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In this paper, we particularly focus on nonholonomic systems

whose trajectories can be written as the solutions of the driftless
Abstract system:

This paper deals with the problem of the practical stabiliza- & = gi(z)ur + g2(x)uz + p(z) 1)

tion of a unicycle-type mobile robot. The control strategy iwherep(z) is a perturbation vector field (assumed to be smooth
divided into three steps and switches between different slishough and thus bounded over some compact set)u, are

ing mode controllers: a new third order sliding mode contrghe control inputs and thg; s are smooth vector fields d&?®

with smooth manifolds that provides a practical stabilizatiofat are linearly independent for alle R?. For instance, this
and other sliding mode controls that perform finite time cofs the case for the unicycle-type robot, which behavior can be

vergence (first order sliding mode and twisting algorithm). fescribed by the following system (see [4] for details):
simulation illustrates the results on the studied mobile robot.
{ & = cos(0) uy + p1(x)

1 Introduction g =sin(0)ur +pafz) )

0 = uz + p3(z)

One of the motivations for tackling the stabilization (or track- _ )

ing) of nonholonomic systems is the large number of appnc\é/_herea:_andy are the_coordmates of _the center gravity pf the
tions, such as mobile robots. Obstacles to the stabilization"8POL ¢ is the orientation of the car with respect to thexis,
nonholonomic systems are the uncontrollability of their lined (+), P2(z) andps(z) are some additive perturbations and
approximation and the fact that the Brockett's necessary céfilduz refer respectively to the applied linear and the angular
dition to the existence of a smooth time-invariant state fee¢glocities (see Fig. 1).

back is not satisfied [3]. To overcome those difficulties, vari- AY

ous methods have been investigated: homogeneous and time-

varying feedbacks [18, 19], sinusoidal and polynomial controls

[15], piecewise controls [10, 14], flatness [8] or backstepping

approaches [11]. In the present paper, it is aimed to design a T
control law for a unicycle-type mobile robot which: '
e is a good compromise between performance and robust- x
ness, < 0
>
T

e solves the disturbance rejection problem for some
bounded matching perturbations,
Figure 1: Unicycle robot kinematic
e takes into account the actuator dynamics,
Using the smooth state change of coordinates and input trans-
¢ leads to a practical stabilization: the system is stabilizéarmations given in [16] (that allow to transform some classes
in a ball containing the origin whose radius may be chos@f nonholonomic systems in the so-called one chained form),
as small as desired. it has been shown in [9] that the system (1) can be written into
the perturbed one-chained form

sliding mode control laws. To this end, some smooth higher 29 = vo + pa(2) 3)

This objective will be achieved by switching between different 3 =1 +p1(2)
order sliding mode controllers will be introduced. 23 = 25 (v1 + p1(2))



if and only if the perturbation vector field(z) belongs to the perturbations and its discontinuous character also motivated the
distribution spanned by the two vector fielgl§x) andg»(z). authors to consider such an approach for the stabilization of the
As it will be seen in the forthcoming developments, this form isonholonomic systems. Furthermore, as it will be seen in the
convenient for designing stabilizing sliding mode control law¢ollowing, the chosen chained form is quite appropriate for a
For (2), one can use the following change of coordinates  sliding mode strategy.

The drawback of classical sliding modes is the well known
chattering phenomenon, which may excite unmodeled high fre-
guency modes which degrade the performance of the system
and possibly lead to unstability. To get rid of this undesirable

2’1:9
29 =xcosl +ysinh (4)
z3 =xsinf — ycosh

and the feedback control phenomenon, higher order sliding mode concept has been in-
troduced by Emel'yanov et al. (see [7, 12]) which main objec-
{ 1=t . (5) tive is to obtain a finite time convergence onto the non empty
V2 = U2 — 23U manifold S” = {o =¢ = ... = ¢"~1 = 0}, whereo is the

Discontinuous control laws have been developed in the lite

ture in order to stabilize system (2). The main criticism whe e chattering effects, but can also achieve a finite time conver-

applying such strategies to a mobile robot would be the actigfi"cc and a better accuracy than class[cal sliding modes. Tak-
of a discontinuous control directly on the mechanical part 419 into account the switching imperfections and the sampling

the system (namely,). The purpose of the paper is to define eriod 7, t.he motion dqes not ideally take plac'e on= 0 .
sliding mode control acting on the electrical parts of the syst t stays Ina small nelghbourklood of the manifold, whw_h IS
(which is more realistic since power converters are disconti_rr?—ached within an accuracy ofr") for ar-th order whereas it
uous actuators by nature). Taking into account the actuatbsré)nlyo(T) for a first order.

