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Abstract This paper considers the problem of stabilizing first-order plus dead-time (FOPDT) unstable processes
using PID controllers. The D-partition technique is applied to characterize the stability domain in the in the space
of system and controller parameters. Moreover, analytical expressions are derived for describing the stability domain
boundaries. These analytical expressions can be used to construct the complete set of stabilizing PID controller parameters
for both open-loop unstable time-delay processes. They can also be used to investigate the effect of time delay on the
stabilizability of the process.

Keywords: PID controllers, time delay systems, unstable processes, stabilization, stability boundary, D-partition
technique.

Paper Category: Regular Paper for Poster Session

† Author to whom all correspondence should be addressed.

1



1. Introduction

Despite continual advances in control theory and development of advanced control strategies, the proportional,
integral, and derivative (PID) control algorithm still finds wide applications in industrial process control systems. It has
been reported in [1] that 98% in of the control loops in the pulp and paper industries are controlled by proportional-
integral controllers. Moreover, as reported in [2], more than 95% of the controllers used in process control applications are
of the PID type [2]. The popularity among industrial practitioners stems from the facts that the PID control structure is
simple and its principle is easy to be understand and that the PID controllers are deemed to be satisfactory and robustness
for a vast majority of processes. The primary problem associated with the use of PID controllers is tuning, that is, the
determination of PID controller parameters to produce satisfactory control performance. Due to the longstanding use of
PID controllers in a variety of industries, there exist many different methods to find suitable controller parameters [3]-[6].
The methods differ in complexity, flexibility, and in the amount of process knowledge used.

With the advances in computational and optimization techniques and the stringent performance requirement for
control, the class of optimization-based PID controller tuning methods has been receiving increasing attention [7]-[14]. In
the optimal PID tuning, a process model is required and the optimal controller parameters are searched to minimize a
certain integral performance criterion. Since the primary requirement of the candidate PID controller parameters is that
of making the closed-loop system stable, it is often desired to construct the complete set of stabilizing PID parameters.
With the complete set of stabilizing PID controller parameters being available for a given process, it can avoid the time-
consuming stability check for each set of PID controller parameters in the search process and thereby to save the controller
tuning time. However, the construction of the complete set of stabilizing PID controller parameters is not a trivial task.
This is particularly the case when the process contains a time delay since the corresponding closed-loop system has an
infinite number of poles which make the analytical stability analysis extremely difficult.

The boundaries of the stabilizing PID controller parameter region can be determined by the technique of D-partition
[15-18]. The boundaries of the stability region are defined by the equations P (0;k) = 0, P (∞;k) = 0 and P (±jω;k) = 0,
where P (s;k) is the characteristic function of the closed-loop system and k is the vector of controller parameters. The
boundary defined by P (±jω;k) = 0 is parameterized by the frequency ω and the range of ω corresponding to the true
stability boundary has to be identified with the aid of Nyquist stability criterion. Recently, a method based on using
a version of Hermite-Biehler theorem applicable to quasipolynomials has been used to determine the complete set of
stabilizing PID controller gain parameters for first-order time-delay systems [19]-[22]. The method involves finding the
zeros of a transcendental equation to determine the range of stabilizing gains. It is noted that both the D-partition
technique and the method of using Hermite-Biehler theorem do not provide an explicit characterization of the boundary
of the stabilizing PID parameter region.

In this paper, we consider the problem of stabilizing first-order plus dead time (FOPDT) unstable systems using
a PID controller. The main objective is to present a novel approach to derive analytical expressions for describing the
boundaries of the stability domain in the space of system and controller parameters. These expressions can be used to
construct the complete set of stabilizing PID controller parameters. Also, they can be used to investigate the stabilizability
of PID feedback control for time delay processes.

