and
differentiating the equation (24) inx, it is transformed into the
Riccati equation

Q̇(t) = L(t)−Q(t)a1(t)−aT
1 (t)Q(t)−

Q(t)B(t)M(t)R−1(t)MT (t)BT (t)Q(t). (25)

Let us find the value of matrixM(t) for this problem. First
of all, let us note [20, 14] that the Hamiltonian function
H(x∗,u∗,q∗, t) is constant int for the optimal control (21)u∗(t),
the corresponding optimal state (1)x∗(t) and co-stateq∗(t) sat-
isfying (20), andQ(t) satisfying the equation (25), and equal
to

H(x∗,u∗,q∗, t) =
1
2
(u∗T R(t)u∗+

x∗T L(t)x∗)+d(x∗T Q(t)x∗)/dt = C = const. (26)

Integrating the last equality fromt −h to t yields

∫ t

t−h
[u∗T (s)R(s)u∗(s)+ x∗T (s)L(s)x∗(s)]ds



+x∗T (t)Q(t)x∗(t)− x∗T (t −h)Q(t −h)x∗(t −h) = 2Ch.

Differentiating the obtained formula respect tox∗(t) andu∗(t)
and taking into account the optimal control expressions for
u∗(t) andu∗(t −h) given by (21), we obtain

R−1(t)MT (t)BT (t) = (MT (t))−1R−1(t −h)×

MT (t −h)BT (t −h)exp(
∫ t

t−h
aT (s)ds), (27)

also using that

∂x(t)/∂x(t −h) = exp(
∫ t

t−h
a(s)ds).

The last formula follows from the Cauchy formula for the so-
lution of the linear state equation (1)

x(t) = Φ(t, t −h)x(t −h)+
∫ t

t−h
Φ(t,τ )a0(τ )dτ+

∫ t

t−h
Φ(t,τ )B(τ )u(τ −h)dτ ,

whereΦ(t,τ ) is the matrix of fundamental solutions of the ho-
mogeneous equation (1), that is solution of the matrix equation

dΦ(t,τ )
dt

= a(t)Φ(t,τ ), Φ(t, t) = I,

whereI is the identity matrix. In other words,Φ(t, t − h) =
exp

∫ t
t−h a(s)ds.

Furthermore, it can be noted, differentiating twice the
formula (26) with respect tox∗(t), that the expression
R−1(t)MT (t)BT (t)) does actually not depend onB(t) or R−1(t)
as functions of timet. Thus, the value of the matrixM(t) for
this problem can be determined from (27) assuming that time
t − h is equal tot in the matrix functionR−1(t − h)MT (t −
h)BT (t − h)). Finally, the formula (27) admits the following
equality for calculatingM(t)

MT (t)BT (t) = BT (t)exp(
∫ t

t−h
aT (s)ds). (28)

Substituting the formula (28) into (21) and (25) yields the de-
sired formulas (9) and (10) for the optimal control lawu∗(t)
and the matrix functionQ(t). The optimal control problem so-
lution is proved.
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Figure 1: Best linear regulator available for linear systems
without delays. Graphs of the controlled state (15)x(t) in
the interval[0,0.25], the shifted ahead by 0.1 criterion (12)
J(t − 0.1) in the interval[0.1,0.35], and the shifted ahead by
0.1 control (13)u(t −0.1) in the interval[0,0.25].
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Figure 2: Optimal regulator obtained for linear systems with
time delay in control input. Graphs of the controlled state (18)
x(t) in the interval[0,0.25], the shifted ahead by 0.1 criterion
(12) J(t −0.1) in the interval[0.1,0.35], and the shifted ahead
by 0.1 control (16)u∗(t −0.1) in the interval[0,0.25].
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