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Chattering (-1}, y>0
U= —8sgny € [7171}7 y:07 (l)
Abstract {1}, y < 0.

A relay feedback linear system with the transfer function §thoose the state-space representation in the standard Frobenius
the pole excess equal to two can have a sliding mode in figgm

set of co-dimension two and chattering mode around it. The i = Az+ Bu,

chattering can be a part of a limit cycle in the relay feedback

system and this limit cycle can be unique and globally stable. = Cz, 2)
It was shown before that a limit cycle exists for a special classth z € R™ and
of systems with stable denominator and unstable numerator. In —ay 10 ... 0 0
this paper, it is proved that the cycle is locally stable under the _
. o . as 0 1 0 1
same conditions. An approach for global stability analysis wai1 B ) _ ) 5| m
developed and illustrative results are shown. - : I - ] ’
—Qp—1 0 0 1 .

. —ay, by —

1 Introduction @ 00 0 L
cC = (10 - 0).

Relay feedback systems were shown to be useful for system

identification and PID controller design [1, 2, 3, 11]. Recentiyhe switch planes denotedS = {x : Cx = 0}. A limit cycle

a new type of system behaviour that contains fast switcheésc R™ in this paper denotes the set of values attained by a
was studied [5, 9] and called chattering. A smooth enveloperiodic trajectory, which is isolated and not an equilibrium. A
for chattering variables were obtained in [10]. The envelopienit cycle £ is stable if for any > 0 there existsf > 0 such
together with sliding mode for smooth variables representsteat |d.(z(0))| < § implies thatd, (z(t)) < € for all t > 0,
simple approximation to the complicated trajectory with urwhered, () is the Euclidean distance from a pointo L.

bounded ber of switchings. - . :
ounded number of switchings A sliding modeis the part of a trajectory that belongs to the

In [10] an existence of a limit cycle with chattering was estalgwitch planexz(t) is a sliding mode fot € (t1,t2) witht; > 0
lished for a class of relay feedback systems with sufficientfy Cx(¢) = 0 for all ¢t € (t1,t2). Sliding modes are treated
small zeros of the transfer function. Local stability of this limithoroughly in [4].

cycle was not proved, and it is presented in this paper. The -
problem of global stability of relay feedback systems was n {nceCB = 0, CAB > 0, any sliding r2‘node belong_s to. the
solved analytically. A numerical approach proposed in [7] REtS2 = {z : Ca = CAz =0, |CA%z| < 1} which is
based on the LMI technique and deals with the simple linf lled the second-order sliding set. Any trajectory close to

cycle only. In this paper a new approach for global stabililé/e setS; will give fast relay switches [9], and it is called

analysis is proposed for the same class of chattering system tering mode Due fo the ;tate—spage parameterization, the
ast behaviour takes place in the variablgsand z,. They

in [10]. . .

[10] are therefore called thehattering variables The components
Consider a linear time-invariant system with relay feedbacks, ..., z, are called thesmooth variableof the chattering
The linear system is described by the scalar transfer functiomode.

G(s) = b(s)/a(s)

of relative degree two:

2 Local Stability of Limit Cycles

. i The denominatot(s) of the linear part transfer functiofi(s)
a(s) = s"+ars" - Fan, is the characteristic polynomial of the "smooth” part of the re-
b(s) = 8" 2 4bis" P4 4Dy 0. lay system where = const while the numeratob(s) of G(s)



is the characteristic polynomial of the sliding mode. a(f)
is Hurwitz andb(s) is not Hurwitz then any trajectory contain- =-=f
ing "smooth” and "chattering” parts has stable and unstable b . ..|
haviour. This gives rise to limit cycles which contain a smoott -
part determined by a stable linear system and a chattering pi ...
close to the sef, determined by the unstable sliding mode. —cc=r

—o.0a

—o.0s, ~o.2 1, ~o.2

Sufficient conditions for existence of a limit cycle containing oo s oo mes oo s e oo

smooth and chattering parts are given in [10, Theorem 3]. The

next theorem states that under the same conditions the nﬁf?“fe 1: Limit cycle consisting of smooth and chattering parts.
cycle is locally stable. G(s) = (s — 0.04)*/(s + 1)*. Variablesz1, 2, 3, 4.

