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Abstract

The well-known Disturbance Decoupling Problem with
Stability will be investigated in the case of LPV systems
and a sufficient condition for its solvability will be given.

By using the concept of parameter varying (A,B)-invariant
subspace and parameter varying controllability subspace,
this paper investigates the disturbance decoupling prob-
lem (DDP) for linear parameter varying (LPV) systems.
The parameter dependence in the state matrix of these
LPV systems is assumed to be in affine form.

The question of stability is addressed in the terms of Lya-
punov quadratic stability by using an LMI technique. If
certain conditions for the parameter functions and ma-
trices are fulfilled a sufficient condition is given for the
solvability of the DDP problem with stability (DDPS).

1 Introduction

In the so called ”geometrical approach” to some funda-
mental problems of linear time invariant (LTI) control the-
ory, such as the disturbance decoupling problem (DDP),
a central role is played by the ( A,B)-invariant and (C,A)-
invariant subspaces and certain controllability and unob-
servability subspaces, [18].

As it is well known, for LTI models, a subspace V is (A,B)-
invariant if AV ⊂ V + ImB that is equivalent with the
existence of a matrix F such that (A + BF )V ⊂ V. The
minimal A-invariant subspace containing a given subspace
L will be denoted by 〈A|L〉.

This paper deals with the class of linear parameter-varying
(LPV) systems that can be described as:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t) (1)

y(t) = Cx(t) (2)

where

A(ρ(t)) = A0 + ρ1(t)A1 + . . . + ρN (t)AN , (3)

B(ρ(t)) = B0 + ρ1(t)B1 + . . . + ρN (t)BN . (4)

It is assumed that each parameter ρi ranges between
known extremal values ρi(t) ∈ [ρ

i
, ρi] and the parameter

set that contains all the (ρ1(t), · · · , ρN (t)), where t ∈ [0, T ]
will be denoted by P. For the sake of notational simplic-
ity the time dependency of the matrices will be omitted
(A(ρ) := A(ρ(t))) where it is possible.

2 Disturbance decoupling problem with

stability

Consider the following LTI system:

ẋ = Ax + Bu + Sq

y = Cx.

The term q represents a disturbance that is not measur-
able by the controller. The problem is to find a state
feedback F , such that q has no influence on the output y
and that the closed loop system is stable or equivalently
(see [18]): find F : X → U such that 〈A + BF |S〉 ⊂ C
where C = KerC and A + BF stable.

The necessary and sufficient condition for the solvability
of the DDPS is that the maximal element V∗

g of the class:

{V | ∃F : (A + BF )V ⊂ V ⊂ C, and (A + BF )|V stable}

contains S, [18]. Obviously for the controllability subspace
R∗ one has R∗ ⊂ V∗

g , hence R∗ ⊃ S is sufficient for the
solvability of DDPS.

This idea will be extended to the parameter varying case
by showing that, if some additional technical assumptions
hold, the parameter varying controllability subspaces also
have a kind of stabilizability property that provides a suffi-
cient condition for the solvability of LPV DDPS problem.

For LTI systems the concept of certain invariant subspaces
and the corresponding global decompositions of the state
equations induced by these invariant subspaces was one of
the main thrusts for the development of geometric meth-
ods for solutions to problems of disturbance decoupling or
noninteracting control. Nonlinear systems can be studied
using tools from differential geometry, when the central
role is played by the concept of invariant distributions.
From the geometric viewpoint results of the classical lin-



ear control can be seen as special cases of more general
nonlinear results, [9].

In practical situations however, even in the LPV case, it is
quite hard to compute these mathematical objects or it is
hard to verify the conditions under which the algorithms
provides certain supremal distributions or codistributions.
Therefore we would prefer to work with subspaces instead
of distributions.

3 Parameter varying invariant subspaces

Linear time varying systems can be viewed as affine non-
linear systems [8], by augmenting the original state space
to ξ := [t, x]T . Restricting the investigations to linear sub-
spaces, as special instances of distributions, then a sub-
space V of Rn, will be an invariant distribution for system
(1) if and only if A(ρ(t))V ⊂ V for all t ∈ I, where I is an
interval on which the solutions are defined.

