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Abstract

A relay feedback linear system with the transfer function of
the pole excess equal to two can have a sliding mode in the
set of co-dimension two and chattering mode around it. The
chattering can be a part of a limit cycle in the relay feedback
system and this limit cycle can be unique and globally stable.
It was shown before that a limit cycle exists for a special class
of systems with stable denominator and unstable numerator. In
this paper, it is proved that the cycle is locally stable under the
same conditions. An approach for global stability analysis was
developed and illustrative results are shown.

1 Introduction

Relay feedback systems were shown to be useful for system
identification and PID controller design [1, 2, 3, 11]. Recently
a new type of system behaviour that contains fast switches
was studied [5, 9] and called chattering. A smooth envelope
for chattering variables were obtained in [10]. The envelope
together with sliding mode for smooth variables represents a
simple approximation to the complicated trajectory with un-
bounded number of switchings.

In [10] an existence of a limit cycle with chattering was estab-
lished for a class of relay feedback systems with sufficiently
small zeros of the transfer function. Local stability of this limit
cycle was not proved, and it is presented in this paper. The
problem of global stability of relay feedback systems was not
solved analytically. A numerical approach proposed in [7] is
based on the LMI technique and deals with the simple limit
cycle only. In this paper a new approach for global stability
analysis is proposed for the same class of chattering systems as
in [10].

Consider a linear time-invariant system with relay feedback.
The linear system is described by the scalar transfer function

G(s) = b(s)/a(s)

of relative degree two:

a(s) = sn + a1s
n−1 + · · ·+ an,

b(s) = sn−2 + b1s
n−3 + · · ·+ bn−2.

The relay feedback is defined by

u = − sgn y ∈




{−1}, y > 0,
[−1, 1], y = 0,
{1}, y < 0.

(1)

Choose the state-space representation in the standard Frobenius
form

ẋ = Ax + Bu,

y = Cx, (2)

with x ∈ Rn and

A =




−a1 1 0 . . . 0
−a2 0 1 0

...
. . .

...
−an−1 0 0 1
−an 0 0 · · · 0




, B =




0
1
b1

...
bn−1




,

C =
(
1 0 · · · 0

)
.

Theswitch planeis denotedS = {x : Cx = 0}. A limit cycle
L ⊂ Rn in this paper denotes the set of values attained by a
periodic trajectory, which is isolated and not an equilibrium. A
limit cycle L is stable if for anyε > 0 there existsδ > 0 such
that |dL(x(0))| < δ implies thatdL

(
x(t)

)
< ε for all t > 0,

wheredL(x) is the Euclidean distance from a pointx toL.

A sliding modeis the part of a trajectory that belongs to the
switch plane:x(t) is a sliding mode fort ∈ (t1, t2) with t1 > 0
if Cx(t) = 0 for all t ∈ (t1, t2). Sliding modes are treated
thoroughly in [4].

SinceCB = 0, CAB > 0, any sliding mode belongs to the
setS2 := {x : Cx = CAx = 0, |CA2x| ≤ 1} which is
called the second-order sliding set. Any trajectory close to
the setS2 will give fast relay switches [9], and it is called
chattering mode. Due to the state-space parameterization, the
fast behaviour takes place in the variablesx1 and x2. They
are therefore called thechattering variables. The components
x3, . . . , xn are called thesmooth variablesof the chattering
mode.

2 Local Stability of Limit Cycles

The denominatora(s) of the linear part transfer functionG(s)
is the characteristic polynomial of the ”smooth” part of the re-
lay system whereu = const while the numeratorb(s) of G(s)



is the characteristic polynomial of the sliding mode. Ifa(s)
is Hurwitz andb(s) is not Hurwitz then any trajectory contain-
ing ”smooth” and ”chattering” parts has stable and unstable be-
haviour. This gives rise to limit cycles which contain a smooth
part determined by a stable linear system and a chattering part
close to the setS2 determined by the unstable sliding mode.

Sufficient conditions for existence of a limit cycle containing
smooth and chattering parts are given in [10, Theorem 3]. The
next theorem states that under the same conditions the limit
cycle is locally stable.