Theorem 1. Consider the system (1)—(2) with> 4 and let

b(s)/a(s) = C(sI—A)~'By. Assumé(s) = €"~2b(s/e) with
b(s) = s"24+bys" 3 +...+b,_o and letF;, be the Frobenius .,
matrix for the polynomiab. If

1. the matrix A is Hurwitz and the eigenvalue of with the <<=
largest real part is unique; -

—o.as|

2. l_)n,Q > 0; %o 5 o
3. the solution of Figure 2: Chattering part of the limit cycle becomes shorter for
w(t) = Fyw(t), w(0) = (1,b1,...,bp_3)T G(s) = (s — 0.2)%/(s + 1)*. Variablesr,, o, x3, 74.
reaches the hyperplane; = —1 at¢t = 7 > 0, it holds

that |w, (t)| < 1 fort € (0,7), andws(7) < —by; and , o _ ,
[o1(#)] (0.7) (") ! The chattering part of the limit cycle described in Theorem 1

4. eTeMey > 0forall t > 0, wheree; = (1,0,...,0)7 and  tends to the segmeti§ ase — 0. Therefore, the first question
es = (0,0,0,1,0,...,0)%; is whether the segmerdy is globally stable fore = 0. This
will be proved by the Kalman-Yakubovich lemma. As a result,

then there exists, > 0 such that for every € (0, ) the sys-  this segment foe = 0 is quadratically stable and there exists a
tem (1)—(2) has a symmetric stable limit cycle with chatteringyyadratic Lyapunov function.

Proof is given in Appendix. For smalle > 0 the domain of attraction is close to the segment

) . . . Iy because small variations destroy the quadratic Lyapunov
Chattering mode does not exist for two-dimensional systemgnciion in a small neighbourhood of the limit set. But in the
If n = 3 then a chattering mode can not be a part of a limiy, 5| neighbourhood of the chattering mode the Brauwer fixed
cycle. Hencep = 4 is the smallest dimension for the existencgint theorem can be applied for the analysis of the Poincare
of smooth loops in the limit cycle which are useful in SySterﬂlapping, as it was shown in the proof of Theorem 3 in [10]. It

identification. was proved there that this mapping is a contraction, that implies
Under the conditions of Theorem 1 the limit cycle consists &fability of the limit cycle in this neighbourhood.

two parts in a half period. The smooth part is proportional Oconsider the case = 0 and henceG(s) = s"2/a(s).

and located around the points = 1 and all other variables ; ;o easy to see that the segment between the points=

are zero. Denote the segment between these poinkg by (0,0,—1,0,...,0) andz, = (0,0,+1,0,...,0) consists of

The chattering part winds around the segment of sliding mo@i@tionary points only. It is required to find conditions under
which is close to the segmefi. The trajectory tends t§, as Which this segment is globally stable.
e — 0. The plots of the limit cycle for the transfer functio

! o "Our approach is based on the absolute stability theory devel-
G(s)=(s — €)?/(s + 1)* with e=0.04 are shown in Figure 1.

oped by V.M.Popov, V.A.Yakubovich, R.Kalman. In particular,

A limit cycle with chattering exists not only for very small Va"Proposition 1. [6] The linear system
ues ofe. In Figure 2 the limit cycle is shown for the same trans-
fer function withe = 0.2. The magnified part of the chattering &= Az + B¢,

variablezx; is shown in Figure 3. is globally stable if it satisfies the integral quadratic constraint

3 Global Stability of Limit Cycles Iy, (T},) — oo : /(;Tk F(x(t),&(t) dt < v

Sufficient conditions for global stability of the limit cycle with__ . . . "
chattering are derived in this section for systems which satis\,%th some quadratic forni" and if the frequency condition

assumptions of Theorem 1. Fliwl — A)7'BE,€) > 0



‘ Chatterlng‘ variable xz(‘t). ‘ ‘ ‘ 4 Exam ple

00211 : 1 The relay feedback system with the plant transfer function
oo1s| 1 (s —€)?/(s + 1)* was studied in [10] and exhibits the chat-
tering behavior of trajectories. The existence of a limit cycle
was proved in [10]. It follows from Theorem 1 that this limit
cycle is locally stable.

The analysis of global stability by Theorem 2 is based on a
1 choice of the appropriate quadratic fodrifor the system with
ool . | e = 0. The system has a segment of equilibrium points between
(0,0,—1,0) and(0,0,1,0).

