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Abstract

We present a result on the existence of a common
quadratic Lyapunov function for a pair of linear time-
invariant systems. We show that this result charac-
terises, generalises, and provides new perspectives on
several well-known stability results. In particular, new
time-domain formulations of the Circle Criterion and
Meyer’s extension of the KYP lemma are presented.

1 Introduction

In this paper we consider the problem of determining
necessary and sufficient conditions for the existence
of a common quadratic Lyapunov function (CQLF)
for a pair of stable linear time-invariant (LTI) systems.
This problem arises in many areas of systems theory;
in particular, in the study of non-linear Lur’e type
systems and in the study of switched linear systems.
While the general algebraic problem is extremely dif-
ficult, necessary and sufficient conditions for various
system classes have been obtained by reposing the
problem in the form of a linear matrix inequality, or
(by means of the positive real lemma) as a frequency-
domain optimization. We present a new approach
to solving this problem. By formulating the CQLF
existence problem in a set-theoretic context, and by
making simplifying assumptions, we obtain a simple
eigenvalue condition for the existence of a CQLF for
a pair of LTI systems. We show that well known sta-
bility criteria are characterised by this result. In par-
ticular, we obtain a new time-domain formulation of
the circle criterion.

2 Mathematical preliminaries and nota-
tion

In this section we present preliminary results that are
useful in deriving the main contribution of this pa-
per. Throughout, the following notation is adopted:
R andC denote the fields of real and complex num-
bers respectively;Rn denotes then-dimensional real
Euclidean space;Rn×n denotes the space ofn × n
matrices with real entries;xi denotes theith compo-
nent of the vectorx in Rn; aij denotes the entry in the
(i, j) position of the matrixA in Rn×n.

The main results of this paper are based upon Theo-
rem 2.1. The concepts of weak quadratic Lyapunov
functions, strong quadratic Lyapunov functions, and
matrix pencils, are central to the statement of this the-
orem. Where appropriate, proofs of individual theo-
rems and lemmas are given in the appendix.

(i) Strong and weak CQLFs : Consider the set of
LTI systems

ΣAi : ẋ = Aix, i ∈ {1, 2, ...M}. (1)

whereM is finite and theAi, i ∈ {1, 2, ...M},
are constant Hurwitz matrices inRn×n (i.e. the
eigenvalues ofAi lie in the open left half of the
complex plane and hence theΣAi are stable LTI
systems). Let the matrixP = PT > 0, P ∈
Rn×n, be a simultaneous solution to the Lya-
punov equations

AT
i P + PAi = −Qi, i ∈ {1, 2, ...M}.(2)

Then,V (x) = xT Px is a strong quadratic Lya-
punov function for the LTI systemΣAi

if Qi >
0, and is said to be astrong CQLFfor the set
of LTI systemsΣAi , i ∈ {1, ...,M}, if Qi > 0
for all i. Similarly, V (x) is a weak quadratic
Lyapunov function for the LTI systemΣAi

if
Qi ≥ 0, and is said to be aweak CQLFfor the set
of LTI systemsΣAi

, i ∈ {1, ...,M}, if Qi ≥ 0
for all i.



(ii) The matrix pencil σγ[0,∞)[A1, A2] : The ma-

trix pencil σγ[0,∞)[A1, A2], for A1, A2 ∈
Rn×n, is the parameterised family of matri-
ces σγ[0,∞)[A1, A2] = A1 + γA2, γ ∈
[0,∞). We say that the pencil isnon-singular
if σγ[0,∞)[A1, A2] is non-singular for allγ ≥ 0.
Otherwise the pencil is said to besingular. Fur-
ther, a pencil is said to beHurwitz if its eigen-
values are in the open left half of the com-
plex plane for allγ ≥ 0. It is important for
much of what follows to note that whenA1 is
non-singular, the pencilσγ[0,∞)[A1, A2] is non-
singular if and only if the productA−1

1 A2 has no
negative eigenvalues.

The next lemma describes a simple necessary condi-
tion, expressed in terms of matrix pencils, for a strong
CQLF to exist for two stable LTI systems. This result
concerns generaln-dimensional systems and is well
known in the literature. For instance, see [2].

