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Abstract

We develop a procedure for computing viable (also known
as controlled invariant) polytopes of a given subset of the
state space under linear dynamics. The advantage of the
proposed algorithm is that at every step it maintains a
polytope that is itself viable. Therefore, even if the algo-
rithm is stopped before termination it will still return a
viable polytope, that can be subsequently used for con-
troller design.

1 Introduction

The problems of reachability, invariance and viability
(controlled invariance) have been extensively studied in
the literature for over three decades. Most recently these
problems have attracted renewed attention, partly be-
cause improvements in computational capabilities have
made it possible to implement the algorithms for systems
of practical interest. Another reason for the renewed in-
terest in these problems is the emergence of new classes
of practically important systems, such as hybrid systems.
These are systems whose states inputs and outputs in-
clude both continuous (i.e. real-valued) and discrete (i.e.
finite-valued) components. In recent years, invariance and
reachability problems for classes of hybrid systems have
been studied by a number of authors [7, 10, 6, 9, 15].
When faced with a set that is not viable/invariant, one
would like to establish a subset of this set that is vi-
able/invariant (ideally the maximal subset). Most of the
algorithms that have been proposed for computing viable
and invariant subsets rely on dynamic programming. The

algorithms typically start with the whole of the given set
and trim away parts that cause viability/invariance prob-
lems. If the algorithm terminates the resulting set will
typically be the maximal viable/invariant subset of the
given set.
One drawback of the dynamic programming approach
is that the set maintained by the algorithm is not vi-
able/invariant until the algorithm terminates. This means
that if we are forced to stop the computation before termi-
nation (due to timing constraints, or because the problem
is undecidable and the algorithm would never terminate)
the set produced by the algorithm is practically useless for
controller design.
In this paper we develop an algorithm for computing con-
servative approximations for viable sets. The main advan-
tage of the proposed approach is that the set maintained
by the algorithm is always viable. Therefore, if the al-
gorithm is stopped before termination it can be used for
the design of a safe (albeit conservative) controller. We
restrict our attention to the computation of viable poly-
topic subsets of a given polytope under linear dynamics.
This class of problems has been studied by a number of au-
thors [4, 5, 8, 11, 14]. Even though sufficient conditions for
viability and invariance can be found in these references,
the construction of viable polytopes is not considered.

2 Viable sets and viability kernels

2.1 Background definitions

We start with a brief overview of some standard definitions
from viability theory and non-smooth analysis; for a more
thorough treatment the reader is referred to [1, 3, 2, 12,
13].
For an arbitrary set K, 2K denotes the power set of K, i.e.
the set of all subsets of K. For a subset of Euclidean space
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W ⊆ Rn, we denote by co(W ) the convex hull of W , and
by cone(W ) the cone generated by W , i.e. cone(W ) =
{λw | w ∈W,λ ≥ 0}.
Consider a differential inclusion of the form

ẋ ∈ F (x)

where F : Rn → 2R
n

. A solution to the differential in-
clusion over an interval [0, T ] starting at x0 ∈ X is an
absolutely continuous function x : [0, T ] → X, such that
x(0) = x0 and almost everywhere ẋ(t) ∈ F (x(t)).

Definition 1 (Viable Set) A solution x(·) : [0, T ] →
R
n of the differential inclusion ẋ ∈ F (x) is called viable

in a set K ⊆ Rn, if x(t) ∈ K for all t ∈ [0, T ]. A set
K ⊆ Rn is called locally viable under a differential inclu-
sion ẋ ∈ F (x) if for all x0 ∈ Rn there exists T > 0 and
a solution x(·) : [0, T ] → R

n of the differential inclusion
with x(0) = x0 that is viable in K. K is called viable if
we can take T =∞ in the above.

For a closed subset, K ⊆ R
n, and a point x ∈ K, we

use TK(x) to denote the contingent cone to K at x, i.e.
the set of v ∈ Rn such that there exists a sequence of
real numbers hn > 0 converging to 0 and a sequence of
vn ∈ Rn converging to v satisfying

∀ n ≥ 0, x+ hnvn ∈ K.

Notice that the set TK(x) is a cone; if y ∈ TK(x), then
ty ∈ TK(x) for all t ≥ 0. Moreover, if x is in the interior
of K, TK(x) = R

n. Finally, if K1 ⊆ K2 then TK1(x) ⊆
TK2(x) for all x ∈ K1.
We say that F : Rn → 2R

n

is Marchaud if and only if

1. the graph and the domain of F are nonempty and
closed;

2. for all x ∈ X, F (x) is convex, compact and nonempty;

3. the growth of F is linear, that is there exists c > 0
such that for all x ∈ X

sup{|v| | v ∈ F (x)} ≤ c(|x|+ 1).