2. The Basic Idea

The closed-loop characteristic function of a feedback control system with time-delay process can be generally written
in the form

F (s;h,p) = [sl + al−1(p)sl−1 + · · · + a0(p)] + [bm(p)sm + bm−1(p)sm−1) + · · · + b0(p)]e−hs

≡ A(s;p) + B(s;p)e−hs (1)

where ak(p) and bk(p) are real continuous functions of n controller parameters p = (p1, p2, · · · , pn) and h ≥ 0 is the time
delay. For given n-parameter vector p and delay time h, the closed-loop system with characteristic function F (s;h,p)
is said to be asymptotically stable if F (s;h,p) is analytic on the closed right half of the complex s-plane, i.e., the
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quasipolynomial F (s;p) has no zeros with positive real part. Let h ∈ H ⊂ R and p ∈ P ⊂ Rn with H×P be connected
compact subset of Rn+1, where R denotes the set of real numbers. The stability domain S ⊂ H×P is defined to be the
region such that for (h,p) ∈ S all the solutions to the characteristic equation (1) lie in the open left half of the complex
s-plane. Determination of stability domain S plays a central role in the optimal design of controllers with fixed order and
structure as well as in the investigation of the effects of time delay and uncertain parameters on the closed-loop stability.

It is noted that if the system is delay free, i.e., h = 0, the characteristic function F (s; 0,p) is an algebraic polynomial
which has a finite number of zeros. For h > 0, the characteristic function F (s;h,p) is a quasipolynomial which has an
infinite number of zeros. However, it has been shown by Krall [23] that if l > m, or m = l and 0 < |bl(p)| < 1, then the
quasipolynomial F (s;h,p) has only a finite number of zeros with positive real part. Under the assumption that l ≥ m

and |bm(p)| < 1 for m = l, the D-partition method can be used to construct the stability domain S. Since the zeros
of the characteristic quasipolynomial F (s;h,p) are continuous functions of the parameters p and the delay time h, the
space H×P can be divided into regions by hypersurfaces, the points of which correspond to quasipolynomials having at
least one zeros on the imaginary axis or at s = ∞. Such a decomposition is called the D-partition of the space H × P.
The points of each region of such a D-partition obviously correspond to quasipolynomials with the same number of zeros
with positive real parts, since under the continuous variation of h and p, the number of zeros with positive real parts
change only if at least one zero passes across the imaginary axis, that is, if the point in H × P, the space of delay and
parameters, passes across the boundary of a region of the D-partition.

The set of D-partition boundaries can be defined as follows:

∂D = ∂D0 ∪ ∂Dω ∪ ∂D∞ (2)

where

∂D0 ≡ {(h,p) ∈ H × P : F (0;h,p) = 0} (3a)

∂Dω ≡ {(h,p) ∈ H × P : F (±jω;h,p) = 0, ∀ω ∈ (0,∞)} (3b)

∂D∞ ≡ {(h,p) ∈ H × P : l = m, |bl(p)| = 1} (3c)

It is noted that the D-partition boundary ∂D∞ exists when m = l and |bl(p)| = 1. Also noted is that in literature the
D-partition boundary ∂Dω is constructed from ω-parameterized equations F (±jω;h,p) = 0 by sweeping ω from 0 to ∞.
In the following, we shall apply the elimination method of Walton and Marshall [24] to obtain an ω-free defining equation
of the D-partition boundary ∂Dω.

For a point (h,p) on the D-partition boundary ∂Dω, there exists an ω ∈ (0,∞) such that F (±jω;h,p) = 0, i.e.,

A(jω;p) + B(jω;p)e−jωh = 0 (4a)

A(−jω;p) + B(−jω;p)ejωh = 0 (4b)

Eliminating the exponential terms, we have
∆(±jω;p) = 0 (5)

where
∆(s;p) ≡ A(s;p)A(−s;p) − B(s;p)B(−s;p) (6)

It is seen that the polynomial ∆(s;p) is even and of finite degree, and, hence, the number of its root branches on
the imaginary axis is finite. Also seen is that ∆(s;p) is independent of the delay time h. Thus, when ∆(s;p) is an
even s-polynomial with degree less than six, symbolic expression for its pure imaginary roots s = ±jω(p) exist. With
substitution of s = jω(p) into the characteristic quasipolynomial F (s;h,p), we can obtain ω-free defining equation for
the D-partition boundary ∂Dω.