Lemma 2.1 If the stable LTI systemsΣA1 , ΣA2

have a strong CQLF, then both of the matrix pen-
cils σγ[0,∞)[A1, A2] and σγ[0,∞)[A−1

1 , A2] are non-
singular. Equivalently, the matrix productsA−1

1 A2,
A1A2 have no negative eigenvalues.

It is important to note that the existence of a strong
CQLF for a family of LTI systems is invariant under a
change of basis transformation. This is recorded in the
following straightforward and well-known lemma, the
proof of which involves verifying that ifT ∈ Rn×n

is non-singular, thenAT P + PA < 0 if and only if
(T−1AT )T (TT PT ) + (TT PT )(T−1AT ) < 0.

Lemma 2.2 Let ΣA1 , ΣA2 , . . . ,ΣAM
be a family of

stable LTI systems and letT be a non-singular matrix
in Rn×n. For i ∈ {1, . . . M} , defineÃi = T−1AiT .
Then the systemsΣA1 , ΣA2 , . . . ,ΣAM

have a strong
CQLF if and only if the systemsΣÃ1

, ΣÃ2
, . . . ,ΣÃM

have a strong CQLF

The next two lemmas are concerned with pairs of sys-
tems whose system matrices differ by rank 1. First
of all we note that for such systems, one of the two
pencils in Lemma 2.1 can never be singular. Proofs
of Lemmas 2.3 and 2.4 can be found in [5] and [8]
respectively.

Lemma 2.3 Let A,A + B ∈ Rn×n be Hurwitz with
rank(B) = 1. Then the matrix productA−1(A + B)
has no negative eigenvalues. Equivalently, the matrix
pencilσγ[0,∞)[A,A + B] is non-singular.

Lemma 2.4 Let A,B ∈ Rn×n with A Hurwitz and
rank(B) = 1. Suppose that for someλ0 > 0, the ma-
trix product A(A + λ0B) has a negative eigenvalue
(the pencilσγ[0,∞)[A−1, A + λ0B] is singular). Then
for all λ ≥ λ0, the productA(A + λB) has a neg-
ative eigenvalue (the pencilσγ[0,∞)[A−1, A + λB] is
singular).

The following theorem, first proven in [10], considers
pairs of stable LTI systems for which no strong CQLF
exists, but for which a weak CQLF exists withQi,
i ∈ {1, 2}, of rankn−1 and establishes a set of easily
verifiable algebraic conditions, that are satisfied when
such a weak CQLF exists. It will be later shown that
these conditions are found to play an important role
in the question of the existence of strong CQLF’s for
general LTI systems.

Theorem 2.1 [10] Let A1, A2 be two Hurwitz matri-
ces inRn×n such that a solutionP = PT ≥ 0 exists
to the non-strict Lyapunov Equations

AT
i P + PAi = −Qi ≤ 0, i ∈ {1, 2} (3)

for some positive semi-definite matricesQ1, Q2 both
of rank n − 1. Furthermore suppose that no strong
CQLF exists forΣA1 and ΣA2 . Under these con-
ditions, at least one of the pencilsσγ[0,∞)[A1, A2],
σγ[0,∞)[A1, A

−1
2 ] is singular. Equivalently, at least

one of the matrix productsA1A2 and A1A
−1
2 has a

real negative eigenvalue.

The main aim of the rest of the paper is to show
how this result provides a unifying framework for two
well-known quadratic stability criteria.

Corollary 2.1 LetA1, A2 be two Hurwitz matrices in
Rn×n. A necessary condition for the existence of a
strong CQLF is that the matrix productsA1A(k) and
A1A(k)−1 have no real negative eigenvalues for all
k ∈ [0, 1] whereA(k) = A1 + k(A2 −A1).

3 Some new perspectives on old results

The CQLF existence problem for a finite number of
LTI systems is recognised as an analytical problem
of extreme difficulty. Although this problem can be
solved efficiently numerically using linear matrix in-
equalities [1], closed-form necessary and sufficient
conditions for the existence of a CQLF are currently
only known for a few special cases of system classes;
in particular, for the case of pairs of second order LTI
systems [11], and for pairs ofn-dimensional systems
whose systems matrices differ by a rank-1 matrix. In
this section we show that both of these cases is a spe-
cial case of Theorem 2.1. Further, this analysis leads
to a new formulation of the SISO circle criterion.



3.1 Second order systems

In this section we illustrate the use of Theorem 2.1.
We let ΣA1 and ΣA2 be stable LTI systems with
A1, A2 ∈ R2×2. The following facts follow trivially
for second order systems.

(a) If a strong CQLF exists forΣA1 andΣA2 then the
pencils σγ[0,∞)[A1, A2] and σγ[0,∞)[A1, A

−1
2 ]

are necessarily Hurwitz.