Theorem 1. Consider the system (1)–(2) withn ≥ 4 and let
b(s)/a(s) = C(sI−A)−1B2. Assumeb(s) = εn−2b̄(s/ε) with
b̄(s) = sn−2+ b̄1s

n−3+ . . .+ b̄n−2 and letF̄2 be the Frobenius
matrix for the polynomial̄b. If

1. the matrixA is Hurwitz and the eigenvalue ofA with the
largest real part is unique;

2. b̄n−2 > 0;

3. the solution of

˙̄w(t) = F̄2w̄(t), w̄(0) = (1, b̄1, . . . , b̄n−3)T

reaches the hyperplanēw1 = −1 at t = τ̄ > 0, it holds
that |w̄1(t)| < 1 for t ∈ (0, τ̄), andw̄2(τ̄) < −b̄1; and

4. eT
1 eAte4 > 0 for all t > 0, wheree1 = (1, 0, . . . , 0)T and

e4 = (0, 0, 0, 1, 0, . . . , 0)T ;

then there existsε0 > 0 such that for everyε ∈ (0, ε0) the sys-
tem (1)–(2) has a symmetric stable limit cycle with chattering.

Proof is given in Appendix.

Chattering mode does not exist for two-dimensional systems.
If n = 3 then a chattering mode can not be a part of a limit
cycle. Hence,n = 4 is the smallest dimension for the existence
of smooth loops in the limit cycle which are useful in system
identification.

Under the conditions of Theorem 1 the limit cycle consists of
two parts in a half period. The smooth part is proportional toε
and located around the pointsx3 = ±1 and all other variables
are zero. Denote the segment between these points byI0.

The chattering part winds around the segment of sliding mode
which is close to the segmentI0. The trajectory tends toI0 as
ε → 0. The plots of the limit cycle for the transfer function
G(s)=(s− ε)2/(s + 1)4 with ε=0.04 are shown in Figure 1.

A limit cycle with chattering exists not only for very small val-
ues ofε. In Figure 2 the limit cycle is shown for the same trans-
fer function withε = 0.2. The magnified part of the chattering
variablex2 is shown in Figure 3.

3 Global Stability of Limit Cycles

Sufficient conditions for global stability of the limit cycle with
chattering are derived in this section for systems which satisfy
assumptions of Theorem 1.
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Figure 1: Limit cycle consisting of smooth and chattering parts.
G(s) = (s− 0.04)2/(s + 1)4. Variablesx1, x2, x3, x4.
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Figure 2: Chattering part of the limit cycle becomes shorter for
G(s) = (s− 0.2)2/(s + 1)4. Variablesx1, x2, x3, x4.

The chattering part of the limit cycle described in Theorem 1
tends to the segmentI0 asε → 0. Therefore, the first question
is whether the segmentI0 is globally stable forε = 0. This
will be proved by the Kalman-Yakubovich lemma. As a result,
this segment forε = 0 is quadratically stable and there exists a
quadratic Lyapunov function.

For smallε > 0 the domain of attraction is close to the segment
I0 because small variations destroy the quadratic Lyapunov
function in a small neighbourhood of the limit set. But in the
small neighbourhood of the chattering mode the Brauwer fixed
point theorem can be applied for the analysis of the Poincare
mapping, as it was shown in the proof of Theorem 3 in [10]. It
was proved there that this mapping is a contraction, that implies
stability of the limit cycle in this neighbourhood.

Consider the caseε = 0 and hence,G(s) = sn−2/a(s).
It is easy to see that the segment between the pointsz− =
(0, 0,−1, 0, . . . , 0) and z+ = (0, 0,+1, 0, . . . , 0) consists of
stationary points only. It is required to find conditions under
which this segment is globally stable.

Our approach is based on the absolute stability theory devel-
oped by V.M.Popov, V.A.Yakubovich, R.Kalman. In particular,

Proposition 1. [6] The linear system

ẋ = Ax + Bξ,

is globally stable if it satisfies the integral quadratic constraint

∃γ, (Tk) →∞ :
∫ Tk

0

F (x(t), ξ(t)) dt ≤ γ

with some quadratic formF and if the frequency condition

F (iωI −A)−1Bξ̃, ξ̃) > 0
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Figure 3: Magnified value ofx2 in the chattering mode.
G(s) = (s− 0.2)2/(s + 1)4.

holds for all complex̃ξ 6= 0 and all realω ≥ 0.