3. Feedback Stabilization of Unstable FOPDT Systems

In this section, using the D-partition technique, we investigate the stabilization of the unity feedback control system
shown in Fig. 1 for first-order plus dead-time (FOPDT) unstable systems using P, PI, PD, and PID controllers. More
specially, we investigate the effect of the delay on the stabilizability of the feedback control system and determine the
entire sets of stabilizing P, PI, PD, and PID controllers.
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Let the FOPDT unstable process Gp(s) in Fig. 1 be given by

Gp(s) = Ke−ds

τs − 1 (7)

By scaling the time variable t to t/τ , we have the normalized transfer function

Gp(s) = Ke−hs

s − 1 (8)

where h = d/τ . Hence, if the Gc(s) in Fig. 1 is a PID controller whose normalized transfer function is given by

Gc(s) = Kp + Ki
s + Kds = Kds

2 + Kps + Ki
s (9)

where Kp, Ki and Kd denote the proportional, integral and derivative gains of the controller, the closed-loop transfer
function of the feedback control system is given by

GCL(s) = (kds2 + kps + ki)e−hs

s(s − 1) + (kds
2 + kps + ki)e−hs (10)

where kp = KKp, ki = KKi, and kd = KKd. In the sequel, kp, ki, and kd are assumed to be nonnegative.

3.1 Stabilization of FOPDT Unstable Systems Using P Controllers

Letting ki = 0 and kd = 0 in (10), we have the closed-loop characteristic equation:

F (s;h, kp) = (s − 1) + kpe
−hs ≡ A0(s) + A1(s)e−hs = 0 (11)

Substituting s = 0 into the above equation, we have the following D-partition boundary

∂D0 : kp = 1 (12)

Since the degree of A0(s) is higher than that of A1(s), there is no ∂D∞ boundary. To obtain the defining equation of the
D-partition boundary ∂Dω, we construct the ∆ polynomial as

∆(s) = (s + 1)(−s + 1)− k2
p = −s2 + (1 − k2

p) (13)

Notice that if kp > 1 the polynomial ∆(s) has a pair of complex-conjugate pure imaginary roots at

s = ±j
√

k2
p − 1, kp > 1 (14)

This pair of roots are also the zeros of the characteristic equation (11) if the following two equations are simultaneously
satisfied:

Fr = −1 + kp cos(h
√

k2
p − 1) = 0 (15a)

Fi =
√

k2
p − 1 − kp sin(h

√
k2

p − 1) = 0 (15b)

which are obtained by substituting (14) into (11). The above two equations are equivalent to the equation

F 2
r + F 2

i = 2kp

(
kp − cos(h

√
k2

p − 1) −
√

k2
p − 1 sin(h

√
k2

p − 1)
)

= 0 (16)

Since kp > 1, we obtain from (16) the defining equation of the D-partition boundary ∂Dω as

∂Dω : f(h, kp) = kp − cos(h
√

k2
p − 1) −

√
k2

p − 1 sin(h
√

k2
p − 1) = 0 (17)

Based on (15) and (17), we plot the D-partition boundaries ∂D0 and ∂Dω in Fig. 2. In this figure, solid and dash
curves are defined by Fr = 0 and Fi = 0, respectively, and the overlap of these curves are described by f = 0. It can
be seen from Fig. 2 that the maximum normalized delay time hmax of a FOPDT unstable process that can be stabilized
using a P controller is hmax = 1. This result has been previously pointed by several authors [15, 25].

3.2 Stabilization of FOPDT Unstable Systems Using PD Controllers

The closed-loop characteristic equation for PD-stabilization of the FOPDT unstable system is given by

F (s;h, kp, kd) = (s − 1) + (kds + kp)e−hs = 0 (18)

The corresponding ∆ polynomial is

∆(s) = (k2
d − 1)s2 + (1 − k2

p) (19)

It follows from (18) that the D-partition boundaries ∂D0 and ∂D∞ are described by

∂D0 : kp = 1 (20)

∂D∞ : kd = 1 (21)
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To derive the defining equation of the D-partition boundary ∂Dω, we solve (19) for x = s2:

x =
1 − k2

p

1 − k2
d

(22)