The following characterization of viable sets can be found
in [1].

Theorem 1 Assume F is Marchaud. A closed set K ⊆
R
n is viable under the differential inclusion ẋ ∈ F (x) if

and only if for all x ∈ K, TK(x) ∩ F (x) 6= ∅.

Definition 2 (Viability Kernel) The viability kernel,
ViabF (K) of a set K ⊆ Rn under a differential inclusion
ẋ ∈ F (x) is the set of states x0 ∈ K for which there exists
an infinite solution x(·) : [0,∞) → R

n of the differential
inclusion with x(0) = x0 that is viable in K.

The following characterization of the viability kernel can
be found in [1].

Theorem 2 Assume F is Marchaud and K is closed.
ViabF (K) is the largest closed subset of K (possibly the
empty set) that satisfies the conditions of Theorem 1.

Finally, the following result can be found in [2].

Theorem 3 If F is Marchaud and W is a non-empty,
compact, convex set which is viable under the differential
inclusion ẋ ∈ F (x), then there exists x ∈ W such that
0 ∈ F (x).

2.2 Linear systems

Let us now restrict our attention to the case where the
dynamics are linear

ẋ = Ax+Bu, x ∈ K,u ∈ U. (1)

We assume that K ⊆ R
n and U ⊆ R

m are closed and
convex and that u(·) is measurable as a function of time.
We define F : Rn → 2R

n

by

F (x) = {v ∈ Rn | ∃u ∈ U, v = Ax+Bu}.

It is easy to see that F (·) is Marchaud.

Proposition 1 If D ⊆ R
n is a viable set of (1), then

the convex hull, co(D), of D is also viable. Moreover, the
viability kernel, ViabF (K), is convex.

Proof: Recall that the solutions of the differential inclu-
sion (1) have the form

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ,

where x(0) = x0 and u(·) : [0,∞) → U is measurable
function. A point x0 ∈ co(D) can be written as x0 =∑n+1
i=1 λixi, for some xi ∈ D, λi ≥ 0, i = 1, . . . , n + 1

with
∑n+1
i=1 λi = 1. Since D is viable, there exist ui(·) :

[0,∞)→ U such that

eAtxi +
∫ t

0

eA(t−τ)Bui(τ)dτ ∈ D (2)

for all t ∈ [0,∞). Let

x(t) =
n+1∑
i=1

λi

(
eAtxi +

∫ t

0

eA(t−τ)Bui(τ)dτ
)
.

Clearly, x(t) ∈ co(D). Define u(t) =
∑n+1
i=1 λiui(t) for all

t ∈ [0,∞). u(·) is measurable and u(t) ∈ U for all t ≥ 0,
since U is convex. Moreover,

x(t) =eAt
n+1∑
i=1

λixi +
∫ t

0

eA(t−τ)B
n+1∑
i=1

λiui(τ)dτ

=eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ.



Therefore, x(·) is a solution of the differential inclusion (1)
starting at x0 such that x(t) ∈ co(D) for all t ≥ 0. Hence,
the set co(D) is viable.
By Theorem 2, ViabF (K) is closed and viable and there-
fore so is co(ViabF (K)). Since ViabF (K) ⊆ K and K is
convex, then co(ViabF (K)) ⊆ K. Therefore, by the max-
imality of the ViabF (K) (Theorem 2), co(ViabF (K)) ⊆
ViabF (K). Since anyway ViabF (K) ⊆ co(ViabF (K)),
ViabF (K) is convex.

3 Viable polytopes

We now restrict our attention further to the following class
of problems:

• Dynamics
ẋ = Ax+Bu (3)

x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m.

• Input constraints given by a convex, compact poly-
tope

U = co{û1, . . . , ûM} ⊆ Rm

ûi ∈ Rm, i = 1, . . . ,M .

• State constraints given by a convex, compact poly-
tope

K = co{k̂1, k̂2, . . . , k̂N} ⊂ Rn

k̂i ∈ Rn, i = 1, . . . , N .

Notice that, even in this very restricted set up, the set
ViabF (K) is not necessarily a polytope. We will try to
compute viable polytopes contained in ViabF (K).

3.1 Basic facts

For a polytope W = co{w1, . . . , wl}, TW (x) is easy to
compute. A standard fact from set-valued analysis (see,
for example, [13]) shows that for all x ∈ W , y ∈ TW (x) if
and only if there exists t > 0 and λi ≥ 0 with

∑l
i=1 λi = 1

such that x+ ty =
∑l
i=1 λiwi. In fact, we can choose any

t satisfying 0 < t ≤ 1
|y| min{|x− wi| | i = 1, . . . , l}.