There are two standard integral quadratic constraints (IQC’s)
for the relay feedback. First, the quadratic functionF1(x, u) =
yu = −|y| is obviously negative. The second function is
F2(x, u) = ±ẏu = ±(x2 − an−1x1)u. If tk, tk+1 are two
successive switching instants thenu(t) = uk = − sgn(y(t)) is
constant between them and

∫ tk+1

tk

ẏ(t)u(t) dt = uk(y(tk+1)− y(tk)) = 0.

But the frequency condition does not hold for these IQC’s or
their linear combinations for the general case. For instance, it
does not hold for the examples2/(s + 1)4. Therefore other
IQC’s are required.

The next assertion follows from Proposition 1 and Theorem 1.

Theorem 2. Assume conditions of Theorem 1 hold and there
existβ ≥ 0, α and a symmetric matrixP such that

1. The function

∫ T

0

(−β|y(t)|+ x(t)∗Px(t)) dt

is upper bounded on the solutions of the equationẋ = Ax+Bu
with |u| ≤ 1 andx(0) = 0.

2. Letx̃(s) = (sI −A)−1B. The function

W (s) = α
sn−1

a(s)
+ β

sn−2

a(s)
+ x̃(s)∗Px̃(s)

is positive real, that is,ReW (iω) > 0 for all ω ≥ 0.

Then there existsε0 > 0 such that for everyε ∈ (0, ε0) the sys-
tem (1)–(2) has a symmetric limit cycle with chattering which
is globally stable.

4 Example

The relay feedback system with the plant transfer function
(s − ε)2/(s + 1)4 was studied in [10] and exhibits the chat-
tering behavior of trajectories. The existence of a limit cycle
was proved in [10]. It follows from Theorem 1 that this limit
cycle is locally stable.

The analysis of global stability by Theorem 2 is based on a
choice of the appropriate quadratic formF for the system with
ε = 0. The system has a segment of equilibrium points between
(0, 0,−1, 0) and(0, 0, 1, 0).

Defineα = 1/4, β = 0 and

x∗Px = x2
1 − (x2 − 4x1)2 = |y|2 − |ẏ|2.

Thenỹ(s) = s2/(s + 1)4 and it is easy to find that

ReW (s) = Re
s3

4(s + 1)4
+

|s|4
|s + 1|8 −

|s|6
|s + 1|8 = 0

wheres = iω. The conclusion of Theorem 2 holds for this case
of nonnegative real function if the integral in the first condition
is negative, that is, if for some sequenceTk →∞ it holds

∫ Tk+1

Tk

y2(t) dt <

∫ Tk+1

Tk

ẏ2(t) dt

for all k = 1, 2, . . .

All trajectories of the system are obviously bounded. Then it
can be shown that there exists a domain of attractionD such
that the interval between successive instants in this domain
tk+1 − tk is less than3 or the trajectory tends to one of the
point (0, 0,−1, 1) or (0, 0, 1, 0) directly or with one segment
of chattering mode.

Assume the distance between switching instants is less than3.
Then the following Virtinger inequality [8] can be used:

∫ b

a

f(x)2 dx ≤ 4(b− a)2

π2

∫ b

a

f ′(x)2 dx

whenever the differentiable functionf has a zero in[a, b].

Apply this inequality for half intervals[tk, (tk+1 + tk)/2] and
[(tk+1 + tk)/2, tk+1]. According to the conclusion of Theo-
rem 2 there exists a limit cycle with chattering for the system
under consideration with any smallε > 0. This cycle is glob-
ally stable. For the casesε = 0.04 and ε = 0.2 these limit
cycles are depicted in Figures 1 and 2.

