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ABSTRACT

An observer-based controller for tracking rotor flux
and rotor speed references of an induction motor is
designed, combining the advantages of the singular
perturbation methods and sliding modes techniques.
This control strategy is implementing on an experi-
mental setup where experimental results are given.

Keywords: Singular Perturbations, Sliding
Modes, Observer, Induction Motors.

1. INTRODUCTION

During the last few years, considerable research ef-
forts have been directed toward the control problem
of induction motors [1, 3, 4, 7]. Thanks to recent
advances in nonlinear control techniques and power
electronics, the implementation of powerful nonlinear
control laws is possible.

This paper deals with the design of an observer-
based controller for tracking rotor flux and rotor speed
references for induction motors, combining the advan-
tages of the singular perturbation methods and sliding
modes techniques and to implement it on an experi-
mental setup.

It is well-known that many physical systems in-
volve dynamical phenomena occurring in different
time scales [6]. Typically, these systems can be mod-
eled using singular perturbation approach which al-
lows to obtain subsystems of reduced dimension in
order to design control laws and analyze their stabil-
ity.

The sliding-mode control as a robust approach has
attracted a number of research, see [8]. It is charac-
terized as a high-speed switching controller that pro-
vides a robust mean of controlling nonlinear systems
by forcing the trajectories to reach a sliding manifold
in finite time and stay on the manifold for all time.
This leads to theoretical and practical problems. As
the controller contains a discontinuous nonlinear term,
the existence and uniqueness of solutions should be
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examined. On the other hand, the implementation
of discontinuous controllers yield the phenomenon of
chattering which can be avoided by approximating the
discontinuous control law by a continuous one.

Furthermore, the observer design for induction mo-
tors is an important problem in control theory and of
great practical importance as well [9]. The proposed
observer is a nonlinear high gain observer.

This paper is organized as follows. In Section 2,
the design of a controller based on singular perturba-
tion methods is introduced. In order to overcome the
problem of estimating the unmeasurable variables, a
nonlinear observer is given in Section 3. In Section 4,
we briefly introduce the induction motor considered.
In Section 5, the observer-based controller scheme ob-
tained is implemented in a semi-industrial experimen-
tal setup and tested with a benchmarck. Finally, con-
clusions are given.

2. PRELIMINARIES

Consider the class of nonlinear singularly systems
described by (see [6]):

= fi(z) + Fi(x)z+ g1(x)u,  a(te) =z0, (1)

£ 2= fo(2) + Fa(z)2 + ga(2)u, 2(to) = 20, (2)

where tg > 0, x € B, C R" z € B, C R™ are the
slow state and fast state, respectively; u € R" is the
control input and € € [0,1) is the small perturbation
parameter. f1, fa, the columns of the matrices Fi,
F5, g1 and g are assumed to be bounded with their
components being smooth functions of . B, and B,
denote closed and bounded subsets centered at the
origin. F5(z) is assumed to be nonsingular for all = €
B;.

When ¢ =0 in (1),(2), the n —th order slow system
can be obtained as

‘%s: f('rs) + g(xs)usy J;s(tO) = To (3)

zs = h(zs) == —F{l(:cs) [f2(xs) + g2(xs)us] (4)



where x5, z; and us denote the slow components
of the original variables z, z and wu, respectively,
and f(xs) = fl(xs) - Fl(xs)Fgl(xs)fQ(ws); g(ms) =
g1(xs) = Fi(xs)Fy ' (s)ga(ws). In (3) and (4), us(zs)
denotes the slow state feedback which only depends
on xs. The fast dynamics is obtained in replacing the
slow time scale ¢ by the fast time scale 7 := (t —ty) /e
and introducing the deviation of z from M., i.e.
n = z — he(x,€). The original system (1),(2) then
becomes

dzx ~ ~ ~ ~

= =A@+ @)+ he(@ )] + g1(@)u} (5

dn _
dr

Fo @)+ Fo@l (7,0 o (Bu~ 20D O

(6)
where 1(0) = z9 — h(zo), 2(7) := z(eT + to), with
Z(0) = 20, and Z(7) := x(eT+1p), with Z(0) = xg. The
composite control for the original system (1),(2) is de-
fined by w(x,n,€) = ues(z, €) + uer(z,n, €), Where s
and u.s denote the slow and fast control components,
respectively. The component u.y is used to make M,
attractive and vanishes there, i.e. ucf(x,0,€) = 0.
If ues(%,€) and Ohe(T,€)/0x are bounded and T re-
mains relatively constant with respect to 7, then the
term €(9h.(T, €)/0x) can be neglected for € sufficiently
small. Since the equation (6) defines the fast reduced
subsystem, an O(e) approximation can be obtained for
this subsystem using equation (4) and setting ¢ = 0
in (5),(6), this is

dT/apm

W02 — Fo(@aps + 92 (2) vy 7)

where 7ape, he(Z,0) = h(z) and uy are O(e) approx-
imations for 7, h.(T,e) and wucs during the initial
boundary layer and 74, (0) = 20 — h(z0,0).

