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Abstract

The characteristic modes of time-variable linear SISO systems
can be defined by using suitable linear transformations that
change the realization of the system to a form, which gener-
ates the modes of the system. The stability of the system can
be investigated by means of the transformation.

1 Introduction

Analysis and synthesis techniques for linear time-varying dif-
ferential systems are not easily available when starting from the
well-known classical theory of time-invariant systems. This is
a fundamental consequence of the fact that the solution of the
system equations cannot generally be solved in closed form, i.e.
the state transition matrix cannot usually be expressed in terms
of elementary functions. The fundamental difficulties related
to stability and performance of the system are caused by the
difficulty to define the concepts of poles and zeros that would
have a similar relationship to system performance as in the case
of time-invariant systems.

There have been several efforts to solve this problem, but none
of these seems to have been generally accepted. The ”natural”
way of defining poles at each time instant from the ”frozen”
system matrix is known to be inadequate, because the result-
ing poles do not give enough information on system stability
[8]. Another way to define poles (or more specifically pole
sets) was used in [4], where factorizations of operator polyno-
mials were used to define the pole sets. Based on this analysis
conditions for the stability of the system were obtained. A sim-
ilar method by using polynomial algebra was used in [1], and
specifically in the time-varying case in [12].

Another approach to the problem would be to use state-space
techniques and state transformations to study the stability of the
system. The well-known theory of Lyapunov transformations
[5] is a powerful tool in this respect, because of its stability
preserving characteristics in the state transformation. In [13]
it was shown that any time-varying system matrix of a con-
tinuous linear state-space representation can be changed into a
constant matrix, but the needed state transformation depends
on the state-transition matrix, which is generally impossible to

solve analytically. Hence it is not possible to know, whether
the transformation is a Lyapunov transformation or not. The
topic has also been discussed e.g. in [3].

In this paper the state transformations have been elaborated fur-
ther by defining the characteristic modes of the system. The
theory is closely related to the concept of extended eigenvalues
and extended eigenvectors discussed e.g. in [11] and [15].

The work to be presented has also connections to results re-
ported in [4], [7], [14] and [6].

2 State transformations

Consider a SISO input-output differential system
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where ����, ����, ���� and 	��� are continuously differen-
tiable matrix functions with suitable dimensions. The linear
but possibly time-varying transformation
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where 
 ��� is an invertible square matrix of the same dimen-
sion as ����, is used to change the system representation ( 1)
into the form
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It has been shown in [13] that the matrix ���� of the target
system can be chosen arbitrarily by choosing
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where ����� ��, ����� �� are the state transition matrices related
to ���� and ����, respectively.

Equivalently, the transformation matrix 
 ��� can be solved
from the equations
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The relationship of the two state-transition matrices becomes
accordingly
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By using these relationships it follows that the weighting func-
tions of the input-output systems become
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where it is assumed that the systems are strictly proper so that
	��� � 	 and ���� � 	. The result shows that the weight-
ing functions and impulse responses of the original and trans-
formed systems are the same.

As for controllability and observability, consider the controlla-
bility gramian
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which for the transformed system becomes
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Because the matrix 
 ���� has full rank, the definiteness of the
gramians �� and �� is the same. Thus, controllability re-
mains invariant in the transformation. A similar calculation
shows that the observability gramian
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changes into the form
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so that observability is also invariant in the transformation.

To investigate the preservation of stability, the important con-
cept of a Lyapunov transformation can be used. Results related
to this theory can be found here and there in the literature, see
e.g. [5], [8], [3].

A definition used in [8] is: An � � � matrix 
 ��� that is con-
tinuously differentiable and invertible at each � is called a Lya-
punov transformation if there exist finite positive constants �

and � such that for all �

�
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which is equivalent to finding a finite positive constant � such
that
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If a system matrix is changed into another one by a Lyapunov
transformation, the stability properties of the original and tar-
get representations are the same. The key issue is then to deter-
mine, whether the matrix


 ��� � ����� ���
��
��
� ��� ��� (17)

is a Lyapunov-transformation matrix or not. As long as the
transition matrices ����� �� and ����� �� are not known, there
seems to be no general procedure to determine this.