Hence, if 0 ≤ kd < 1 and kp > 1, ∆(s) has a pair complex-conjugate pure-imaginary zeros:

s = ±jω, ω =
√−x (23)

Notice that this pair of two zeros are also the zeros of the characteristic equation (18) if the following two equations are
satisfied simultaneously:

Fr = −1 + kp cos(hω) + ωkd sin(hω) = 0 (24a)

Fi = ω − kp sin(hω) + kdω cos(hω) = 0 (24b)

These two equations is equivalent to the single one:

F 2
r + F 2

i = 2(kd + kp)(kd − kp + (1 − kpkd) cos(hω) + ω(1 − k2
d) sin(hω)

k2
d − 1

(25)

Since under the conditions of 0 ≤ kd < 1 and kp > 1, the factors (kd + kp) and (k2
d − 1) never vanish, (25) is further

equivalent to

f(h, kp, kd) = kd − kp + (1 − kpkd) cos(hω) + (1 − k2
d)ω sin(hω) = 0 (26)

This equation is the desired defining equation of the D-partition boundary ∂Dω.

Using the D-partition boundary equations (20) and (26), we construct stability boundaries in the kp–h plane for
various values of the derivative gain kd. The constructed stability domains are plotted in Fig. 3. The stability domains
in kp–kd plane for various values of the delay time h are shown in Fig. 4.

It is observed form Fig. 3 that the maximum allowable time delay of FOPDT unstable systems that can be stabilized
by a PD controller is 1 + kd. To prove this, we note from (24) that the time delay h can be represented as

h = 1
ω tan−1

(
ω(kd + kp)
kp − kdω

2

)
(27)

Since h is a monotonically decreasing function of kp ∈ [1,∞), h attains its maximum of 1 + kd as kp → 1.

3.3 Stabilization of FOPDT Unstable Systems Using PI Controllers

Substituting kd = 0 into (10), we have the characteristic equation for the PI-controlled system as follows:

F (s;h, kp, ki) = s(s − 1) + (kps + ki)e−hs ≡ A0(s) + A(s)e−hs = 0 (28)

It can be seen that the D-partition boundary ∂D0 is described by the equation

∂D0 : ki = 0 (29)

Since the degree of A0(s) is greater than that of A1(s), the D-partition boundary ∂D∞ does not exist.

The ∆ polynomial associated with the characteristic equation (28) is given by

∆(s) = s4 + (k2
p − 1)s2 − k2

i (30)

Solving the equation ∆(s) = 0 for x = s2, we have

x± =
−(k2

p − 1)±
√

4k2
i + (k2

p − 1)2

2 (31)

It is seen that, for ki > 0, the solution x− is negative real while x+ is positive real. Hence, polynomial ∆(s) and
F (s;h, kp, ki) have common pure-imaginary zeros at

s = ±jω, ω =
√−x− (32)

provided that the following two equations are satisfied simultaneously:

Fr = ki cos(hω) − ω2 + kpω sin(hω) = 0 (33a)

Fi = −ki sin(hω) − ω + kpω cos(hω) = 0 (33b)

These two equations are equivalent to the following one:

f(h, kp, ki) = F 2
r + F 2

i

= 2k2
i + k2

p(k
2
p − 1 +

√
4k2

i + (k2
p − 1)2) − 2(ki + kp)ω2 cos(hω) + 2(ki − kpω

2)ω sin(hω)

= 0 (34)
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This equation defines the D-partition boundary ∂Dω.

By tracing the curves defined by (34) for various values of the delay time h, we plot the stability regions in the kp–ki

plane in Fig. 5. To investigate the effect of time delay on the stabilizability of unstable FOPDT processes, the stability
boundaries in the kp–h plane for various values of the integral gain ki are plotted in Fig. 6. It is seen from this figure
that the maximum delay time hmax of unstable FOPDT systems that can be stabilized by a PI controller depends on the
integral gain ki.