Definea =1/4, 3 =0and
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_0_02Q . . 4
I I I I I I I I I

75 8 85 9 95 10 105 11 115 x*Pxr = x% — (JjQ — 43;1)2 = |y‘2 — ‘y|2

Figure 3: Magnified value oft, in the chattering mode. Theng(s) = s*/(s +1)* and itis easy to find that

G(s) = (s —0.2)%/(s + 1)*. 53 |s|4 5|6
ReW(s) =Re s +1)0 + S+IF s+ 1F =0
holds for all complext # 0 and all realw > 0. wheres = iw. The conclusion of Theorem 2 holds for this case

of nonnegative real function if the integral in the first condition

There are two standard integral quadratic constraints (Ichg)neganve, thatis, if for some sequerige— oo it holds

for the relay feedback. First, the quadratic functiériz, u) = Tet1 Tiet1

yu = —|y| is obviously negative. The second function is / y?(t) dt </ g3 (t) dt
Fy(z,u) = +9u = £(z2 — ap—_121)u. If t, tr11 are two T T
successive switching instants theft) = u, = —sgn(y(¢))is forallk =1,2,...

constant between them and . . . .
All trajectories of the system are obviously bounded. Then it

fet1 can be shown that there exists a domain of attraciiosuch
; G(tyult) dt = ug(y(tr+1) = y(tx)) = 0. that the interval between successive instants in this domain
§ tx11 — ti is less tharB or the trajectory tends to one of the

But the frequency condition does not hold for these IQC’s glplnt (©, 0.’ —1,1) or (0,0,1,0) directly or with one segment
oftchattermg mode.

their linear combinations for the general case. For instance, |
does not hold for the exampk& /(s + 1)*. Therefore other Assume the distance between switching instants is less3than

IQC'’s are required. Then the following Virtinger inequality [8] can be used:
The next assertion follows from Proposition 1 and Theorem 1. b A(b — a)? b

[ tepae< 2 [ ppas
Theorem 2. Assume conditions of Theorem 1 hold and there a ™ a

existfy > 0, a and a symmetric matri® such that whenever the differentiable functighhas a zero itja, b].

1. The function Apply this inequality for half intervaléts, (tx11 + t)/2] and

T [(tk+1 + tr)/2,tk+1]. According to the conclusion of Theo-
/ (=Bly()| + z(t)* Px(t)) dt rem 2 there exists a limit cycle with chattering for the system
0 under consideration with any smalt> 0. This cycle is glob-

is upper bounded on the solutions of the equatica Az+ By ally stable. For the cases= 0.04 ande = 0.2 these limit
with |u| < 1 andz(0) = 0. cycles are depicted in Figures 1 and 2.

2. Letz(s) = (sI — A)~!B. The function . .
#Hs) = ) 5 Sensitivity analysis

n—1 n—2
W(s)=a——+ BS— + 2(s)*Px(s) Proof of Theorem 1 is based on the variational analysis near the
a(s) a(s) trajectory of the limit cycle. If the Poincare mapping is a con-
is positive real, that isRe W (iw) > 0 for all w > 0. traction then the limit cycle is stable. This approach was devel-

_ oped by K.J.Astrom for stability analysis of relay systems [1].
Then there exists) > 0 such that for every € (0, ) the sys- A straightforward computation of the Jacobian of the Poincare
tem (1)—(2) has a symmetric limit cycle with chattering whichapping produces a full solution but it is very complicated to

is globally stable. calculate a product of an unbounded number of matrices.



Denote the time instants of switches iy = 0, ¢4, ..., ty, Theorem 3. Consider the sliding mode on the interya}, T |
so thatz(ty) = z(0). Obviously, the numbeN is even. The with zero chattering variables and the smooth variahlgs) =
functionu(t) is constantu(t) = uy on eachintervalty, tx1) (w3(t),...,x,(t))T satisfying the equationi(t) = Fyw(t)
and changes sign in the points. Denote the length of the with |w, (¢)| < 1 forall Tp <t < Tj.

intervals byly = ti1 —ty fork =0,1,..., N — 1. Denote by z(¢) the chattering mode on the same in-

Consider a variatiodz(0) of the initial statez(0). According terval [Tp,71] with the initial state vectorz(T;) =
to the system equation this variation implies a variatiott ;) (0, z2(Tp), w1 (7o), - - ., wa—2(Tp))T with sufficiently small
of the state afte?V switches. We assum@dz(ty) = 0, that x2(7p). Denote the switch instants eft) by ¢, = Ty, t1,
is, the end point lies always in the switch plane. If the mapping., ta;.

dz(0) — dxz(tn) is a contraction with an appropriate metri

then the limit cycle is stable. “Then the asymptotic behaviour of the variatiohs(t;) as

x(Tp) — 0is given by

Lemma 1. Define then x n-matrix H by Sra(ty) = (—1)*dwa(Ty)e 3lar—bn)Be=To)
= Al (Az(ty) + Buy)CeAbe 1 - wi(tn) \*
H— At € k k (1) + Og(xo(To) |02 (o) ||,
11 ( ey e i) O]
. . . 1 L bt —To)
where the order of the matrix product is from the right to théx;(ty) = ———= e~ sl 50) i
left 2(To) | Jm,
‘l
If all eigenvalues off are inside the unit circle then the limit (1 — wi(ty) ) ’ s (t) dt 65(Th)
cycle is stable. If the matri# has an eigenvalue outside the 1 —wi(To) !
closed unit circle then the limit cycle is unstable. +o;(||62(To)|))
j )