dynamics remains to include some dynamical extensions (casf13], the author designed ideal sliding mode algorithms for

%i_ding variable. Higher order sliding modes not only avoid

cade integrators) in the system (3): any order, i.e. control laws leading to the finite time conver-
gence of the system trajectories exactly on theS&ebr all r.
%1 =v1 +p1(2) However, the implementation of those algorithms may present
1 =un . some difficulties since some singularities in the time derivatives
Wy = —awy + piy = fiy )  of the sliding variable can appear. In order to overcome such
29 = va +p2(2) difficulties, a higher sliding mode control strategy with smooth
z3 = 29 (v1 +p1(2)) manifolds that was developed in [5] will be considered in this

paper. Those algorithms are leading to a practical finite time

whereu; is the linear velocity of the systemy; is the accelera- o ) DY .
. . ; .stabilization, that is to say the finite time convergence into an
tion andy, is the motor voltage of the electric actuator that wi : - .

¢-neighbourhood of the sliding manifold= 0.

be considered as the control input. However, in order to pre-
serve the properties of sliding mode, i.e robustness with resp€ht stabilization of the chained form (6) is made in three steps
to a class of perturbations and fast convergence, it is essentiddyoswitching between different types of sliding mode algo-
use a higher order sliding mode since the relative degree of titams that are described in Appendices A and B.
system ha; been mcreaseq In the pr(_agent case, the St‘r’mmzallhoenfirst part of the control algorithm is to constrain the sub-
of (6) requires at least a third order sliding mode strategy. One

X o . : .sa/stem
of the main contribution of this paper is to propose a real thir

order sliding mode leading to a practical stabilization of a triple A =1+ pi(2)

) ; U1 = W (7)
integrator like system. . -
9 Y w1 = —awy + fy = fiy
Assumption The disturbances are supposed to be bounded;@$.olve on the manifold
following:
0'11:2’170,15:0. (8)
1(2)] < py L
3 One can note that the system (7), with inpytand outputr1,
p2(2)] < 2y 2 €R has relative degree three
wherep,, p, > 0. Oﬁ) = iy + p1(2).

Thus by applying a third order sliding mode (see Appendix A)
of the form

Sliding mode control, which consists in constraining the mo-
tion of the system along manifolds of reduced dimensionality
in the state space, is quite popular in nonlinear control systeenseighbourhood of the manifold (8) is reached in a finite time
community. One can refer to [17, 20] for further details abody . Since aftefly, 611 = v(e), where||v(e)|| < 1, one gets
this theory. Its robustness properties with respect to matching following equivalent dynamic$v, + p1(z2)),, = a+v(e).

3 Stabilization of a wheeled mobile robot

fop = (011,011,611, k,m, A, ),

q



Second stepfor t > T3, the equivalent dynamics on the man4  Simulation results

ifold (8) is given b
®)isg Y As a way of illustration, simulations based on the system (6),

Z1=a+v(e) with the following controller parameters:
Zo = v9 + pa(2) . 9
Z3 = (a+v(e)) 2o k l<::§,m:m:1()07
The subsystem A = A=10, a=a =100,
B = 5 Am =050, Ay =100, ky = 10.

{ 2y = vg + p2(2)
Z3 = (a+v(e)) 22 Figure 2 shows the convergence of the state to zero while Fig-
e 3 gives the behaviour of the actual system inguivhich
continuous and of the motor voltage on which the sliding
mode control is applied.

Fa1 = [(a + v(€)) pa(2) + V() 2] + (a + v(e)) va. . 2

1 2
0.8

: . - o
has relative degree two with respect to the sliding varlabl%
0921 = 23.

Thus, the second order sliding mode algorithm

V2 = I—‘(0'217 67 >\ma )\]\/I)

with a suitable choice of gains, implies the convergence , |

0.6

0.4

of the state trajectories on the sliding set defined by 2
{021 =021 =0}, i.e z3 = 2z = 0in a finite timet < Ty % 1 2 3 4 o 1 2 3 4
(see Appendix B). .
0.2
Third step: aftert = T} + T5, the two control laws switchto .. 05
fp = (21,21, 21, k,m, A, @) andvy = —ky sgn(ze). Thus, 0
z3 and zz remains equal to zero and a neighbourhood of the ~* oo
manifold z; = 0 is reached. This ensures the finite time con- """ -
vergence of the whole state to a neighbourhood of the origin. _, B .
This result is expressed in the following theorem -0/ - - - . i’ o L