To obtain the dependency of hmax on the proportional gain ki, it is helpful to have the following two equations from
(33):

sin(hω) = kpω
3 − kiω

k2
i + k2

pω2 (35a)

cos(hω) = kiω
2 + kpω

2

k2
i + k2

pω2 (35b)

Taking differentiation with respect to kp on both sides of (35a), we obtain

(ω ∂h
∂kp

+ h ∂ω
∂kp

) cos(hω) =
(kiω − kpω

3)(2kpω
2 + 2kp2ω ∂ω

∂kp
)

(k2
i + k2

pω2)2
+

ω3 − ki
∂ω
∂kp

+ 3kpω
2 ∂ω
∂kp

k2
i + k2

pω2 (36)

Substituting (35b) into (36), we have the partial derivative

∂h
∂kp

=
2kpkiω

3 + k2
i ω3 − k2

pω5 + (k2
pkiω

2 − k3
i + 3kpk

2
i ω2 − hkpk

2
i ω2 − hk3

i ω2 + k3
pω4 − hk3

pω4 − hk2
pkiω

4) ∂ω
∂kp

(ki + kp)ω3(k2
i + k2

pω2)
(37)

where

h = 1
ω tan−1

(
kpω

2 − ki

kiω + kpω

)
(38a)

∂ω
∂kp

=
k3

p − kp + kp

√
4k2

i + (k2
p − 1)2

√
2
√

4k2
i + (k2

p − 1)2
√

k2
p − 1 +

√
4k2

i + (k2
p − 1)2

(38b)

The dash curves shown in Fig. 6 is the curves defined by ∂h/∂kp = 0.

3.4 Stabilization of FOPDT Unstable Systems Using PID Controllers

As given in (10), the closed-loop characteristic equation of the PID-controlled system shown in Fig. 1 is

F (s;h, kp, ki, kd) = s(s − 1) + (kds
2 + kps + ki)e−hs = 0 (39)

The ∆(s) polynomial corresponding to (39) is given by

∆(s) = (1 − k2
d)s

4 + (k2
p − 2kdki − 1)s2 − k2

i (40)

It follows from (39) that

∂D0 : ki = 0 (41)

∂D∞ : kd = 1 (42)

Solving the equation ∆(s) = 0 for x = s2 gives

x± =
−(k2

p − 2kdki − 1) ±
√

(k2
p − 2kikd − 1)2 + 4k2

i (1 − k2
d)

2(1 − k2
d)

(43)

Under the condition 1 − k2
d > 0, the polynomial ∆(s) has only the following pair of complex-conjugate pure-imaginary

roots:

s = ±jω, ω =
√−x− (44)

Substituting s = jω into (39), we obtain

Fr = ki cos(hω)− ω2 + ωkp sin(hω)− ω2kd cos(hω) = 0 (45a)

Fi = −ki sin(hω) − ω + kpω cos(hω) + kdω
2 sin(hω) = 0 (45b)

Hence, the D-partition boundary ∂Dω is described by

∂Dω : f(h, kp, ki, kd) = F 2
r + F 2

i (46)
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For illustration, we construct the stability domains in the kp–ki plane for h = 0.5 and various values of the derivative
gain kd. These domains are shown in Fig. 7. To investigate the effect of deadtime h on the stabilizability of FOPDT
unstable systems, the stability domains in kp–h plane for various values of the integral gain ki are constructed and shown
in Fig. 8. This figure shows that the maximum time delay hmax of the FOPDT unstable systems that can be stabilized
by a PID controller decreases as the value of the integral gain ki increase. In the following we derive expressions for
establishing the relation between hmax and ki.