Lemma 1 A polytope W = co{w1, . . . , wl} is viable for
the system (3) if and only if TW (wi) ∩ F (wi) 6= ∅ for all
i = 1, . . . , l.

Proof: For the second part, necessity is obvious from
Theorem 1. For sufficiency, take any point x ∈ W and
some y ∈ F (x). By definition, there exist µj ≥ 0, j =
1, . . . ,M with

∑M
j=1 µj = 1 such that

y = Ax+
M∑
j=1

µjBûj .

Recall that y ∈ TW (x) if and only if there exist t > 0 and
νj ≥ 0, j = 1, . . . , l with

∑l
j=1 νj = 1 such that

y =
1
t

 l∑
j=1

νjwj − x

 .

Therefore, F (x) ∩ TW (x) 6= ∅ if (and only if)

(A+
1
t
I)x =

1
t

l∑
j=1

νjwj −
M∑
j=1

µjBûj ,

for some t > 0, νj ≥ 0, j = 1, . . . , l with
∑l
j=1 νj = 1 and

µj ≥ 0, j = 1, . . . ,M with
∑M
j=1 µj = 1.

Assume this holds for x = wi, i = 1, . . . , l, i.e.

(A+
1
ti
I)wi =

1
ti

l∑
j=1

νijwj −
M∑
j=1

µijBûj .

Since W is polytope, x+ty ∈W implies x+ty ∈W,∀t ≤ t.
Let t = min{t1, . . . , tl}. Then

(A+
1
t
I)wi =

1
t

l∑
j=1

νijwj −
M∑
j=1

µijBûj .

Consider an arbitrary x ∈ W . There exist λi ≥ 0, i =
1, . . . , l with

∑l
i=1 λi = 1 such that

x =
l∑
i=1

λiwi.

Taking a weighted average of the equations for the ver-
tices,

(A+
1
t
I)x =

1
t

l∑
i=1

λi

l∑
j=1

νijwj −
l∑
i=1

λi

M∑
j=1

µijBûj

=
1
t

l∑
j=1

νjwj −
M∑
j=1

µjBûj

with νj =
∑l
i=1 λiνij and µj =

∑l
i=1 λiµij . Noting that

νj ≥ 0, j = 1, . . . l, µj ≥ 0, j = 1, . . . ,M and

M∑
j=1

µj =
M∑
j=1

l∑
i=1

λiµij =
l∑
i=1

λi

M∑
j=1

µij = 1

(and similarly for νj) proves the claim.

From the proof of Lemma 1, we know that the polytope
W is viable if and only if for each i ∈ {1, . . . l} there exists
ti > 0 small enough such that the following system of
linear inequalities is consistent:

(A+ 1
ti
I)wi = 1

ti

∑l
j=1 νijwj −

∑M
j=1 µijBûj∑l

j=1 νij = 1,
∑M
j=1 µij = 1

νij ≥ 0, j = 1, . . . , l, µij ≥ 0, j = 1, . . . ,M

(4)



Algorithm 1 (Viable Polytope Approximation )

W0 = ∅
solve the linear equation

Ax+Bu = 0
subject to x ∈ K, u ∈ U

if a solution (x̂, û) ∈ K × U exists then
i = 1
Wi = {x̂}
D = Wi

while D 6= ∅
select a ∈ D
W = Wi \ {a}
solve the optimization problem

mina1,...,aN

∑N
j=1 |aj − k̂j |

s.t. aj ∈ co{a, k̂j}
Tco(W∪{a1,...,aN})(aj) ∩ F (aj)
6= ∅, j = 1, . . . , N

if co(W ∪ {a1, . . . , aN}) 6= co(Wi) then
Wi+1 = W ∪ {a1, . . . , aN}
D = Wi+1

i = i+ 1
else

D = D \ {a}
endif

endwhile
endif

Table 1: Algorithm

Determining the consistency of a system of linear inequal-
ities can be transformed into solving an auxiliary linear
programming problem. The linear inequalities Nx ≤ b
are consistent if and only if the minimum value of the
objective function of the linear programming problem:

min z

s.t.Nx+ (z, . . . , z)T ≤ b
z ≥ 0

is zero.