Proof. Consider an interval between two successive switch%th 3 < j < n, whereOs(z5(Tp))/x2(To) is bounded and
[ts trsr]. ItholdsCa(ty) = 0, Cax(tyrr) = 0 and 0 (||62(To))/ 10z (To)|| — 0 asz2(To) — 0 uniformly for
1<k<Mand3<j<n.

z(tpe1) = e x(ty) + (e — I) A~ Buy, i
Proof of Theorem 3 The chattering mode occurs whin| <

where] is the identity matrix of the orden. The variation 1and|zs| <1 — 3 in the switch point. This is true under the
gives conditions of Theorem 3 becausg(t) ~ w1 (¢) and there ex-
istsy > 0 such thafw, (¢)] < 1 —~ for Ty < ¢t < T} while
0x(tpy1) = e oz (ty) + e (Ax(ty,) + Bug)dly. z2(t) — 0 asz(Ty) — 0. According to the proof of Theo-
rem 1 in [10] the lengthg, = ;.1 — ¢ of the intervals be-
The conditionC'éx(t) = 0 implies tween successive switches are proportionat#£(ly). There-
Al fore the Taylor expansion can be implemented for the asymp-
50, = — Ce™™ou(ty) totic analysis.
CeAly (Az(ty) + Buy)

Fix the switch instant, with 0 < k£ < M — 1 and denote
Hence, a1 = C(Az(ty) + Buy) = (i),

e, e (Ax(ty) + Buy)CeA ag = CA(Ax(ty) + Buy) = x3(tg) + up — a1,
0x(tgs1) = [ e — ox(tx) 5
CeAls (Ax(ty,) + Buy) ag = CA*(Az(ty) + Bug) = z4(tg) + biux — a1 — asay .

for k = 0,1,...,N — 1. It remains to obtain by induction The length/;, = t,., — t) can be directly estimated [10]:
the variation through the period of the limit cycléz(ty) = 20, 4alas s

H6z(0). The assertion of Lemma 1 follows from the stability by =——=—3— 5 +0(a1).

conditions of this linear mapping. 2

- . . The matrix Taylor expansion feri‘: gives
If a limit cycle contains a small number of switches then the y P 9

direct matrix multiplication and analysis of the eigenvalues 6fe”“ 5z (t),) = ((xC A + (2 /2C A?)dx(t),) + O(a) ||5z(ty) ||
H show whether the limit cycle is stable or not. The number of g s 3

switches increases in the chattering mode and the lefagth b (0o (ti) + ! (a10w2(tx) — 0z3(t)) + Olar)lloz (bl
each interval tends to zero according to Theorem 1 as the chaiy

tering variablex, tends to zero. In this case, each multiplier in At

the matrixH tends to the identity matrix while the number of Ce”™*(Axz(t) + Buy) = CAz(ty) + lxCA(Ax(ty) + Buy)
the multipliers tends to infinity. The asymptotic behaviour of 2 afaz - Ot

2 3 _
the product is described in the following assertion. +agly + O(aq) |6z ()l = —au + 3 a2




The j-th entry of the vectoe% 5z is equal to

(eM*bx);

0xj (t) + Crdwj (tr) + O(ad) |6z (te) |

2
() = " H 0 (t) + O(ad) 10 (t) |

for 2 < j < n. Itwas proved in Lemma 1 that

Al ( Az (ty, Buy )CeAtr
_ (A0 _ € (Az(tr) + Buy)
02 (tet1) (e Certs (Ax(ty) + Bup) ) &)
After some algebra we get
4 aia
0 (thy1)= = S (th) + 5 — o 0a(ti) + O(af) |6z (1) |
2

2 .
= —(L+ 32200 (tr) + O(a?) ()|
Q2
1 .
gﬁék)%wz(tk) +O(af) |6 (ty) |
(6%)

To(thy1)
T9 (tk)

(14

-

It follows by induction that

w3 (t)

z5(To)

2
) Sxo(ty) + O(ad)||dz(ty)||.