First, we have from (45) the following relations:

sin(hω) = kpω
3 − kiω + kdω

3

k2
i + k2

pω2 − 2kikdω
2 + kdω

4 (47a)

cos(hω) = kpω
2 + kiω

2 − kdω
4

(k2
i + k2

pω2 − 2kikdω
2 + kdω

4)2
(47b)

Then, differentiating both sides of (47a) with respect to kp, we obtain

(ω ∂h
∂kp

+ h ∂ω
∂kp

) cos(hω) =
(kiω − kpω

3 − kdω
3)[2kpω

2 + (2k2
pω − 4kiddω + 4k2

dω
3) ∂ω

∂kp
]

(k2
i + k2

pω2 − 2kikdω
2 + kdω

4)2

+
ω3 + (3kpω

2 − ki + 3kdω
2) ∂ω

∂kp

k2
i + k2

pω2 − 2kikdω
2 + kdω

4

(48)

By using (47b) for cos(hω) and making rearrangement, the derivative ∂h/∂kp is given by

∂h
∂kp

=
c0 + c1

∂ω
∂kp

ω3(kdω
2 − kp − ki)(k2

i + k2
pω2 − 2kikdω

2 + kdω
4)

(49)

where

∂ω
∂kp

=
kp − k3

p + 2kpkikd − kp

√
4k2

i (1 − k2
d)2 + (k2

p − 2kikd − 1)2

2ω(k2
d − 1)

√
4k2

i (1 − k2
d)2 + (k2

p − 2kikd − 1)2
(50a)

c0 = k2
pω5 + 2kpkiω

5 + 2kikdω
5 − 2kpkiω

3 − kiω
3 − k2

dω7 (50b)

c1 = k3
i − k2

pkiω
2 + 3kpk

2
i ω2 + hkpk

2
i ω2 − k2

i kdω
2 + hk3

i ω2 − k3
pω4

+ hk3
pω4 − k2

pkdω
4 + hk2

pkiω
4 + 2kpkikdω

4 − 2hkpkikdω
4 − kik

2
dω4 − 3hk2

i kdω
4

− hk2
pkdω

6 + kpk
2
dω6 + hkpk

2
dω6 + k3

dω6 + 3hkik
2
dω6 − hk3

dω6 (50c)

and
h = 1

ω tan−1

(
kpω

2 − ki + kdω
2

kpω + kiω − kdω
3

)
(50d)

By tracing the curves defined by ∂h/∂kp = 0, the diagram of hmax versus ki for various values of the derivative gain kd

are shown in Fig 9. As it can be seen, the larger the derivative gain used the larger the maximum delay time hmax.

5. Conclusions

The D-partition technique has been applied to the problem of stabilizing FOPDT unstable systems using PID
controllers. The main contribution of the paper lies in deriving analytical expressions for the D-partition boundaries.
Based on these expressions, we have investigated the stabilizability of P-, PI-, PD-, and PID-controlled FOPDT unstable
systems. These explicit D-partition equations greatly facilitate the construction of the entire set of stabilizing controller
parameters. The presented approach to the stabilizability analysis of PID-controlled FOPDT unstable systems is notably
simpler than the classical D-partition technique [15] and the method of using Hermite-Biehler theorem [19-22].
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Fig. 1. Feedback control system.

Fig. 2. Stability domain in kp-h plane for the sta-
bilization of FOPDT unstable systems using a P con-
troller, Eq. (15a) gives solid curves, Eq. (15b) gives
dash curves, and Eq. (17) gives the curves represented
by the overlap of solid and dash curves.

Fig. 3. Stability boundaries in kp-h plane for us-
ing kd = 0, 0.2, 0.4, 0.6, 0.8 in the PD stabilization of
FOPDT unstable processes.

Fig. 4. Stability domains in kp-kd plane for the PD sta-
bilization FOPDT unstable processes with various val-
ues of delay time h.

Fig. 5. Stability domains in kp-ki plane for the PI stabi-
lization of FOPDT unstable processes with various val-
ues of delay time h.
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Fig. 6. Stability domains in kp-h plane for the PI stabi-
lization of FOPDT unstable processes with various val-
ues of delay time ki.

Fig. 7. Stability domains in kp-ki plane for using vari-
ous values of kd in the PID stabilization of an FOPDT
unstable process having delay time h = 0.5.

Fig. 8. Stability domains in kp-h plane for using kd =
0.5 and various values of ki in the PID stabilization of
FOPDT unstable processes.

Fig. 9. The plot of the maximum stabilizable delay
time versus ki for using different values of kd in the PID
stabilization of FOPDT unstable processes.
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