Theorem 1 Under the variable structure control law

) iy, = (011,611,610, kym, A,a), t<Ti+T» Figure 2: thezy, z5 andzs coordinates
= { fiyy = U(012,612,612,k,m, A,a),  t>T1+Th
9 vy Wy
1)2:{ U21:F(0;217ﬁ7)\ma)\1\/[)7 T <t<Ty +T2( : ' °
Voo = —]412 sgn(agg), t>Ty+Ts 05 °
(10) 0
where the sliding variables are defined by ’ =

o=z —at, a>0

012 = 21 o 1 2 3 4 5 1 2 3 1
J— b

021 - Zd mufulde1 v,

099 = 29 100 150

the solution of the closed-loop system (6-9-10) tends to a neigh- %
bourhood of the origin in finite time.

0

Note that the radius of this neighbourhood can be made as smal
as desired and that the convergence can be obtained in a pre -,
scribed time sinc&; and7» can be evaluated.

-100

-150
0

The application of a first order sliding mode in the first part of . ) o

the algorithm would have resulted in discontinuous velocities ~ Figure 3: the contro, (and its derivatives) and

and impulsive force and accelerations. This is naturally impos-

sible in any real life application. The choice of a higher orde§  conclusion

sliding mode control strategy allows to get rid of this drawback

since the discontinuous part of the variable structure control ree stabilization of a unicycle robot system has been studied.
henceforth embedded in the electrical part. It is obtained by switching between several sliding mode con-



trollers. So, a practical stabilization in finite time has been obxist positive constants,, C1, Cy, M7, M5 such that:
tained (the origin is not attractive but the state can be made

arbitrary small in a prescribed time). The main contribution ‘L§0| <Co
of the paper is the design of a new kind of third order sliding ‘L§U| <G (12)
mode control based on smooth manifolds. This allows to obtain ‘Lf‘7| <Gy
continuous velocity and acceleration inputs for some practical 0< M < LyLio < My
applications on mechanical systems. Simulations on the exafjio smooth manifolds,; andsS,, are designed:
ple of a unicycle illustrated the performance of the controllers.
Sa =6+ o Ps(0) (13)

Appendix A: Third order sliding mode algorithm with time e 1/6
varying smooth manifolds Saz = Sa1 + AlSa [ Py(Sa)

_ _ _ o . in which the smooth functiorP;(o) (which is a continuous
Here is described the third order sliding mode algorithm  approximation of the signum function) is defined by

“Classical” sliding mode control theory provides several ex- 5
amples of systems that exhibit convergence to the equilibrium P5(¢) = karctan(mg”)

in finite time. A well-known example is the double integrq—Nh -

tor with bang-bang time feedback control. Some other types erek: andm are two positive parameters.
of finite time convergence are presented in [1] (this concept bifie derivative ofS,, is given by
stability will be used in the smooth manifold defined hereafter). 118
Obviously, using a smooth manifold does not generate astab[lj'»s2 — S +A |1 S Ps(Ss1)+ A |Ssl|% Py(S41) (14)

[

ity in finite time, but a “practical ” stability in finite time (con- 6 S
vergence in finite time towards a ball of raditJs On the other 1/6 ; . .

hand, using a variable structure control law enables to rejg\(’:}fere‘sﬂl is determined as in [1] and where
the disturbances if a kind oMatching Conditiori is satisfied. . 9 |0|2/3
For ar-th order sliding mode, this condition can be expressed Ss1=0+

5P3(0) + Ps(o) |o*?

in the following way: the influence of the disturbance on the 3 0

sliding variables and its derivatives") V i = 1, ..., » must be

bounded. . ) 2 |o|*?

Consider a system described by the differential equations Ss1 = L?U 9 2 % Ps(0) (15)
. 9 |0‘2/3 ) 9 |U‘2/3 .
Z=f(2)+g(Z)u+d(Z)w (11) + 35 b)) + 5= —05Ps(0)
y=o0(2) 2|U‘2/3

+ By(0) |o® + - 6Ps(0) + LyLiou

wh_ereu Is the contrql Inputy 1s an output whose VamSh.mgNote that the equation (14) is defined for all Due to the
fulfills the control objective and> is a bounded perturbatlonalssum tions (12) and thanks to the higher order sliding mode
satisfying the well-known matching condition given in [6]. As- P 9 9

sume that the system has relative degree one with respgct tgontrol law

Thus: U= —a (L.C,Lfca)f1 sign(Ss2) =1l(0, 0,6, k,m, A, 04()16)
s =L¢o(Z)+ Lyo(Z Lgo(Z
7 s0(2) + Lyo(Z)u+ Lao(Z)w one obtains first, for an appropriate choice caf the finite

and My > Lyo > M,, > 0. Taking into account that the time convergence of the system trajectories dgo= S, +