3.2 Computation of viable polytopes us-
ing optimization

Based on Lemma 1 we can give a method of computing a
viable polytope for the system (3). Suppose that we have a
viable polytope Wi ⊂ K. We then find r points a1, . . . , ar
such that the polytope Wi+1 = co(Wi

⋃
{a1, . . . , ap}) ⊂ K

is still viable. In Algorithm 1, we choose r = N and try to
make ai near the vertices, k̂j , of the set K. This is realized
by minimizing

∑N
j=1 |aj − k̂j |. It should be stressed that

the structure of the algorithm is motivated by the need
to generate proofs of its properties and not computational
efficiency. Possible improvements include minimizing Wi

every time new vertices are added to ensure there are no
redundant vertices.

The algorithm starts by computing an equilibrium point of
the system, in the sense of a state x ∈ K for which there
exists a u ∈ U such that Ax + Bu = 0. The set of all
equilibrium points (the equilibrium set) can be computed
using the solution set of the linear inequalities:


∑N
j=1 µjAk̂j +

∑M
i=1 λiBûi = 0∑M

i=1 λi = 1, λi ≥ 0, i = 1, . . . ,M∑N
j=1 µj = 1, µj ≥ 0, j = 1, . . . , N

(5)

by setting x =
∑N
j=1 µj k̂j . The unknowns in the linear

inequalities are µi, i = 1, . . . ,M and λj , j = 1, . . . , N
(N + M in total). It is well known that the solution set
of the above linear inequalities is a polytope. One could
start the algorithm by computing the entire solution set
and using it as the initial value of W1. Alternatively, a
single equilibrium point, x̂ can be found by solving the
following linear program:

min z

s.t.
N∑
j=1

µjAk̂j +
M∑
i=1

λiBui = 0

M∑
i=1

λi = 1,
N∑
j=1

µj = 1

λi − z ≥ 0, i = 1, . . . ,M, µj − z ≥ 0, j = 1, . . . , N, z ≥ 0

and setting x̂ =
∑N
j=1 µj k̂j if the optimal value ẑ is zero,

otherwise the solution set of the system (5) is empty. This
is because that a solution of the above linear program must
be a solution of the system (5).

The optimization problem needed for the remaining steps
of the algorithm can be formulated so that it has a linear
objective function and quadratic constraints. Assume that
at the kth step of the algorithm the set Wk is given by

Wk = {w1, . . . , wl, a}

and let W = Wk\{a}. Some algebraic manipulation shows
that there exists t > 0 such that the optimization problem

min
a1,...,aN

N∑
j=1

|aj − k̂j |

s.t. aj ∈ co({a, k̂j}), j = 1, . . . , N

Tco(W∪{a1,...,aN})(aj)
⋂
F (aj) 6= ∅, j = 1, . . . , N



is equivalent to

min
p1,...,pN

N∑
j=1

pj |a− k̂j |

s.t.
1
t

(
l∑
i=1

siwi +
N+l∑
i=l+1

sik̂i−l −
N+l∑
i=l+1

sipi−l(k̂i−l − a)

)

=
(
A− 1

t
I

)
(k̂j − pj(k̂j − a)) +

M∑
i=1

λiBui

j = 1, . . . , N, 0 ≤ pj ≤ 1, j = 1, . . . , N
M∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,M

N+l∑
i=1

si = 1, si ≥ 0, i = 1, . . . , N + l

with aj = pja+ (1− pj)k̂j , j = 1, . . . , N . The variables in
the latter optimization problem are si, i = 1, . . . , N + l,
pj , j = 1, . . . , N and λi, i = 1, . . . ,M (2N + M + l in
total, where l depends on the step of the algorithm). The
positive number t needs to be small enough. The problem
has a linear objective, but the constraints are quadratic
because of the products sipi−l. Existing algorithms, for
instance interior point methods [16], can be applied for
solving this optimization problem.
An alternative version of the algorithm uses the faces (as
opposed to vertices) of the polytope K. Assume that the
polytope K is given in terms of the linear inequalities

K = {x ∈ Rn | Nx ≤ b},

where N is an m × n matrix, b ∈ R
n. Denote N =

(NT
1 , . . . , N

T
m)T and b = (b1, . . . , bm)T . In this case, we

can replace the optimization problem in Algorithm 1 by
the following:

min
a1,...,am

m∑
j=1

|Njaj − bj |

s.t. Naj ≤ b, j = 1, . . . ,m
Tco(W∪{a1,...,aN})(aj) ∩ F (aj) 6= ∅, j = 1, . . . , N

3.3 Analysis of the algorithm

First a trivial fact:

Lemma 2 Consider a ∈ co{k̂1, . . . , k̂N} and take any
ai ∈ co{a, k̂i}, i = 1, . . . , N . Then a ∈ co{a1, . . . , aN}.

