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In this section we present preliminary results that are

Abstract useful in deriving the main contribution of this pa-
per. Throughout, the following notation is adopted:

We present a result on the existence of a comménandC denote the fields of real and complex num-
quadratic Lyapunov function for a pair of linear timeers respectivelyR™ denotes the:-dimensional real
invariant systems. We show that this result charaBuclidean spaceR™*" denotes the space af x n
terises, generalises, and provides new perspectives Batrices with real entries;; denotes the” compo-
several well-known stability results. In particular, neW€nt of the vectoz in R™; a;; denotes the entry in the
time-domain formulations of the Circle Criterion and?:J) Position of the matrix4 in R™*".
Meyer's extension of the KYP lemma are presentedThe main results of this paper are based upon Theo-
rem 2.1. The concepts of weak quadratic Lyapunov
1 Introduction functions, strong quadratic Lyapunov functions, and
matrix pencils, are central to the statement of this the-
In this paper we consider the problem of determiningrem. Where appropriate, proofs of individual theo-
necessary and sufficient conditions for the existengems and lemmas are given in the appendix.
of a common quadratic Lyapunov function (CQLF)
for a pair of stable linear time-invariant (LTI) systems. (j) Strong and weak CQLFs : Consider the set of
This problem arises in many areas of systems theory, [T systems
in particular, in the study of non-linear Lur'e type
systems and in the study of switched linear systems. Ya, 0@ = Aw,ie{l,2,.M}. (1)
While the general algebraic problem is extremely dif-
ficult, necessary and sufficient conditions for various
system classes have been obtained by reposing the
problem in the form of a linear matrix inequality, or
(by means of the positive real lemma) as a frequency-
domain optimization. We present a new approach
to solving this problem. By formulating the CQLF
existence problem in a set-theoretic context, and by
making simplifying assumptions, we obtain a simple ATP + PA;
eigenvalue condition for the existence of a CQLF for
a pair of LTI systems. We show that well known sta-  Then,V(z) = =" Pz is a strong quadratic Lya-
bility criteria are characterised by this result. In par-  punov function for the LTI syster4, if Q; >
ticular, we obtain a new time-domain formulation of ~ 0, and is said to be atrong CQLFfor the set
the circle criterion. of LTI systemsX,, i € {1,..., M}, if Q; > 0
for all <. Similarly, V'(z) is a weak quadratic
Lyapunov function for the LTI systent,, if
Q; > 0, and is said to beweak CQLFor the set
of LTI systemsX 4,, ¢ € {1,....M},if Q; > 0
for all s.

where)M is finite and thed;, i € {1,2,..M},
are constant Hurwitz matrices " *"™ (i.e. the
eigenvalues of4; lie in the open left half of the
complex plane and hence thk,, are stable LTI
systems). Let the matri® = P” >0, P ¢
R™>*" be a simultaneous solution to the Lya-
punov equations

— Qi ie{1,2,..M}Q2)



(i) The matrix pencil (o «)[A1, A2] : The ma- Lemma2.4LetA, B € R"*" with A Hurwitz and
trix pencil o9 0)[A1, 42], for A, A, € rc_mk(B) = 1. Suppose that for som)eg_> 0,.the ma-
R™*" is the parameterised family of matri-trix product A(A + Ao B) has a negative eigenvalue
CeS 00,00 A1, A2] = Ay + yAs, v € (the pencilawo_yoo)[A—l,AJr)\oB] is singular). Then
[0,00). We say that the pencil ison-singular for all A > o, the productA(A + AB) has a neg-
if 00.00)[A1, A2] i non-singular for ally > 0. ative eigenvalue (the peneil o o) [A™", A+ ABJ is
Otherwise the pencil is said to Isingular. Fur- singular).
ther, a pencil is said to bEurwitz if its eigen-
values are in the open left half of the comThe following theorem, first proven in [10], considers
plex plane for ally > 0. It is important for pairs of stable LTI systems for which no strong CQLF
much of what follows to note that whend; is exists, but for which a weak CQLF exists with;,
non-singular, the pencit, |y ..)[A1, A2] is non- i € {1,2}, of rankn — 1 and establishes a set of easily
singular if and only if the produoﬁl—lAQ has no Verifiable algebraic conditions, that are satisfied when
negative eigenvalues. such a weak CQLF exists. It will be later shown that

these conditions are found to play an important role

. i in the question of the existence of strong CQLF's for
The next lemma describes a simple necessary Cor‘&é'neral LTI systems.