This fact motivates the introduction of the following no-
tion for LPV systems:

Definition 1. A subspace V is called parameter-varying
invariant subspace for the family of the linear maps A(ρ)
(or shortly A-invariant subspace) if

A(ρ)V ⊂ V for all ρ ∈ P. (5)

In a similar way one can introduce the extension of the
concept of (A,B)-invariant subspace as:

Definition 2. Let B(ρ) denote Im B(ρ). Then a subspace
V is called a parameter-varying (A,B)-invariant subspace
(or shortly (A,B)-invariant subspace) if any of the follow-
ing equivalent conditions holds:

1. there exists a mapping F : [0, T ] → Rm×n such that
for all ρ ∈ P:

(A(ρ) + B(ρ)F (ρ))V ⊂ V; (6)

2. for all ρ ∈ P:

A(ρ)V ⊂ V + B(ρ). (7)

A similar concept was introduced in [3], called robust con-
trolled invariant subspace and an algorithm was given in
[5] to determine this robust controlled invariant. Since
the number of conditions is not finite, the algorithm pro-
posed there, in general, is quite complex. If one sets
the gain matrix to be constant then the resulting sub-
space will be more restrictive, this approach was used in
[4] and [13], and was termed as generalized controllability
(A,B)-invariant subspace. For the dual notion of (A,B)-
invariance see [15].

From a practical point of view it is an important question
to characterize these parameter-varying subspaces by a fi-
nite number of conditions. Assuming the special structure

(3) of the matrix A(ρ) it is immediate that if the inclu-
sions holds for all Ai, then they hold also for all ρ ∈ P. It
is not so straightforward under which conditions it is true
the reverse implication, too.

In what follows, it will be given a sufficient condition that
characterizes property (5) using only a finite number of
constraints.

Lemma 1. If the functions 1, ρ1, . . . , ρN are linearly in-
dependent over R then A(ρ)V ⊂ W ∀ρ ∈ P if and only
if

AiV ⊂ W, i = 0, . . . , N.

The proof is elementary, see [16], hence it is omitted.

We are interested in finding supremal A-invariant sub-
spaces in a given subspace K or containing a given sub-
space L. As far as the first purpose is concerned the A-
Invariant Subspace Algorithm over L, i.e.:

AISAL : V0 = L

Vk+1 = L +
N
∑

i=0

AiVk, k ≥ 0,

V∗ = lim
k→∞

Vk. (8)

Obviously the algorithm will stop after a finite number of
steps, i.e. V∗ = Vn−1.

Proposition 1. The subspace V∗ given by (8) is such that

L ⊂ V∗ (9)

V∗ is A-invariant (10)

and assuming that the condition of Lemma 1. holds, it is
minimal with these properties.

Moreover, if the parameter functions are differential al-
gebraically independent, then V∗ coincides with the con-
trolled invariant distribution, [17]. For further reference
this property will be called as ”persistency” throughout
this paper.

Similar to the linear case the subspace V∗ will be denoted
by 〈A|L〉.

By duality, one has the A-Invariant Subspace Algorithm
in K, i.e.:

AISAK : W0 = K

Wk+1 = K ∩
N
⋂

i=0

A−1

i Wk, k ≥ 0,

W∗ = lim
k→∞

Wk. (11)

The subspace W∗ will be denoted by 〈K|A〉. The corre-
sponding version of Proposition 1 follows by duality, and
can be stated as:



Proposition 2. The subspace W∗ given by (11) is such
that

W∗ ⊂ K

W∗ is A-invariant

and assuming that the condition of Lemma 1. holds, it is
maximal with these properties.

The set of all (A,B)-invariant subspaces contained in a
given subspace K, is an upper semilattice with respect
to subspace addition. This semilattice admits a maxi-
mum which can be computed from the (A,B)-Invariant
Subspace Algorithm:

ABISA V0 = K (12)

Vk+1 = K ∩

N
⋂

i=0

A−1

i (Vk + B). (13)

The limit of this algorithm will be denoted by V∗.

As in the LTI case, if one has to solve the DDP prob-
lem with stability, then it is convenient to introduce the
concept of the controllability subspace:

Definition 3. A subspace R is called parameter-varying
controllability subspace if there exists a constant matrix K
and a parameter varying matrix F : [0, T ] → Rm×n such
that

R = 〈A + BF|Im BK〉, (14)

where the notation A + BF stems for the system A(ρ) +
BF (ρ).