2.1- Sliding-Mode Control Design.

The sliding-mode control for the system (1),(2)
is designed in two stages as follows. First, con-
sider the following (n — r)-dimensional slow non-
linear switching surface defined by og(zs,2sq) =
col (05, (Tsy,@sd), -y 05, (Ts,2sq)) = 0, where zgq =
col(Xgdy s .-, Tsd, ) is a reference vector and each func-
tion oy, : By X B, = R ,i=1,...,r, is a C* function
such that o,,(0,0) = 0. The equivalent control method
(see [8]) is used to determine the slow reduced sys-
tem motion restricted to the slow switching surface
os(zs, xsq) = 0, leading to the slow equivalent control

Jo -1 0o, 0oy e
o= [GRate] |G 5 2] ©

where the matrix [0os/0x]g(zs) is assumed to be
nonsingular for all x4, xsq € B,.
In order to complete the slow control design one sets

Us = Uge T UsN (9)

where ug. is the slow equivalent control (8), which
acts when the slow reduced system is restricted to

0s(xs,254) = 0, while usny acts when o4(xs, 25q) # 0.
In this work the control u,y is selected as

Oog
0x

where Lg(x) is an r X r positive definite matrix whose
components are CY bounded nonlinear real functions
of x4, such that ||Ls(xs)]| < ps for all z, € B,
with a constant p; > 0. The equation that describes
the projection of the slow subsystem motion outside
os(zs,25q) = 0 is given by

usy = —| g(xs)]_lLs(xs)Us(xs,xsd) (10)

55 (s, Tsq) = —Ls(T5)0s(Ts, Tsd)- (11)

The stability properties of o4(xs, 2s4) = 0 in (11) can
be studied by means of the Lyapunov function can-
didate V (x5, x5q) = %Ug(azs,azsd)as(xs,xsd), whose

time derivative along (11) satisfies % (Ts,Tsq) =
—0 (24, 5q) Ls(25)0s(75,25q) < 0, for all x4, 759 €
B, thus assuring the existence of a slow sliding mode.
On the other hand, the fast control design for
the subsystem (7) can be obtained in a simi-
lar way . One considers an (m — r)-dimensional
fast switching surface defined by o¢(Naps,Tra) =
T
(05, MapzsTfd)s - Of. (Nape, Tfa))” = 0, where zpq =
(Tfdyy - Tfa,, )T is the reference vector and each func-
tion oy, : B, x B, — R, i=1,...,r, is also a C' func-
tion such that o, (0,0) = 0. The complete fast control
takes the form

up = ufe(gvnapmaxfd) +qu(;a77ap:mxfd) (12)

where u . is the fast equivalent control given by

60’f ~ -t @O’f ~ 80‘f dajf,]
e — — F ane _ 4 _ J=
e [ napng(x):| [877apz Z(x)np +8xfd dr
(13)
and
do ~ 17
UfN = — |:8n ! QQ(QU):| Lf(napm)af(napm,l“fd),
apx

(14)

In (13) and (14), the matrix [3Uf/877apm]g2($) is as-
sumed to be nonsingular for all (%, Napz, Tfd) €
B, x B, x B, and Lf(nqps) is a positive definite ma-
trix of dimension » x r, whose components are C°
bounded nonlinear real functions of 7,;,, such that
”Lf(napm)H < py, for all (%7 Napa xfd) € By X B, X B,
with a constant ps. The projection of the fast sub-
system motion outside o f(Napa, Tfq) = 0 is described
by doy/dr = —Lt(Nape)0 f (Maps, Tfd), and arguments
similar to the ones used for the slow subsystem mo-
tion can be applied to this system to conclude the
existence of a fast sliding-mode.

The stability properties of the slow and fast closed-
loop systems are in [5].

Based on the reduced order sliding-mode control
described above, the original slow and fast state vari-
ables are used to construct the composite control, i.e.

u(xvxsdvThxfd) = US(.T,de) + uf(xﬂlv%fd) (15)



where

wom [Zeg)] [ 201+ Lo ]
(i6)

w = | h SR+ Lo)os.00)

(17)
When the composite control (15),(16),(17) is substi-
tuted in (1),(2), one obtains the closed-loop nonlinear
singularly perturbed system

a= fC(xvmxsd) (18)
= gelemaga) — o felemza]  (19)
where 1 = z — h(z), z(t,) = x,, 2(to) = 2, and
-1
o) = S@)+ P = o(e) | Foo(o)] - »
8@? F(@) + Lo(2)0s (2, 75a) | -

The stability properties of the complete closed-loop
system can be studied by using, for each subsystem,
Lyapunov methods (see [5] for details).