5 Sensitivity analysis

Proof of Theorem 1 is based on the variational analysis near the
trajectory of the limit cycle. If the Poincare mapping is a con-
traction then the limit cycle is stable. This approach was devel-
oped by K.J.Astrom for stability analysis of relay systems [1].
A straightforward computation of the Jacobian of the Poincare
mapping produces a full solution but it is very complicated to
calculate a product of an unbounded number of matrices.



Denote the time instants of switches byt0 = 0, t1, . . ., tN ,
so thatx(tN ) = x(0). Obviously, the numberN is even. The
functionu(t) is constant:u(t) = uk on each interval(tk, tk+1)
and changes sign in the pointstk. Denote the length of the
intervals bỳ k = tk+1 − tk for k = 0, 1, . . . , N − 1.

Consider a variationδx(0) of the initial statex(0). According
to the system equation this variation implies a variationδx(tN )
of the state afterN switches. We assumeCδx(tN ) = 0, that
is, the end point lies always in the switch plane. If the mapping
δx(0) → δx(tN ) is a contraction with an appropriate metric
then the limit cycle is stable.

Lemma 1. Define then× n-matrixH by

H =
N−1∏

k=0

(
eA`k − eA`k(Ax(tk) + Buk)CeA`k

CeA`k(Ax(tk) + Buk)

)
,

where the order of the matrix product is from the right to the
left.

If all eigenvalues ofH are inside the unit circle then the limit
cycle is stable. If the matrixH has an eigenvalue outside the
closed unit circle then the limit cycle is unstable.

Proof. Consider an interval between two successive switches:
[tk, tk+1]. It holdsCx(tk) = 0, Cx(tk+1) = 0 and

x(tk+1) = eA`kx(tk) + (eA`k − I)A−1Buk

whereI is the identity matrix of the ordern. The variation
gives

δx(tk+1) = eA`kδx(tk) + eA`k(Ax(tk) + Buk)δ`k.

The conditionCδx(tk) = 0 implies

δ`k = − CeA`kδx(tk)
CeA`k(Ax(tk) + Buk)

.

Hence,

δx(tk+1) =
(

eA`k − eA`k(Ax(tk) + Buk)CeA`k

CeA`k(Ax(tk) + Buk)

)
δx(tk)

for k = 0, 1, . . . , N − 1. It remains to obtain by induction
the variation through the period of the limit cycle:δx(tN ) =
Hδx(0). The assertion of Lemma 1 follows from the stability
conditions of this linear mapping.

If a limit cycle contains a small number of switches then the
direct matrix multiplication and analysis of the eigenvalues of
H show whether the limit cycle is stable or not. The number of
switches increases in the chattering mode and the length`k of
each interval tends to zero according to Theorem 1 as the chat-
tering variablex2 tends to zero. In this case, each multiplier in
the matrixH tends to the identity matrix while the number of
the multipliers tends to infinity. The asymptotic behaviour of
the product is described in the following assertion.

Theorem 3. Consider the sliding mode on the interval[T0, T1]
with zero chattering variables and the smooth variablesw(t) =
(x3(t), . . . , xn(t))T satisfying the equatioṅw(t) = F2w(t)
with |w1(t)| < 1 for all T0 ≤ t ≤ T1.

Denote by x(t) the chattering mode on the same in-
terval [T0, T1] with the initial state vector x(T0) =
(0, x2(T0), w1(T0), . . . , wn−2(T0))T with sufficiently small
x2(T0). Denote the switch instants ofx(t) by t0 = T0, t1,
. . ., tM .

Then the asymptotic behaviour of the variationsδx(tk) as
x(T0) → 0 is given by

δx2(tk) = (−1)kδx2(T0)e−
2
3 (a1−b1)(tk−T0) ×

(
1− w2

1(tk)
1− w2

1(T0)

) 2
3

+O2(x2(T0))‖δx(T0)‖,

δxj(tk) =
1

x2(T0)

{∫ tk

T0

e−
1
3 (a1−b1)(tk−T0) ×

(
1− w2

1(tk)
1− w2

1(T0)

) 1
3

ẇj−2(t) dt δx2(T0)

}

+oj(‖δx(T0)‖),
with 3 ≤ j ≤ n, whereO2(x2(T0))/x2(T0) is bounded and
oj(‖δx(T0)‖)/‖δx(T0)‖ → 0 as x2(T0) → 0 uniformly for
1 ≤ k ≤ M and3 ≤ j ≤ n.