As in the classical case, it can be seen that the family
of controllability subspaces contained in a given subspace
K is closed under subspace addition. Hence this family
has a maximal element which can be computed from the
parameter-varying Controllability Subspace Algorithm:

CSA : R0 = 0

Rk+1 = V∗ ∩

(

N
∑

i=0

AiRk + B

)

R∗ = lim
k→∞

Rk

where V∗ is computed by ABISA.

Proposition 3. The subspace R∗ is the largest
parameter–varying controllability subspace in C.

A useful characterization of parameter–varying controlla-
bility subspaces is the following:

Proposition 4. R is a parameter–varying controllability
subspace if and only if

R = 〈A + BF|B ∩ R〉.

4 Stability concepts

Let us consider the following ordinary differential equa-
tion:

ẋ(t) = f(t, x(t)), t ≥ t0

x(t0) = x0.

and let us recall some basic stability concepts.

Let us suppose that 0 is an equilibrium point i.e., f(t,0) =
0 for t ≥ 0. Denote by s(t, t0, x0) the solution of the above
equation, i.e.

∂

∂t
s(t, t0, x0) = f(t, s(t, t0, x0)), t ≥ t0

s(t0, t0, x0) = x0.

Definition 4. The equilibrium 0 is said to be stable
(uniformly stable) if for all ε > 0, t0 > 0 there exists
δ = δ(ε, t0)(= δ(ε)), such that

‖x0‖ < δ =⇒ ‖s(t, t0, x0)‖ < ε, t ≥ t0.

Definition 5. The 0 is attractive (uniformly attractive)
equilibrium point if for all t0 > 0 there exists η = η(t0) >
0 (η > 0) such that

‖x0‖ < η =⇒ lim
t→∞

‖s(t + t0, t0, x0)‖ = 0,

uniformly in x0 and t0.

Definition 6. The 0 is (uniformly) asymptotically sta-
ble equilibrium point if it is (uniformly) stable and (uni-
formly) attractive.

Definition 7. The 0 is exponentially stable equilibrium
point if there exist r, a, b > 0, such that

‖s(t0 + t, t0, x0)‖ ≤ a‖x0‖e
−bt

for all t, t0 ≥ 0 and ‖x0‖ < r.

For global stability definitions see [19].

Note that for LTV systems 0 is uniformly asymptotically
stable (uni.as.st.) if and only if it is exponentially stable
(exp.st.).

In what follows, if it is not specified explicitly, the term
stable will refer to any of these specific types of stability.
A system is said to be stable if the identically zero solution
of the corresponding differential equation is stable.

Considering LPV systems of the form

ẋ(t) = A(ρ(t))x(t) (15)

one can use the following concepts, [1, 7]:

Definition 8. The LPV system (15) is quadratically sta-
ble if there exists X > 0 such that

AT (ρ)X + XA(ρ) < 0

for all ρ ∈ P.



A slightly milder restriction is introduced in the next def-
inition that as the previous one, also implies exponential
stability:

Definition 9. The LPV system (15) is affinely quadrati-
cally stable if there exists X0, . . . , XN such that

X(ρ) := X0 + ρ1X1 + . . . + ρNXN > 0

AT (ρ)X(ρ) + X(ρ)A(ρ) +
∂X(ρ)

∂t
< 0

for all ρ ∈ P.

For the LTV system

ẋ(t) = A(t)x(t) + B(t)u(t).

one can define stabilizability as the property, that there
exists a possible time dependent state feedback u(t) :=
F (t)x(t) such that the system

ẋ(t) = (A(t)) + B(t)F (t))x(t),

is stable. In this sense, in the context of LPV systems,
one can investigate the stablizability of the pair (A,B).

5 DDPS for LPV systems

Let us consider the following LPV system:

ẋ = A(ρ)x + B(ρ)u + S(ρ)q

y = Cx

where q represents a disturbance and the matrix S(ρ) has
the same affine parameter dependent structure as (3).

We would like to design a state feedback gain which de-
pends affinely on ρ in order to remove the effect of the
disturbance on the output and which is stabilizing, i.e.,
the following problem will be considered:

LPV DDPS: find a subspace V in Rn which contains S
and F : [0, T ] → Rm×n such that

(A(ρ) + BF (ρ))V ⊂ V ⊂ C for all ρ ∈ P (16)

A(ρ) + BF (ρ) stable , (17)

where ImB =
∑

ρ∈P B(ρ) and ImS =
∑

ρ∈P S(ρ).