The concept reducibility is defined to imply that a system ma-
trix can be changed into a constant form by using a Lyapunov-
transformation. More generally, two representations which are
equivalent through a Lyapunov transformation are called kine-
matically similar in [3]; the term topologically equivalent real-
izations is used in [9]. A well-known result in classical litera-
ture is that periodic systems are always reducible; see e.g. [2],
[8].

The above issues concerning stability, controllability and ob-
servability constitute the background and motivation for the
use of time-variable state transformations in control design. If
Lyapunov transformations are used, the original and target rep-
resentations are structurally very similar. If the target system is
easier to deal with, it is then reasonable to use it as a starting
point in solving analysis and synthesis problems.

3 Extended eigenvalues and extended eigenvec-
tors

Consider the autonomous system
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where the dimensions of the matrix ���� and vector ���� are
��� and �� 
, respectively. When searching for modal solu-
tions (characteristic modes) of the form
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where ���� is an �� 
 vector and � a scalar function, it is easy
to verify that the solution fulfils equation
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which resembles the classical result of time-invariant systems.
The difference is that the eigenvalues � and eigenvectors � are



now time-variable. Therefore they are sometimes called ex-
tended eigenvalues and extended eigenvectors [11]. In [14] the
extended eigenvectors ���� were expected to have constant val-
ues in order to make the stability analysis easier; however, in
the current paper that assumption is relaxed to allow the eigen-
vectors to be time-varying.

Consider now the system matrix

���� � 
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of the target representation. It is important to understand that
this representation can always be formed from the original ma-
trix ���� by using a time variable state transformation accord-
ing to (5) or (6). Then (6) is written as

������ � ���������� ���������� (21)

where the terms ����� are the column vectors of matrix 
 ���. It
follows that the extended eigenvalues are the elements on the
main diagonal of ���� and the extended eigenvectors are the
column vectors of 
 ���.

Also, it is easy to show that the stability of the original system
can be characterized by the mode-vectors associated to each
eigenpair by
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The state transition matrix of the target system is clearly
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so that the transition matrix of the original system becomes
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It is then evident that the original system is stable, if the norm
of every mode-vector is bounded, and asymptotically stable, if,
additionally, the norm of every mode-vector converges to zero
as time approaches infinity [11], [13]. Also, it should be noted
that the above solution can be written in the form
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with
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The result is seen to be be analogous to that of time-invariant
systems, for which �� and �� denote the eigenvalues and (left)
eigenvectors of the system matrix.

The problem in the above approach is that there is much free-
dom in the selection of the extended eigenvalues and extended

eigenvectors. In fact, the extended eigenvalues can be chosen
freely, whereafter the extended eigenvectors are determined by
the transformation equations; the same holds vice versa also.
If the transformation matrix 
 ��� is chosen to be a Lyapunov
transformation, the stability properties of the original and tar-
get systems are the same, but the system matrix of the target
system is not necessarily diagonal. Consequently, if the target
system is chosen to be diagonal, it is difficult to give conditions
for 
 ��� to be a Lyapunov transformation.

Because of these difficulties it is instructive to consider the case
of triangular target systems.

4 A triangularization procedure

According to the idea in [6] consider an autonomous system
����� � ���������, where ����� is a  �  matrix
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The dimensions of the above submatrices 	������, !������,
"�������, ������� are � �
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, 
� � �
�
and 
� 
, respectively. By using the transformation matrix [6]
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where the dimensions of the submatrices are in accordance to
those in �����, the system matrix changes into
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In the new system matrix

������� � 	������ � !�������
�
������ (30)

and

��������� � "������� � ��������
�
������� ����������

	������ � !�������
�
������

�
� "������� � ��������

�
������

���������	������ � ��������!�������
�
������

(31)

����� � �������� ��������!������ (32)

The procedure can be generalized in order to change the origi-
nal system matrix to a triangular form. To this end, take
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where the dimensions of the matrices �����,#��� and ���� are
 �  ,  � �� �  � and �� �  � � �� �  �, respectively. The
matrix is assumed to be partly triangular such that ���� is block
diagonal with the elements
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in the main diagonal. Take the transformation matrix
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where 
���� is a  �  -dimensional transformation matrix (as
described above) and �	�� is a ���  �� ���  �-dimensional
identity matrix. The system matrix changes to the form