Proof of Theorem 3. The chattering mode occurs when|x3| <
1 and|x2| ¿ 1− x2

3 in the switch point. This is true under the
conditions of Theorem 3 becausex3(t) ≈ w1(t) and there ex-
istsγ > 0 such that|w1(t)| < 1 − γ for T0 ≤ t ≤ T1 while
x2(t) → 0 asx2(T0) → 0. According to the proof of Theo-
rem 1 in [10] the lengths̀k = tk+1 − tk of the intervals be-
tween successive switches are proportional tox2(T0). There-
fore the Taylor expansion can be implemented for the asymp-
totic analysis.

Fix the switch instanttk with 0 ≤ k ≤ M − 1 and denote

α1 = C(Ax(tk) + Buk) = x2(tk),
α2 = CA(Ax(tk) + Buk) = x3(tk) + uk − a1α1,

α3 = CA2(Ax(tk) + Buk) = x4(tk) + b1uk − a1α2 − a2α1.

The length̀ k = tk+1 − tk can be directly estimated [10]:

`k = −2α1

α2
− 4

3
α2

1α3

α3
2

+O(α3
1).

The matrix Taylor expansion foreA`k gives

CeA`kδx(tk) = (`kCA + `2k/2CA2)δx(tk) +O(α3
1)‖δx(tk)‖

= `k(δx2(tk) +
α1

α2
(a1δx2(tk)− δx3(tk)) +O(α3

1)‖δx(tk)‖,

and

CeA`k(Ax(tk) + Buk) = CAx(tk) + `kCA(Ax(tk) + Buk)

+α3`
2
k +O(α3

1)‖δx(tk)‖ = −α1 +
2
3

α2
1α3

α2
2

+O(α3
1)‖δx(tk)‖.



Thej-th entry of the vectoreA`kδx is equal to

(eA`kδx)j = δxj(tk) + `kδxj+1(tk) +O(α2
1)‖δx(tk)‖

= δxj(tk)− 2α1

α2
δxj+1(tk) +O(α2

1)‖δx(tk)‖

for 2 ≤ j ≤ n. It was proved in Lemma 1 that

δx(tk+1) =
(

eA`k − eA`k(Ax(tk) + Buk)CeA`k

CeA`k(Ax(tk) + Buk)

)
δx(tk).

After some algebra we get

δx2(tk+1)=− δx2(tk)+
4
3

α1α3

α2
2

δx2(tk) +O(α2
1)‖δx(tk)‖

= −(1 +
2
3

α3

α2
`k)δx2(tk) +O(α2

1)‖δx(tk)‖

= −(1 +
1
3

α3

α2
`k)2δx2(tk) +O(α2

1)‖δx(tk)‖

= −
(

x2(tk+1)
x2(tk)

)2

δx2(tk) +O(α2
1)‖δx(tk)‖.

It follows by induction that

δx2(tk) = (−1)k x2
2(tk)

x2
2(T0)

δx2(T0) +O(α1)‖δx(tk)‖.

The first assertion of Theorem 3 follows from this equation and
from the following explicit expression ofx2(tk) given in [10,
Theorem 1]:

x2(tk) = (−1)kx2(t0) exp[−1
3
(a1 − b1)(tk − t0)]

×
(

1− x2
3(tk)

1− x2
3(t0)

)1/3

+ o(x2(t0); tk)

whereo(x2(t0); tk)/x2(t0) → 0 asx2(t0) → 0 uniformly for
all 1 ≤ k ≤ M .

Let 3 ≤ j ≤ n. Direct computation leads to the equation

δxj(tk+1) = δxj(tk)− 2(xj+1 + bj−2uk)
α2

δx2(tk)

+ O(α1)‖δx(tk)‖

for 0 ≤ k ≤ M − 1.