tion, expressed in terms of matrix pencils, for a strong
CQLF to exist for two stable LTI systems. This resulﬁ.

al-di ional : di I heorem 2.1 [10] Let A,, A5 be two Hurwitz matri-
CO”Ce”.‘S gengr - |men3|o_na Systems and is Wellooq inrnxn sych that a solutiol® = PT > ( exists
known in the literature. For instance, see [2].

to the non-strict Lyapunov Equations

T .
Lemma 2.1 If the stable LTI system&a,, Y4, ATP+PA==Qi <0, i €{1,2} ®)
have a strong CQLF, then both of the matrix perfor some positive semi-definite matria@s, Q- both
Cils 074(0,00)[A1, A2] and o[, o0)[A7 ', A2] are non-  of rankn — 1. Furthermore suppose that no strong
singular. Equivalently, the matrix producte‘s;lAg, CQLF exists forX 4, and X 4,. Under these con-
A; A, have no negative eigenvalues. ditions, at least one of the pencits, |y )[A1, A2],

040,00 [A1, Aj 1] is singular. Equivalently, at least

It is important to note that the existence of a strong® Of the matrix productsl; A, and A4, ' has a
CQLF for a family of LTI systems is invariant under 4 2! negative eigenvalue.

change of basis transformation. This is recorded in the

following straightforward and well-known lemma, theThe main aim of the rest of the paper is to show
proof of which involves verifying that it € R how this result provides a unifying framework for two
is non-singular, them” P + PA < 0 if and only if Well-known quadratic stability criteria.
(T—'AT)T(TTPT) + (TT PT)(T~'AT) < 0.

Corollary 2.1 LetA;, A; be two Hurwitz matrices in
) R™*™. A necessary condition for the existence of a
Lemma2.2 Let¥y,, Ya,,...,%a, beafamily of syong CQLF is that the matrix product$; A(k) and
stable LTI systems and Iétbe a non-singular matrix 4, 4(k)~! have no real negative eigenvalues for all
inR™ " Fori e {1,... M}, defined; = T AT. ¢ [0, 1] whereA(k) = A, + k(As — Ay).

Then the systemS,4,, X4,,...,%4,, have a strong
CQLFif and only if the systends ; , X 4 ,...,% .
have a strong CQLF M 3 Some new perspectives on old results

The CQLF existence problem for a finite number of
The next two lemmas are concerned with pairs of sykT| systems is recognised as an analytical problem
tems whose system matrices differ by rank 1. Firef extreme difficulty. Although this problem can be
of all we note that for such systems, one of the twaolved efficiently numerically using linear matrix in-
pencils in Lemma 2.1 can never be singular. Proogfjualities [1], closed-form necessary and sufficient
of Lemmas 2.3 and 2.4 can be found in [5] and [g}onditions for the existence of a CQLF are currently
respectively. only known for a few special cases of system classes;

in particular, for the case of pairs of second order LTI

] _ systems [11], and for pairs ef-dimensional systems

Lemma 2.3 LetA, A+ B € R"*" be Hurwitz with - \yhose systems matrices differ by a rank-1 matrix. In
rank(B) = 1. Then the matrix product ' (A + B)  this section we show that both of these cases is a spe-
has no negative eigenvalues. Equivalently, the matiy| case of Theorem 2.1. Further, this analysis leads
pencilo,jo,o)[A4, A + BJ is non-singular. to a new formulation of the SISO circle criterion.



3.1 Second order systems and those systems covered by the circle criterion can

) _ _ be treated within the framework of the Theorem.
In this section we illustrate the use of Theorem 2.1.

We let 4, and 3,4, be stable LTI systems with Before stating Theorem 3.1 we make the following
Ay, Ay € R2%2. The following facts follow trivially Preliminary comments.

for second order systems.

Preliminaries to Theorem 3.1:

(a) Ifastrong CQLF exists far 4, andX 4, then the
PeNCils oo o) [A1, A2] and o9 «)[A41, A3 ']
are necessarily Hurwitz.