It is possible to give a sufficient condition for the solv-
ability of the problem using the notion of asymptotically
stabilizability property of parameter varying controllabil-
ity subspaces.

In order to solve the LPV DDPS problem one can prove,
as in the LTI case, that it is enough to find a subset V and
F (ρ) for which S ⊂ V, condition (16) holds and (A(ρ) +
BF (ρ))|V is asymptotically stable.

Theorem 1. Let us consider an asymptotically stabiliz-
able pair (A,B) and an (A,B)-invariant subspace V con-
tained in C such that there is an F0(ρ) that (A(ρ) +
BF0(ρ))|V is asymptotically stable.

Then there exists an F (ρ) such that (A(ρ)+BF (ρ))V ⊂ V
and A(ρ) + BF (ρ) is asymptotically stable.

The following lemmas have been used to prove Theorem
1.

Lemma 2. If (A,B) is asymptotically stabilizable then
(A+BF0,B) is asymptotically stabilizable for any feedback
F0.

Lemma 3. Let A be asymptotically stabilizable and let V
be A-invariant. Denote by Ã the induced map on V. Then
Ã is asymptotically stabilizable.

Lemma 4. Let (A,B) be asymptotically stabilizable and
let V be A-invariant. Denote by (Ã, B̃) the induced pair
on V. Then (Ã, B̃) is asymptotically stabilizable.

Proof (theorem): Let Q : X → X/V be the canonical
projection to X/V and

Ã0(ρ) = (A(ρ) + BF0(ρ))|X/V , B̃0 = QB,

where X/V denotes the factor space with respect to V.
Combining Lemma 2 and 4 one has that the pair (Ã0, B̃0)
is asymptotically stable, hence there exists F̃ (ρ) : X/V →
U such that Ã0 + B̃0F̃ is asymptotically stable. Extend
F̃ (ρ) to V arbitrarily (for instance let 0 ∈ U for all v ∈ V,
ρ ∈ P and denote it by F̂ (ρ)) and define

F (ρ) := F0(ρ) + F̂ (ρ)Q.

This F (ρ) is suitable, see [18]. �

The theorem above simplifies the solvability of LPV
DDPS. From ABISA one can compute V∗, i.e. the maxi-
mal (A, B)-invariant subspace in C. Obviously V∗ satisfies
(16). Furthermore, if V∗ satisfies the condition of Theo-
rem 1. with an appropriate feedback gain then a sufficient
condition for the solvability of DDPS is simply

V∗ ⊃ S

provided that the pair (A,B) is asymptotically stabiliz-
able.

If this is not the case (i.e. (A + BF)|V∗ is not as.st.)
then consider the maximal parameter-varying controlla-
bility subspace R∗ in C which can be computed from CSA.
There exists F0 (see Proposition 4) for which

R∗ = 〈A + BF0|B ∩ R∗〉.

Let B0 = B ∩R∗ and A0(ρ) = A(ρ) + BF0(ρ)|R∗ . Then

〈A0|B0〉 = R∗,

In the case of LTI systems the necessary and sufficient
condition for the solvability of DDPS was that V∗

g (which
contains R∗) must contain S. In the proof, the pole allo-
cation property of controllability subspaces (which charac-
terize them) were used. If one has to solve LPV DDPS one



has to find the analogy of pole allocation in this context.
We found that asymptotic stabilizability is applicable for
this purpose, however quadratic stabilizability is not, in
general.

Theorem 2. Suppose that ρi are persistently exciting, see
[17], and 〈A|B〉 = Rn. Then the pair (A,B) is asymptot-
ically stabilizable.

Proof. From the assumption and [16] it follows that the
system is completely controllable in the sense of Kalman
(see [10]). From Theorem 6.10 of [10] we get that we can
find a state feedback with which the system will be as.st.
�

Corollary 1. Assume the persistency property of the ρis.
Then there exists F :

R∗ = 〈A + BF|Im BK〉 = 〈A + BF|B ∩ R∗〉

and (A + BF)|R∗ is asymptotically stable.

Proof. Restrict our attention to the subspace R∗, where
the induced pair satisfies the assumption of Theorem 2.
�

This is a possible analogy between pole allocation property
of controllability subspaces for LTI systems and asymp-
totic stabilizability of LPV systems.