Consider two successive intervals[tk, tk+1] and [tk+1, tk+2].
The increment ofδxj(tk) on the two intervals is proportional
to

xj+1(tk) + bj−2uk

x3(tk) + uk
− xj+1(tk+1) + bj−2uk+1

x3(tk+1) + uk+1

=
xj+1(tk) + bj−2uk

x3(tk) + uk
− xj+1(tk)− bj−2uk

x3(tk)− uk
+O(x2(tk))

=
xj+1(tk)− bj−2x3(tk)

1− x2
3(tk)

2uk +O(x2(tk)).

The length of the double interval is equal to

`k + `k+1 = − 2x2(tk)
x3(tk) + uk

− 2x2(tk+1)
x3(tk+1) + uk+1

= − 2x2(tk)
x3(tk) + uk

+
2x2(tk)

x3(tk)− uk
+O(x2(tk))

= − 4x2(tk)uk

1− x2
3(tk)

+O(x2(tk)),

and the increment of the variation is

δxj(tk+2) = δxj(tk)− (xj+1(tk)− bj−2x3(tk))×
4uk

1− x2
3(tk)

δx2(tk) +O(x2(tk))‖δx(tk)‖
= δxj(tk) + (xj+1(tk)− bj−2x3(tk))×

(`k + `k+1)
δx2(tk)
x2(tk)

+O(x2(tk))‖δx(tk)‖.

The smooth variablesxj(t) are close to that of the sliding
mode,

xj(t) = wj−2(t) +O(x2(T0))

for j ≥ 3. Notice that

xj+1(tk)− bj−2x3(tk) = wj−1(tk)− bj−2w1(tk)
+O(x2(T0))

= ẇj−2(tk) +O(x2(T0))

by the equations of the sliding mode.

Let x̄2(t) be the smooth envelope of the values|x2(tk)|. It
follows from the explicit expression ofx2(tk) that

x̄2(t) = e−
1
3 (a1−b1)(t−T0)

(
1− w2

1(t)
1− w2

1(T0)

) 1
3

.

The next sum of the increments can be regarded as an integral
sum:

δxj(tk) = δxj(T0) +
k/2−1∑

i=0

(xj+1(t2i)− bj−2x3(t2i))×

(`2i + `2i+1)
δx2(t2i)
x2(t2i)

+O(x2(t2i))‖δx(t2i)‖

= δxj(T0) +
∫ tk

T0

(wj−1(t)− bj−2w1(t))×

δx2(T0)x̄2(t)
x2

2(T0)
dt + oj(‖δx(T0)‖)

=
1

x2(T0)

{∫ tk

T0

e−
1
3 (a1−b1)(tk−T0)×

(
1− w2

1(tk)
1− w2

1(T0)

) 1
3

ẇj−2(t) dt δx2(T0)

}

+oj(‖δx(T0)‖),

that completes the proof of Theorem 3.



6 Appendix

Proof of Theorem 1. The existence of a limit cycle was shown
in [10]. The limit cycle has one smooth part and one chattering
part on each half-period. The time of the smooth part tends to
infinity asε → 0. The variationδx(0) in the beginning of the
smooth trajectory is multiplied byO(εn−2) in the point where
the chattering part starts. Let it happens fort = t1. The value
of x2(t1) is proportional toεn−2 too.

Denote the point where the chattering mode is changed by the
smooth mode bytN . Then it follows from Theorem 3 that

δxj(tN ) = ‖δx(0)‖O(Iε) + o(1),

whereo(1) → 0 asε → 0 and

Iε =
∫ tN

t0

e−
1
3 (a1−b1)(tN−t1)

(
1− w2

1(t)
1− w2

1(T0)

) 1
3

‖ẇ(t)‖ dt.

The integrand is a product of an integrable function
e−

1
3 (a1−b1)t, sincea1 − b1 = a1 − b̄1ε > 0 and the function

which tends to zero asε → 0. Indeed, the smooth variables
have small derivatives,‖ẇ‖ → 0 asε → 0.

It follows Iε → 0 asε → 0, and the matrixH in Lemma 1
tends to zero too. By Lemma 1 the limit cycle is stable.
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