(b) If A1 and A2 satisfy the non-strict Lyapunov
equations (3) then the matricesQ1 andQ2 are
both rank 1 (rankn− 1).

(c) If a strong CQLF does not exist forΣA1 andΣA2

then a positive constantd exists such that a strong
CQLF exists forΣA1−dI andΣA2 . By continuity
a non-negatived1 < d exists such thatA1 − d1I
andA2 satisfy Theorem 2.1 and one of the pen-
cils σγ[0,∞)[A1 − d1I,A2] and σγ[0,∞)[A1 −
d1I,A−1

2 ] is necessarily singular. Hence, it fol-
lows that one of the pencilsσγ[0,∞)[A1, A2] and
σγ[0,∞)[A1, A

−1
2 ] is not Hurwitz.

Items (a)-(c) establish the following facts. Given
two stable second order LTI systemsΣA1 and
ΣA2 , a necessary condition for the existence of a
strong CQLF is that the pencilsσγ[0,∞)[A1, A2] and
σγ[0,∞)[A1, A

−1
2 ] are Hurwitz. Conversely, a nec-

essary condition for the non-existence of a strong
CQLF is that one of the pencilsσγ[0,∞)[A1, A2] and
σγ[0,∞)[A1, A

−1
2 ] is not Hurwitz. Together with The-

orem 2.1 these conditions yield the following known
result [11, 2]:

A necessary and sufficient condition for the LTI
systemsΣA1 andΣA2 , A1, A2 ∈ R2×2, to have a

strong CQLF is that the pencilsσγ[0,∞)[A1, A2] and
σγ[0,∞)[A1, A

−1
2 ] are Hurwitz.

3.2 General systems: The SISO Circle Criterion

The result presented in Theorem 3.1 below is con-
cerned with the problem of determining necessary and
sufficient conditions for a strong CQLF to exist for
two LTI systemsΣA, ΣA−gkT with A andA − gkT

in companion form. The result of this theorem can be
thought of as a time-domain formulation of the circle
criterion. Our main goal in this section is to indicate
how Theorem 2.1 above can provide a general setting
in which to approach the problem of strong CQLF ex-
istence for pairs of LTI systems. With this in mind, the
proof we present below illustrates the general nature
of the conditions described in Theorem 2.1 by demon-
strating that known results for second order systems

and those systems covered by the circle criterion can
be treated within the framework of the Theorem.

Before stating Theorem 3.1 we make the following
preliminary comments.

Preliminaries to Theorem 3.1:

(i) Because bothA andA − gkT are in companion
form, we may write;

A =


0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 ,

g =


0
0
...
0
1

 , k =


k0

k1

...
kn−2

kn−1

 .

(ii) If we define the rational functionΓ(ω) by

Γ(ω) = 1 + Re{kT (jωI −A)−1g} (4)

then it follows from the circle criterion that there
is a strong CQLF forΣA, ΣA−gkT if and only
if Γ(ω) > 0 for all real ω([4, 7, 12]). Fur-
thermore, if we defineλc to be the supremum
of thoseλ > 0 such thatΣA,ΣA−λgkT have
a strong CQLF, then (providedλc < ∞), for
Γc(ω) = 1 + Re{λck

T (jωI − A)−1g} we have
thatΓc(ω) ≥ 0 for all realω andΓc(ω0) = 0 for
someω0.

(iii) We shall need to know how the coefficients of
the numerator ofΓ are related to the entries ofA
andk. As pointed out by Kalman in [4], for any
vectork in Rn;

kT (sI −A)−1g =
k0 + k1s + . . . + kn−1s

n−1

det(sI −A)
(5)

and from this it follows that we can write

Γ(ω) =
p1(ω)

det(ω2I + A2)

wherep1 is a polynomial inω of degree2n. Fur-
thermore, asdet(sI − A) = a0 + a1s + . . . +
an−1s

n−1 + sn, we can write

p1(ω) = [det(ω2I + A2)]
+ [k0a0 + (−k0a2 + k1a1 − k2a0)ω2

+ (k0a4 − k1a3 + k2a2 − k3a1 + k4a0)ω4

+ . . . + (−kn−2 + kn−1an−1)w2n−2]. (6)



Note that only even powers ofω appear inp1(ω)
so that we can also considerp1 to be a polyno-
mial in ω2. Now, it follows from (6) that for a
given A ∈ Rn×n in companion form, the rela-
tionship between the entries of the vectork and
the coefficients ofp1 (considered as a polynomial
in ω2) is described by the affine mapping (from
Rn to Rn)

T (k) = Θ(A) + L(A)k (7)

whereΘ is a vector that depends on the entries of
A andL(A) is the linear map given by the matrix
(in Rn×n)

a0 0 0 . . . 0 0
−a2 a1 −a0 . . . 0 0

...
...