da(t) = (=1) 22(To) + O(en)[|52(tr)]]-

The length of the double interval is equal to

E + f . 21’2(tk) _ 2I2(tk+1)
bR x3(te) +ur  23(thyr) + Upsa
2$2(tk) 2:1;‘2(tk)
= - + 0O t
walt) + un  aalte) —up O
_ 4x2(tk)uk
- 1— l’g(tk) + O(.’Eg(tk)),

and the increment of the variation is

(5$j(tk) —
4uk
1 — z3(tx)
6z (tk) + (@jt1(te) — bj—
5$2(tk>
wo(ty) Tl

(@j41(tn) — bj—2x3(tr)) X
dxa(ty) + O(x2(tr)) |0z ()]
2x3(tr)) X

2(tx) 162 (2

52 (tis2)

(i + Lrt1)

The smooth variables;(t) are close to that of the sliding
mode,

l‘](t) = wj_g(t) + O(SCQ(T()))
for j > 3. Notice that
wj—1(tg) — bj—2w1(tk)

+O(z2(1p))
wj—o(ty) + O(x2(T0))

Tj1(tk) — bj—2x3(tr)

The first assertion of Theorem 3 follows from this equation and

from the following explicit expression af, (¢, ) given in [10,
Theorem 1]:

za(te) = (—=1)*wa(to) exp[—- (a1 — b1)(tx — to)]
1 23(t)\°
X <1 I%(to)) +0(l’2(t0),tk)

whereo(xa(to); tr)/x2(to) — 0 asxza(tp) — 0 uniformly for
all <k <M.

Let3 < j < n. Direct computation leads to the equation

2(1’j+1 -+ bj_Quk)
Qs

51‘2

0w (th+1) dwj(ty) —

+ Oan)|[dx(ts) |

(tk)

for0<k<M-—-1.

Consider two successive intervalg, t;41] and [tx41, tp+2]-
The increment obz,(¢;) on the two intervals is proportional
to

Tjp1(te) Fbj_our g1 (egr) + bj—2Upta

x3(tr) + uk @3 (tkt1) + Ukg1
Tjp1(te) Fbjour w1 (te) — bj_oup
= — + O(zaft
2a(te) + un 7o (ti) — un (22(te))

Tip1(tk) — bj—2w3(ts)
1 — l’%(tk)

2ug + O(.%‘g(tk)).

by the equations of the sliding mode.

Let zo(¢) be the smooth envelope of the values(tx)|. It

follows from the explicit expression af,(¢) that
2

1
_ l(ar—bi)(t— 1—wi(t) \°

1) = (a—b1)(t=To) ([ - “1\") '}
SCQ( ) e 1— 'LU%(TO)

The next sum of the increments can be regarded as an integral
sum:

dxz;(ty) = 5$j(T0)+k§1($j+1(t2i)—bj2%3(t2i))><
(64 ) 222 O (1) ()|
= by (T) + A?mﬁuw—jawm»x
&“(}$)w+%w&aw>
- - To { o= Hlar—by)(t=To) o
<1_w1f(( ))> iy 2()dt5x2(T0)}
+o;(l6x(Ty) ),

that completes the proof of Theorem 3.



6 Appendix [8] G.H. Hardy, J.E. Littlewood, G. Polya. "Inequalities”.

Proof of Theorem 1 The existence of a limit cycle was shown [9] K.H. Johansson, A. Rantzer, K.J. Astrom. "Fast switches
in [10]. The limit cycle has one smooth part and one chattering in relay feedback systemsAutomatica 35, no. 4, pp.
part on each half-period. The time of the smooth part tendsto 539-552, (1999).

infinity ase — 0. The variationdz(0) in the beginning of the _
smooth trajectory is multiplied b§)(e"~2) in the point where [10] K.H. Johansson, A.E. Barabanov, K.J. Astrom. "Limit

the chattering part starts. Let it happensfer ¢;. The value cycles with chattering in relay feedback systemEEE
of z5(t,) is proportional to=" 2 too. Trans. on Automat. ContrplAC-47, no. 9, pp. 1414—

1423, (2002).
Denote the point where the chattering mode is changed by the

smooth mode byy. Then it follows from Theorem 3that ~ [11] Q.G. Wang, T.H.Lee, C.Lin. "Relay Feedback”. Springer-
Verlag, London, (2003).

bz (tn) = [[02(0)[O(Le) + o(1),

whereo(1) — 0 ase — 0 and

o, 1—wl(t) \*
I =/ e alar=b)(tn=t) (1 ) w(t)| dt.

The integrand is a product of an integrable function
e~ 5(a1=b1)t gincea; — b; = a; — bye > 0 and the function
which tends to zero as — 0. Indeed, the smooth variables
have small derivativedjw| — 0 ase — 0.

It follows I, — 0 ase — 0, and the matrixd in Lemma 1
tends to zero too. By Lemma 1 the limit cycle is stable.
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