(b) If A; and As satisfy the non-strict Lyapunov

equations (3) then the matricéy and Q- are

both rank 1 (ranks — 1).

(c) Ifastrong CQLF does not exist fél4, andX 4,

then a positive constadtexists such that a strong

CQLF exists forxX 4, — 47 andX 4,. By continuity

a non-negativel; < d exists such thatl; — d, I

and A, satisfy Theorem 2.1 and one of the pen-

cils U’y[O,oo)[Al — dlI7A2] and Uy[O,oo)[Al —

d I, A;'] is necessarily singular. Hence, it fol-

lows that one of the pencils, |y )[A41, A2] and

0. [0,00)[A1, A3 '] is not Hurwitz

Items (a)-(c) establish the following facts. Given
two stable second order LTI systens,, and

> 4,, @ necessary condition for the existence of a
strong CQLF is that the pencits, |y »)[A1, A2] and
aﬂom)[Al,A;l] are Hurwitz. Conversely, a nec-
essary condition for the non-existence of a strong
CQLF is that one of the pencils, [y, ..)[A1, A2] and

04 0,00)[A1, A3 '] is not Hurwitz. Together with The-
orem 2.1 these conditions yield the following known
result [11, 2]:

A necessary and sufficient condition for the LTI
systems 4, andX4,, A, Ay € R?*2 to have a
strong CQLF is that the pencils, [y ..)[A1, A2] and
0. [0,00) [A1, A5 '] are Hurwitz.

3.2 General systems: The SISO Circle Criterion

The result presented in Theorem 3.1 below is con-
cerned with the problem of determining necessary and
sufficient conditions for a strong CQLF to exist for
two LTI systemsY 4, $4_ e With A and A — gk”

in companion form. The result of this theorem can be
thought of as a time-domain formulation of the circle
criterion. Our main goal in this section is to indicate
how Theorem 2.1 above can provide a general setting
in which to approach the problem of strong CQLF ex-
istence for pairs of LTI systems. With this in mind, the
proof we present below illustrates the general nature
of the conditions described in Theorem 2.1 by demon-
strating that known results for second order systems

(i) Because botid andA — gk” are in companion

form, we may write;

0 1 0 0
0 0 1 0
A= ;
0 0 0 1
—ap —aip —a2 —0an—-1
0 ko
0 k1
g = ,k = .
0 kn—Q
1 kn—l

(i) If we define the rational functiol (w) by

I'(w) =1+ Re{kT (jwl — A)"1g} (4)
then it follows from the circle criterion that there
is a strong CQLF fo4, ¥ 4_g,r if and only

if T'(w) > 0 for all real w([4, 7, 12]). Fur-
thermore, if we define\. to be the supremum
of thoseA > 0 such that¥ 4, ¥ ,_,,,r have
a strong CQLF, then (provided. < oc), for
[o(w) = 1+ Re{AAT (jwI — A)~1g} we have
thatI'.(w) > 0 for all realw andT'.(wy) = 0 for
somewy.

(iif) We shall need to know how the coefficients of

the numerator of are related to the entries df
andk. As pointed out by Kalman in [4], for any
vectork in R™;

. ko —+ kls + ...+ kn_lsnil

kT (sT — A)~"
(s )79 det(sI — A)

®)

and from this it follows that we can write

. n)
Tlw) = det(w;I T A?)

wherep;, is a polynomial inv of degree2n. Fur-
thermore, aslet(s] — A) = ap + a1 + ... +
Gn_15""1 4+ 5", we can write

pi(w) = [det(w?I + A?)]

4+ [koao + (—koaz + kiay — kaag)w?