...
...

0 0 0 . . . −1 an−1

 (8)

(iv) Now note that the determinant ofL(A) is not
independent of the entries ofA, and hence is
not uniformly zero (for instance, the product
term a0a1a2 . . . an−1 can only appear once in
the expression for the determinant). Thus, for
any companion matrixA such thatL(A) is sin-
gular, it is possible to find another matrixA′,
also in companion form, arbitrarily close toA
with L(A′) invertible by perturbing the entries
a0, a1, . . . , an−1.

Theorem 3.1 LetA, A− gkT be two Hurwitz matri-
ces in companion form inRn×n whereg, k are column
vectors inRn. Assume that the matrixL(A) defined
by (8) is non-singular. Then a necessary and sufficient
condition for a strong CQLF to exist for the systems
ΣA, ΣA−gkT is that the matrix productA(A − gkT )
has no negative eigenvalues or equivalently, that the
matrix pencilσγ[0,∞)[A−1, A− gkT ] is non-singular.

Comments on Theorem 3.1:

(i) It is important to point out that the assumption
thatL(A) is invertible is not a very strong restric-
tion onA. In fact if we identify the companion
matrix

A =


0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1


with the vector(a0, a1, . . . , an−1)T in Rn, then
the set of those companion matrices for which
L(A) is singular would have Lebesgue measure
zero.

(ii) Moreover from a practical point of view, if you
have two systems in companion form, it is a sim-
ple matter to check ifL(A) is invertible or not,
and if not to adjust the parameters ofA to make
L(A) invertible.

(iii) Theorem 3.1 can also be extended to the case
where the matricesA and A − gkT are not
assumed to be in companion form by follow-
ing Meyer’s proof of the extended Kalman
Yakubovich Popov lemma given in [6] - corre-
sponding to the general case of systems differing
by a rank one perturbation.

The crucial point in the proof of Theorem 3.1 is pro-
vided by the following lemma which also indicates the
relevance of Theorem 2.1 in this context. In the lemma
we consider the situation where two systems have just
ceased to have a CQLF and we show that under these
circumstances there are two systems arbitrarily close
to the original systems that satisfy the conditions of
Theorem 2.1.

Lemma 3.1 Let A,A − gkT ∈ Rn×n be Hurwitz
matrices in companion form withL(A) invertible.
Suppose that there is no strong CQLF forΣA and
ΣA−gkT . Furthermore suppose that there is a strong
CQLF forΣA andΣA−λgkT for all λ with 0 < λ < 1.
Then given anyε > 0, there is somek′ ∈ Rn

with ‖k − k′‖ < ε for which there exists a matrix
P = PT ≥ 0 satisfying

AT P + PA = Q1 ≤ 0
(A− gk′T )T P + P (A− gk′T ) = Q2 ≤ 0

with rank(Q1) = n− 1, rank(Q2) = n− 1.

The proof of Lemma 3.1 is quite long and involved.
For details, consult the technical report [8].

Comment: It follows from Theorem 2.1 and Lemma
2.3 that each of the matrix productsA(A− gk′T ) oc-
curring in the above lemma has a negative real eigen-
value. This in turn implies by the continuous depen-
dence of the eigenvalues of a matrix upon its entries
that the matrix productA(A − gkT ) has a negative
real eigenvalue.

Proof of Theorem 3.1:

If there is a strong CQLF for the systemsΣA, ΣA−gkT

given byV (x) = xT Px, then it follows from Lemma
2.1 that the productA(A−gkT ) has no negative eigen-
value.

Conversely, suppose there is no strong CQLF for
ΣA, ΣA−gkT . Then it follows from the continu-
ous dependence of the eigenvalues of a matrix on



the entries of the matrix that for small enough val-
ues of λ > 0, the systemsΣA, ΣA−λgkT will
have a strong CQLF. Defineλc = sup{λ > 0 :
ΣA andΣA−λgkT have a strong CQLF}. Thenλc ≤
1 and ΣA and ΣA−λcgkT satisfy the conditions of
Lemma 3.1. Thus it follows from the comment above
that the matrix productA(A − λcgkT ) has a nega-
tive real eigenvalue. It now follows immediately from
Lemma 2.4 that the matrix productA(A− gkT ) has a
negative real eigenvalue.Q.E.D

4 General Case and the KYP Lemma in
the time domain

In view of the preceding results and their connec-
tion with the SISO circle criterion, it is natural to ask
whether or not the generalized Kalman-Yakubovich-
Popov (KYP) lemma due to Meyer [6] admits a simi-
lar time-domain formulation. We provide the answer
to this question in this section.