1/6 - - -
perturbation is bounded, the control law defined by AlSal'® Py(Sa1) =0, Then, with a suitable choice of, the
manifold S, = ¢ +|o|*® Ps(o) = 0is reached. Finally, since
u = —asign(o) on the manifoldSy; = Se2 = 0,6 + \0|2/3 karctan (mo®) =

0, with an appropriate choice df andm , the trajectories
evolve after a finite time in a neighbourhoodof= 0, whose
layer is define by the parameters®f(c).

|Lgow| + |Lso]
S .
“ M,

for anyZ in the considered domain, implies the convergence diris important to note that the convergence is only practical in
o(Z) = 0in finite time. This elementary stability inequalitythis case and not in finite time. The robustness of the control
may be generalized at any order, and more particularly fer law is ensured by taking into account, in the choicer@ind in

3 as it is shown here. For a sake of simplicity, it is assuméke inequalities (12), the bounds on the perturbations and some
here thatv = 0. Let us describe the third-order sliding modef its derivatives. To reject the perturbation, it is important to
with a smooth manifold. For that, it is assumed that the Singlse the signum function (16). The details of the proof of the
Input Single Output system (11) has relative degree three wiitactical stability and of the case wheve# 0 can be found in
respect toy (that is to sayL,0 = L,Lyo = 0) and that there [5].



Appendix B: Second order sliding mode algorithm

Different kinds of second order algorithms have been given in

[6] B. Drazenovic. “The Invariance Conditions in Variable
Structure Systems’Automatica Vol. 5, No 3, pp. 287—
295, (1969).

the literature [2, 7, 12]. The algorithm used in this paper is a

modified version of the twisting algorithm [7], which improves [7]
the convergence rate and which is useful to obtain a global con-
vergence onto the chosen manifold. Consider the system:

wherexq, z2, u € R. Let us denoter = x; as the sliding
variable. The system (17) has relative degree two with respepd)
too.

then the control law

S.V. Emel'yanov, S.V. Korovin and L.V. Levantovsky,
“Higher Order Sliding Modes in the Binary Control Sys-
tem”, Soviet Physicsvol. 31, No 4, pp. 291-293, 1986).

[8] M. Fliess, J. Levine, P. Martin and P. Rouchon. “Flatness
and defect of non-linear systems : Introductory theory
and examples’nternational Journal of Contrgl\Vol. 61,

No 6, pp. 1327-1361, (1995).

9'61::132

To = ((t,y) + x(t, y)u (7)

T. Floquet, J.P. Barbot, and W. Perruquetti. “One-chained
form and sliding mode stabilization for a nonholonomic
perturbed system’Proceedings of the American Control
ConferenceChicago, USA, (2000).

Assume that

0 < Km S X(t7y?u) S K]Wa

[10] J. P. Hespanha and A. S. Morse. “Stabilization of non-
holonomic integrators via logic-based switchingiiito-
maticg 35, 385-393, (1999).
u = F(O—vﬁ7)\m7>\M)

L [11] z.P. Jiang. “Robust exponential regulation of nonholo-
= 20— 286 + —Amsgu(o), if 06 <0 nomic systems with uncertaintiesAutomatica36, 189-
with [12] A. Levant. “Sliding order and sliding accuracy in sliding
Am > ,%o mode control”,International Journal of Contrgl\Vol. 58

generates a second order sliding mode with respect to the mai3]
ifold ¢ = 0. Then the trajectories are describing an infinite
number of rotations in the phase plafie 6) while converg-
ing in a finite time (as small as the value @fis high) to the
set{(z1,22) € R? : 0 = 6 = 0}. Itis also possible to define
some upper-bounds for the convergence time.

(18)

KM — Cy > Katdm + Co, No. 6, pp. 1247-1263, (1993).

Levant, A. (2001). Universal SISO sliding-mode con-
trollers with finite-time convergencéEEE Transactions
on Automatic Control\ol. 46, No 9, pp. 1447-1451.

[14] S. Monaco and D. Normand-Cyrot. “An introduction to
motion planning under multirate digital controllEEE
Conf. on Decision and ContrplTucson, Arizona, pp.

1780-1785, (1992).
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