+ (koas — kras + koas — ksas + k4a0)w4
+ooo + (kpoF+kp_1an_1)w* 2. (6)



Note that only even powers afappear irp; (w) (i) Moreover from a practical point of view, if you

so that we can also consider to be a polyno- have two systems in companion form, itis a sim-
mial in w?. Now, it follows from (6) that for a ple matter to check if(A) is invertible or not,
given A € R™ "™ in companion form, the rela- and if not to adjust the parameters 4fto make
tionship between the entries of the veckoand L(A) invertible.

the coefficients op; (considered as a polynomial
in w?) is described by the affine mapping (fronfii) Theorem 3.1 can also be extended to the case

R”™ to R™) where the matricesA and A — gk are not
assumed to be in companion form by follow-
T(k) =0(A)+ L(A)k (7 ing Meyer’s proof of the extended Kalman

Yakubovich Popov lemma given in [6] - corre-
sponding to the general case of systems differing
by a rank one perturbation.

where® is a vector that depends on the entries of
AandL(A) is the linear map given by the matrix

(in Rnxn)
ag 0 0o ... 0 0 The crucial point in the proof of Theorem 3.1 is pro-
—as a1 —ag ... O 0 vided by the following lemma which also indicates the
S S (8) relevance of Theorem 2.1 in this context. In the lemma
(‘) () 0 ' '1 we consider the situation where two systems have just
e — Ap—1

ceased to have a CQLF and we show that under these
circumstances there are two systems arbitrarily close

(v) NOW hote that the deter_minant di(A) is no'F to the original systems that satisfy the conditions of
independent of the entries of, and hence is Theorem 2.1

not uniformly zero (for instance, the product

term agajas . ..a,_1 can only appear once in

the expression for the determinant). Thus, fdPemma3.1Llet A, A — gk” € R™ " be Hurwitz
any companion matrixd such thatL(A) is sin- matrices in companion form wittL.(4) invertible.
gular, it is possible to find another matrig’/, Suppose that there is no strong CQLF for, and
also in companion form, arbitrarily close t4 >a_gxr. Furthermore suppose that there is a strong

with L(A’) invertible by perturbing the entriesCQLFfor¥, andX,_,g.r forall Awith0 <A < 1.
Then given anyg > 0, there is somek’ € R"

with ||k — k'] < e for which there exists a matrix
P = PT > 0 satisfying

ao, a1, .. .,0n-1-

Theorem 3.1 Let A, A — gk” be two Hurwitz matri-

ces in companion form iR™*™ whereg, k are column T <

vectors inR™. Assume that the matrik(A) defined T AP+ ]/DTA @=0

by (8) is non-singular. Then a necessary and sufficient (A—gk™) P+ P(A—gk"™) = Q2<0

condition for a strong CQLF to exist for the systems .

Y4, Ea_gir is that the matrix producti(A — gk™) with rank(Q1) = n — 1, rank(@2) =n - 1.

has no negative eigenvalues or equivalently, that the

matrix pencilo., o o) [A™!, A — gk™] is non-singular. The proof of Lemma 3.1 is quite long and involved.
For details, consult the technical report [8].

Comments on Theorem 3.1:

Comment: It follows from Theorem 2.1 and Lemma

2.3 that each of the matrix product§ A — gk'") oc-

(i) Itis important to point out that the assumptionsyrring in the above lemma has a negative real eigen-
thatL(A) is invertible is not a very strong restric-ygjue. This in turn implies by the continuous depen-
tion on A. In fact if we identify the companion gence of the eigenvalues of a matrix upon its entries

matrix that the matrix producti(4 — gk”) has a negative
0 1 0o ... 0 real eigenvalue.
0 0 1. 0 Proof of Theorem 3.1:
A= If there is a strong CQLF for the systems;, ¥ 4 _ g5~
0 0 0 1 given byV (z) = 27 Pz, then it follows from Lemma
—ag —a1 —Q2 ... —Gp_1 2.1that the product (A—gk™) has no negative eigen-
with the vector(ag, ay,...,a,—1)T in R", then value.

the set of those companion matrices for whickonversely, suppose there is no strong CQLF for
L(A) is singular would have Lebesgue measurB,, X,_,r. Then it follows from the continu-
zero. ous dependence of the eigenvalues of a matrix on



the entries of the matrix that for small enough valwithout loss of generality, we may assume thét is
ues of A > 0, the systemsX,, ¥,_,gr Will inone the Jordan canonical forms
have a strong CQLF. Defing. = sup{\ > 0 :