Meyer’s result established that for two stable LTI sys-
temsΣA, ΣA−bcT A ∈ Rn×n, b, c ∈ Rn, a sufficient
condition for the existence of a CQLF is given by

1 + Re{cT (jωI −A)−1b} > 0 for all ω ∈ R. (9)

Note that no assumption aboutA andA − bcT being
in companion form is made here (hence the change
in notation to avoid confusion). We shall now show
that the condition (9) is also necessary for the exis-
tence of a CQLF; in fact the matrix product condition
described in Theorem 3.1 is equivalent to (9). This
extends the work presented in [9] where an equivalent
time-domain formulation of the SISO circle criterion
was given.

The following standard lemma is needed for the proof
of Theorem 4.1. For details consult [3].

Lemma 4.1 Let A ∈ Rn×n, b, c ∈ Rn. Then for
any complexs, det(cT (sI − A)−1b) is equal to the
expression

det(sI − (A− bcT ))− det(sI −A)
det(sI −A)

.

Theorem 4.1 Let A ∈ Rn×n, b, c ∈ Rn be such that
A and A − bcT are Hurwitz matrices. Suppose that
A(A − bcT ) has no negative eigenvalues. Then the
condition (9) holds.

Proof: Suppose thatA(A − bcT ) has no negative
eigenvalues. Then asA andA − bcT are both Hur-
witz their determinants will have the same sign, so it
follows that for allλ > 0

det(λI − (A− bcT )A) = det(λI −A2 − bcT A) > 0

Without loss of generality, we may assume thatbcT is
in one the Jordan canonical forms

(i) B =


c 0 . . . 0
0 . . . . . . 0
...
0 . . . . . . 0

 , (10)

(ii) B =


0 . . . . . . 0
1 . . . . . . 0
...
0 . . . . . . 0

 .

If bcT is in either of the above forms then it follows
that the expressions

det(λI −A2 − bcT A)

and

Re{det(λI −A2 − bcT A−
√

λjbcT )},

are identical. Thus, writingλ = ω2 we have that for
all realω

Re{det(ω2I −A2 − bcT A− jωbcT )} > 0. (11)

It now follows, after a short calculation ([8]) that for
all ω ∈ R

1 + Re{det(jωI − (A− bcT ))− det(jωI −A)
det(jωI −A)

} > 0 (12)

and hence from Lemma 4.1 that for all realω

1 + Re{cT (jωI −A)−1b} > 0

as claimed. Q.E.D.

Comments on Theorem 4.1

(i) The above result establishes that condition (9) is
necessary as well as sufficient for the existence
of a CQLF forΣA, ΣA−bcT . To the best of the
authors’ knowledge, this is a new result. To see
this, supposeΣA, ΣA−bcT have a strong CQLF.
Then it follows from Lemma 2.1 that the prod-
uctA(A− bcT ) has no negative eigenvalues and
hence by Theorem 4.1 condition (9) must hold.
Note that this also establishes thatA(A − bcT )
having no negative eigenvalues is an equivalent
time-domain formulation of the condition (9).

(ii) If the matrix productA(A−bcT ) has no negative
eigenvalues then from the above theorem and the
original result of Meyer [6], it follows thatΣA

andΣA−bcT have a strong CQLF. This together
with Lemma 2.1 gives the following necessary
and sufficient condition for a CQLF to exist for
two stable LTI systems differing by rank one.



Theorem 4.2 Let A,B ∈ Rn×n with
rank(B) = 1 and A,A + B Hurwitz. Then
there is a strong CQLF for the stable LTI systems
ΣA andΣA+B if and only if the matrix product
A(A + B) has no negative eigenvalues.

5 Conclusions

In this paper, we have presented a result on common
quadratic Lyapunov functions, namely Theorem 2.1,
and demonstrated that a number of well-known CQLF
existence criteria fall within the framework of this
result. Considerable empirical evidence indicates to
the authors that other system classes will admit treat-
ment within this same framework, and that necessary
and sufficient conditions for CQLF existence for these
classes may be obtained using Theorem 2.1. The de-
termination of such system classes is currently the
subject of ongoing research by the authors and any
results obtained in this direction will be reported in
future publications.
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