3. OBSERVER SYNTHESIS

Consider the following class of nonlinear systems

X1 = AiyXi+a(uy, X1) (20)
Xi = AiXi+gi(u,y, X1,---, X5)
Yi = CzXl, i=1,---,n.

where X; = (2i1,%i2, ., Tir;). € IR™ is the state of
system ¢, x; ; € IR™ are components of the vector X;,
dimX; = n;, for i = 1,..n, 1", n; = N is the total
dimension of the whole system, y; € IRP* is the output
vector of the subsystem 7, dimy;, = p; , >, p; = Pis
the total dimension of the output space, r; represents
the partition of the vector X; such that r;p; = n;.
The matrices A; € IR™*™, i = 1,2,...,n; depending
on the inputs and outputs are given by

Opi Xpi ALi (y) Opi Xpi
Aily) =

Opi XPpi Opi Xpi AT’i*lﬂ; (y)

Opi Xpi OPz‘ Xpi Om Xpi

where A; € RP"*P ¥j = 1,...,7; — 1; are not singu-
lar submatrices of constant rank for any input « and
output y and g;(u,y, X1, -+, X;) =

g1,i(w, Y, X1, -+, Xi—1,%41)

g2,i(u,y, X1, -+, Xi_1, 24,1, %i2) v
. € R",

Grii(t,y, X1, Xi1, @01, s Ty,

VJ = 1, 2, ey Ty

The output matrix of the system ¢ constant
and is given by the following form C; =
(Ipixpmopixpm ) Op7><p1) .

Now, we introduce the following assumptions:

Assumption B1: FEach subsystem is observable,
i.e. the matrices

CiA7 ™ (y)

fori = 1,...n; have full rank for any y. More pre-
cisely, there exist a class U of bounded admissible in-
puts, a compact set K CIR™ , A1, Ay positive constants
such that for every u € U, and every y(t) associated
to u and the initial state X (0) € K, the matrices Aj;
cIRP*Pi Y =1,..,r; — 1;i = 1,...,n; satisfy

0< Al[m XPi < Afl(y)AJl(y) < )‘ZIpi XPpi -

Assumption B2: The matrices A;(y);i = 1,...,n;
are of class C* , k > 0, with respect to y.
Assumption B3: The vector fields
gi(u,y, Xq,-+,X;), i = 1,...,n; are globally Lipschitz
with respect to (X1, --,X;), and uniformly with re-
spect to w and y.

The matrix Ti(y) can be rewrit-

ten as block-diag {I e A (), TS Aji(y)} ,
for i =1, ...,n. Then, by Assumption B1, the matrices
Ti(y),i = 1,...,n; are invertible.

Then, an observer for systems in cascade (20) is
given by

Z1 =
5 =

A(y) 21 + g1 (u,y, Z1) + M (y)Ci (2 — Xq)

Ai(Y)Zi + gi(u,y, 21, Z3) (21)
+M;(y)Ci(Zi — X),

for i = 2,---,n; where M;(y) = ;' (y)A, ' K;,i =
1,...,n; are the gains of the observer and de-
pend on the input and the output, and Ay =

diag { Iy, xpss 3o Ipixpss o g Lpoxps b With 05 > 0, K;

is such that the matrix (4; —K;C;) is stable where

OPz‘ Xpi IPz‘ Xpi Opi Xpi
A=

Opisps - Opixps = Ipixps

Opi Xpi OI% Xpi OI% Xpi

The proof of the convergence of this observer is
given in [5].

Moreover, in [5] a stability analysis of the closed-
loop observer-based controller system is given, where
sufficient conditions are obtained in order to guarantee
the ultimate boundedness of the system’s variables.
The analysis proves that this scheme can be applied
to an experimental induction motor set-up.

4. APPLICATION TO THE INDUCTION
MOTOR

The induction motor model considered under the
classical assumptions of sinusoidal distribution of
magnetic induction in the air-gap, no saturation of the
magnetic circuit, the diphasic model af is described
by (see [1, 2, 7])

Snp: X=F(X)+ Gu (22)



where the state of the system is: X =
[Q,qSTa,qﬁrg,isa,isg]T, Q is the mechanical speed,
Ora, Prpg are the rotor fluxes, 54,753 are the stator
currents, and the input is: u = [usa,usg]T, Usa, Us
are stator voltages;
g_ﬁ((ﬁraisﬁ ¢rﬂisa) - §Q - %TL
_TLT ra pQ(brﬂ + 'Lsa
pQ¢ra - ¢rﬁ + 7/5,3 y
T, ¢mz —|—pQK¢7ﬂ Visa
_pQK(bra + (brﬂ 'Vleﬂ
000 o 1"

oLg
000 s 0 |~

F(X) =

g=

with M, L,., Ly are the mutual, rotor, stator induc-
tances respectively, 17, the load torque, J the iner-
tia (motor and load), f the viscous damping coeffi-
cient, p the pole pair number, T, K.=-M

oLsL,"’
M2 R RTMQ
I.L0 V= oL, T oL.I2"

We assume that the load torque is constant and un-
known and the nominal values of the rotor resistance
and the other parameters of the model are known.