Remark 1. The most important question is that what
kind of stabilizability can be drawn from the assumption
〈A|B〉 = Rn. One might guess that quadratic stabilizability
which is more efficiently computable, can be guaranteed.
Unfortunately, this is not the case:

A(ρ) =

[

−1 ρ
0 1

]

, B =

[

0
1

]

, ρ(t) ∈ [−1, 1]

@X > 0, F (ρ) such that for all ρ ∈ P0 :

(AT (ρ) + F T (ρ)BT )X + X(A(ρ) + BF (ρ)) < 0.

In this example (which is a simplification of [6] pp. 55.)
〈A(0)|B〉 6= R2. One can put the following question: if for
all ρ ∈ P, 〈A(ρ)|B〉 = Rn, is the pair (A, B) quadratically
stabilizable ?

The counterexample above can be overcome by affine pa-
rameter dependent Lyapunov matrix, which gives another
conjecture: 〈A|B〉 = Rn ? ⇒ ? affinely quadratic stabi-
lizability. The question of quadratic stabilizability arose
also in the context of switching systems [11]. Here the
mildest assumption from which quadratic stability can be
derived is the following:

Theorem 3. Consider the Levy decomposition of the Lie
algebra g = r⊕s generated by the stable matrices {Ai : i =
1, 2, . . . , N}, where r is the radical and s is a semisimple
subalgebra. If s is compact then the Ai matrices share a
common quadratic Lyapunov function.

As far as quadratic stabilizability is concerned it is hard
to see the relationship between controllability and the Lie-
algebraic property above. For n = 2 there exist necessary
and sufficient conditions for the existence of a common
quadratic Lyapunov function, see [12].

Our main result is the following:

Theorem 4. Suppose the persistency of ρis and 〈A|B〉 =
Rn. If furthermore

R∗ ⊃ S

then DDPS for LPV systems is solvable with asymptotic
stability.

Proof. It follows from the assumptions and from Corol-
lary 1 that there exists F1(ρ) such that

R∗ = 〈A + BF1|Im BK〉 = 〈A + BF1|B ∩ R∗〉

and (A+BF1)|R∗ as.st. The conditions of Theorem 2 are
also fulfilled hence the pair (A,B) asym.ste. Now applying
Theorem 1 with the choices of V := R∗ and F0 := F1 one
can get the simplified solvability condition for LPV DDPS
considering that R∗ ⊃ S. �

In practical situations the construction of an asymptoti-
cally stabilizing feedback could be hard. One can try to
automatize the solution of the problem by LMI techniques
(quadratic stability, affine quadratic stability). However,
in this case our theorems does not guarantee the existence
of such solutions. A sufficient condition which implies the
existence of a Lyapunov function is the following [11]:

Theorem 5. If the system ẋ(t) = A(t)x(t) is uniformly
exponentially stable, it has a strictly convex, homogeneous
common Lyapunov function of a quasiquadratic form

V (x) = xT L(x)x,

where L(x) = LT (x) = L(τx) for all nonzero x ∈ Rn and
all τ 6= 0

6 Example

Let

A(ρ) =





−1 0 0
0 1 ρ
ρ 0 −1



 =





−1 0 0
0 1 0
0 0 −1



+ ρ





0 0 0
0 0 1
1 0 0





and

B =





0
0
1



 S(ρ) =





0
1 + ρ

ρ



 C =
[

1 0 0
]

where the parameter ρ is varying in the interval [1, 2]. It
can be seen that C = Ker C is A invariant, hence (A,B)
either i.e. V∗ = C. By solving linear matrix inequalities
we get that for the induced pair

F̃ (ρ) = [1.8225 1.2957] + ρ[−8.0181 − 2.5257]

quadratically stabilizes the system on V∗ and satisfies the
requirements of Theorem 1.



7 Conclusion

By using the concept of parameter varying (A,B)-invariant
subspace and parameter varying controllability subspace,
this paper investigated the disturbance decoupling prob-
lem (DDP) with the requirement of the stability for linear
parameter varying (LPV) systems. The parameter de-
pendence in the state matrix of these LPV systems was
assumed to be in affine form.

If certain conditions for the parameter functions and ma-
trices are fulfilled a sufficient condition was given for the
solvability of the DDP problem with stability (DDPS).
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