����
	 ��� �

�
������ ������
������ ������

�
(35)

with
�
���� � �����
����� 
���������� (36)

������ � 
��
� ���#��� (37)

������ � 	� ������ � ���� (38)

It is then obvious that any � � �-dimensional system ma-
trix ���� can be triangularized by the transformation ���� �

 �������, in which
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The matrix 
 ��� is then a Lyapunov transformation provided
that all its elements are bounded.

It should be noted that transformations for diagonalization and
triangularization of a given system matrix always exist accord-
ing to equations (5) or (6). In the case of a diagonalizable con-
stant system matrix the diagonalizing transformation 
 coin-
cides with the well-known similarity transformation. Also, the
equation (5) guarantees that in the triangularization procedure
the nonlinear Riccati type equations (31) have unique solutions.

5 Input-Output systems

Consider a SISO input-output differential system
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where it is assumed that for all time instants $	��� � 
 and the
functions $���� and !���� are differentiable at least �� 
 times.
The system has the realization (1) [10] with
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Figure 1: Realization by the characteristic modes
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� �� � � � � �). Consider now the two-dimensional system
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which has a realization
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The system matrix of the target representation will have the
form
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The transformation matrix is
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which gives the input-output representation
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where
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(48)

and
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using an arbitrary initial condition.

The system structure in Fig. 1 is seen to be analogous to that
used in [4]. It corresponds to the polynomial factorization
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where ������ is the right pole of the system. It is worth noting
that if ����� is a bounded function, then 
 ��� is a Lyapunov
transformation.

Based on Fig. 1 it is easy to see how the functions ��� and ���
characterize the internal behaviour of the system. In a way,
they can also be called the characteristic modes of the system,
although this definition differs from that used in Section 3. To
understand the meaning of the right pole, try
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where � is a constant, as a solution to
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It is seen that the equation holds if
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But this equation really holds according to (49). More impor-
tant, the solution for ���� was written as a constant multiplied
by an exponential term giving a right justification for the con-
cept of a mode. Note also that
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which means that if the state component �� � � is bounded,
then �� is also bounded if 
 is a Lyapunov transformation. The
initial conditions for the differential equation are given by ��� ��
and ������, meaning that the constant � and the initial condition
for (49) are fixed.

The integral in the exponential term of the mode must approach
minus infinity for asymptotic stability, or stay bounded for sta-
bility. In order the stability result to hold for the original sys-
tem, the function �� must be bounded. If it is not (that can hap-
pen), the matrix 
 is not a Lyapunov transformation. In this
case the analysis of the characteristic modes through the tri-
angularization procedure does not give any benefit when com-
pared to the traditional approach (modes determined by diago-
nalization).

It is instructive to consider an example case where both coeffi-
cients $� and $� are constant. For example, let $� � 	, $� � 
.
The Riccati equation now has both a constant and a dynamic
solution. In the former case the right pole can have values ��

or �� which is bounded and indicates a stable oscillation, as
expected. In the latter case, the solution for the right pole is not
bounded so that it does not give information about stability.

The above results are in accordance or even a consequence
of the triangularization procedure described earlier. Therefore
they are valid for systems for any dimension. For example, if
� � � in (42) then the system matrix of the target system be-
comes
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where
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and for the right pole
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The right pole can also be computed from
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which can also be found from [4].

In practice, the triangularization procedure involves solving
systems of nonlinear Riccati type equations, which in this case
corresponds to solving the state transformation matrix of a
time-varying systems. An analytic solution is seldom acces-
sible.

6 Conclusion

The relationship of system modes to diagonal and triangular
forms of the system matrix have been established in the paper.
A time-varying state transformation was shown to be a pow-
erful tool in the analysis of different realizations and stability
issues of the system. The approach was also extended to the
case of input-state-output systems in the SISO case, making it
possible to define the system poles by using the modal structure
discussed.
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