Y4 andX,_ 4, have a strong CQLE. Then), < 8 o .. 8
1l and¥4 and ¥ 4_, 4,7 satisfy the conditions of () B = (10)
Lemma 3.1. Thus it follows from the comment above : ’
that the matrix producti(A — A\.gk”) has a nega- 0
tive real eigenvalue. It now follows immediately from 0
Lemma 2.4 that the matrix produdi{ A — gk”') has a 1 0
negative real eigenvalue.Q.E.D (i) B =
4 General Case and the KYP Lemma in 0 e 0
the time domain If bc” is in either of the above forms then it follows
In view of the preceding results and their conneéhat the expressions
tion with the SISO circle criterion, it is natural to ask det(\] — A2 — b A)
whether or not the generalized Kalman-Yakubovich-
Popov (KYP) lemma due to Meyer [6] admits a simignd
lar time-domain formulation. We provide the answer
to this question in this section. Re{det(A\ — A% — bcT A — V/\jbe")},

Meyer's result established that for two stable LTI sysgre identical. Thus, writing = w? we have that for
temsX4, X4 _por A € R™™ b, c € R”, a sufficient )| realw

condition for the existence of a CQLF is given by

Re{det(w?T — A% —bc" A — jwbc’)} > 0. (11)
1+ Re{cT(jwl — A)~'b} > 0forallw € R.  (9)

. . It now follows, after a short calculation ([8]) that for
Note that no assumption abadtand A — bc” being alweR (&)

in companion form is made here (hence the change

in notation to avoid confusion). We shall now show

that the condition (9) is also necessary for the exi o+ Re{
tence of a CQLF; in fact the matrix product condition
described in Theorem 3.1 is equivalent to (9). Thignhd hence from Lemma 4.1 that for all real
extends the work presented in [9] where an equivalent _ _
time-domain formulation of the SISO circle criterion L+ Refe” (jwl = A)~"b} >0

was given. as claimed. Q.E.D.

The following standard lemma is needed for the pro?fomments on Theorem 4.1
of Theorem 4.1. For details consult [3]. '

det(jwl — (A —bcT)) — det(jwl — A)
det(jwl — A)

1 >0(12)

(i) The above result establishes that condition (9) is

Lemma 4.1 Let A GTRWn‘ b’fl < .Rn' Then for necessary as well as sufficient for the existence
any comple)@, det(c* (sI — A)~'b) is equal to the of a COLF forS.4, ¥4+ To the best of the
expression authors’ knowledge, this is a new result. To see
det(sI — (A — beT)) — det(sI — A) this, SUPPOSE. 4, Xig_peT have a strong CQLF.
det(sI — A) ‘ Then it follows from Lemma 2.1 that the prod-

uct A(A — be') has no negative eigenvalues and
hence by Theorem 4.1 condition (9) must hold.
Theorem 4.1 :I;etA € R"*", b, c € R" be such that Note that this also establishes th&tA — beT)
AandA p be’ are Hurwitz matrices. Suppose that  haying no negative eigenvalues is an equivalent
A(A —be”) has no negative eigenvalues. Then the  time_domain formulation of the condition (9).
condition (9) holds.

(i) If the matrix productA(A —bcT) has no negative

Proof: Suppose thatd(A — bcT) has no negative eigenvalues then from the above theorem and the
eigenvalues. Then as and A — beT are both Hur- original result of Meyer [6], it foIIows_, thab 4

witz their determinants will have the same sign, soit @ndXa_,.r have a strong CQLF. This together
follows that for all\ > 0 with Lemma 2.1 gives the following necessary

and sufficient condition for a CQLF to exist for
det(M — (A — beT)A) = det(N — A2 —bcTA) > 0 two stable LTI systems differing by rank one.



Theorem4.2Let A/ B € R™™ with [7]
rank(B) = 1 and A, A + B Hurwitz. Then
there is a strong CQLF for the stable LTI systems
¥4 and¥ 44 p if and only if the matrix product
A(A + B) has no negative eigenvalues.

(8]
5 Conclusions

In this paper, we have presented a result on common
guadratic Lyapunov functions, namely Theorem 2.1,
and demonstrated that a number of well-known CQLHF9]
existence criteria fall within the framework of this
result. Considerable empirical evidence indicates to
the authors that other system classes will admit treat-
ment within this same framework, and that necessary
and sufficient conditions for CQLF existence for these
classes may be obtained using Theorem 2.1. The di&0]
termination of such system classes is currently the
subject of ongoing research by the authors and any
results obtained in this direction will be reported in
future publications. [11]
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