Proof: By construction a =
∑N
i=1 λik̂i and ai = µia +

(1−µi)k̂i. If there exists µi = 1 then ai = a and the claim
is true. Otherwise

k̂i =
1

1− µi
(ai − µia).

Substituting into the expression for a and rearranging
leads to

a =
N∑
i=1

λi

(1− µi)
∑N
j=1

λj
1−µj

ai.

It is easy to verify that the coefficients are non-negative
and add up to 1.

Next some basic properties of the algorithm:

Proposition 2 If the algorithm terminates with W = ∅
then ViabF (K) = ∅. Otherwise, for all i for which Wi is
defined, co(Wi) is viable and the optimization problem is
feasible. Moreover, co(Wi) ⊆ co(Wi+1) whenever Wi+1 is
well-defined (i.e., unless the algorithm terminates at the
ith step).

Proof: Termination with W = ∅ implies that Ax+Bu =
0 has no solution in K×U . By Theorem 3, K can not con-
tain any non-empty, convex viable set. Since ViabF (K) is
viable and convex, it must be the empty set.
co(W0) is viable vacuously. If Ax+Bu = 0 has a solution
(x̂, û) ∈ K × U then co(W1) = {x̂} is also viable, since
Tco(W1)(x̂) = {0} = {Ax̂+Bû} ⊆ F (x̂).
Assume that Wi = {w1, . . . , wl, a} is viable for some i.
Let W = Wi \ {a} and consider the optimization problem

min
a1,...,aN

N∑
j=1

|aj − k̂j |

s.t. aj ∈ co{a, k̂j}
Tco(W∪{a1,...,aN})(aj) ∩ F (aj) 6= ∅
j = 1, . . . , N

The optimization problem is feasible. For example, let
aj = a for all j = 1, . . . , N . Clearly aj ∈ co{a, k̂j}. More-
over, TW∪{a}(a) ∩ F (a) 6= ∅ since Wi is viable.
Let {a1, . . . , aN} be the optimal solution and assume that
co(W ∪ {a1, . . . , aN}) 6= co(Wi). Then

Wi+1 =W ∪ {a1, . . . , aN}
={w1, . . . , wl, a1, . . . , aN}.

We first show that co(Wi) ⊆ co(Wi+1). Take any x ∈
co(Wi). There exist λi ≥ 0, i = 0, . . . , l,

∑l
i=0 λi = 1 such

that

x = λ0a+
N∑
i=1

λiwi.

By Lemma 2, a ∈ co{a1, . . . , aN}. Therefore, there exists
µi ≥ 0, i = 1, . . . , N ,

∑N
i=1 µi = 1 such that

x = λ0

N∑
j=1

µiai +
l∑
i=1

λiwi.

Clearly λi, λ0, cj ≥ 0 and add up to 1. Therefore,

x ∈ co{w1, . . . , wl, a1, . . . , aN} = co(Wi+1).



Finally, we show that co(Wi+1) is viable. Since co(Wi) is
viable and co(Wi) ⊆ co(Wi+1),

Tco(Wi+1)(wi) ∩ F (wi) 6= ∅.

By construction,

Tco(Wi+1)(aj) ∩ F (aj) 6= ∅.

Therefore, Wi+1 is viable by Lemma 1. The claim follows
by induction.

4 Concluding remarks

We presented an algorithm for computing viable polytopic
subsets of a given polytope under linear dynamics. The
main feature of the proposed algorithm is that at each
step it maintains as its state a polytopic subset of the
given set that is viable. Therefore, if the algorithm is
terminated before completion, its state can still be used
for safe controller design.
Clearly the algorithm needs to be extended in many di-
rections. One extension is to unbounded polyhedra; work
in this direction is currently underway. Even for bounded
polytopes it is easy to see that the algorithm often fails to
produce the maximal viable polytope. For example, the
algorithm sometimes gives conservative results when ap-
plied to systems where the maximal viable polytope has
empty interior. When applied to the system

A =
[
−1 0
0 1

]
, B =

[
0
0

]
, K = [−1, 1]× [−1, 1].

our algorithm terminates at one step with W1 = {0}. The
maximal viable polytope in this case is W = [−1, 1] ×
{0} is viable and has empty interior. The algorithm may
also be conservative when applied to systems that admit
ellipsoidal viable sets but not polyhedral viable sets (or
only trivial ones). For example when applied to the system

A =
[

0 −1
1 0

]
, B =

[
0
0

]
, K = [−1, 1]× [−1, 1].

The algorithm terminates at one step with W1 = {0}. In
this case the viability kernel is the unit disc, which does
not contain any viable polytopes (other than the trivial
{0}). To deal with systems like these we would like to
extend our approach to include ellipsoidal constraints.
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