4.1. MODEL REPRESENTATION

Consider the following assignment of variables: The
slow variables © = [x1, x9, x3)" = [Q,qﬁm,qﬁm]T, the
fast variables z = [z1, 22T = [isas isg]T . Taking ¢ = o,
it is possible to write the model (22) in the standard
singularly perturbed form

{ = fi(2) + Fi(2)z + g1 (@)u

£ 2= fo(z) + Fa(x)z + go(2)u
—Lyy - 211y

with fi(x) = —T%ﬂh —prirs |,
bpr1T2 — T%,l“s

R I

c:=1-—

Fi(z) = T 0 » 91(z) = 032,
0 M
_ Tr
hole) = 1ws + pKriws
2 - = i )
—pKxi10 + TK%
Fy(z) = —7lax2, g2(x) = L12><27

Ni=ey= ‘—i——Lf"L—;andK =eK = L.

r

4.2 CONTROL DESIGN

The slow reduced system (3) is described by the
vector fields f(zs) =

2

— L[ (22, + 22) + fra + T

(Af[r}’j o 1)( xg? +px91x€3) )
(%{5 - 1)( " Lsz T pxsleZ)
M pM
g(xs) = T, 0
0 M
Ty

Since the control objective is to make the mechan-
ical speed x5, equal to the reference speed Tsd, and
the square rotor flux magnitude x2 +$53 equal to the

reference flux x2, +22,, , the following slow switching
function is chosen :
(xsl - del)

Og (l's_ﬂfsd) =S wzQ + sz B (xzdz * xgd?’)
a2 dt (xﬁ - x;d1) )
dt [QL‘ + ﬂ? ( sdz + xsdg)]
withSz(%lSO 80250 , where s; > 0, 1 =
3 4

1,...4; and w49 = (Tsdy> Tsdy, Tsds)? is the constant
reference.

On the other hand, the fast system is given by

dnap:c

= = F2(2)Nape + g2 (T) uy,

where FQ(%) = —’_}/IQXQ, gg(%) = %SIQXQ.

In this application, one just needs to stabilize the
fast variables to the origin. Choosing the fast switch-
ing function as ¢ = Sngps, where S = diag (51, 52),
with 51 , 50 > 0. Finally, the fast control is given by
[Sg? (i')] [SF2( )Tlapfv + Lf(napw)snapm] )
where L¢(Nape) = diag (L, 11,) -

4.3 OBSERVER DESIGN

The system (22) can be naturally represented in the
form

Uf:—

X1 = AwXi+a(uwy X1) (23)
Xo = A(y)Xo+ g2(u,y, X1, X2)
Yi = Cle,Z = 1, 2.

where the electrical subsystem is represented by
. . T .

X1 = (21,1,221)T = (isasisps Pras Prp)” With z11 =

(isaaisﬁ)T and 2,1 = (¢ro¢7 ¢rﬂ)T;

mi = (g2 s

O2x2  Oax2
g1 (u7y7X1) = 1
—vlax2  O2x2 ——I2x2
X oL .
( %bw —N() > 1+< O2x2 >u,
1
L0
N =( T L Cr=( Ioxs Ogxs ).
@=( T ). G (e )
The measurable output is y1 = 21,1 = (isa,isg)T
The mechanical subsystem is represented by

"=t A =

Y2 :Q7 and 92(u7y7X1) = < 15 ) )

Then, in order to estimate the flux and the load
torque, the following observer is designed:
1) For the electrical subsystem:

Xy = (2@2,17 $2,2)

ol

21: 02><2 mlN(w) Zl
O2x2 O2x2
—Ylax2  Oax2 malaxo
+ Zi+
< m212><2 —N(w) > ! < 02><2 )u
291k1112x2
91]{712 Nﬁl(w) Cl(Zl — Xl)
miy



2) For the mechanical subsystem:
s _ (0 =(1/J) ¥
Zo= ( 0 0 ) Zay + ( 0

- ( i ) Co(Zs — Xa),
where . X
b = = (fu/ D)t (pMar /TLy) (Sraiss = bosisa) - No-
tice that in the term (qgmis,g — (Zgr,g’isa), the esti-
mated variables come from the first observer.
5.- EXPERIMENTAL RESULTS

In order to illustrate the performance of the pro-
posed scheme, we now show some experimental results
when the controller-observer scheme is implemented
in a experimental setup of an induction motor, illus-
trated in Figure 1. The motor chosen is a 4-pole,
7.5 kW, three-phase induction motor with a squirrel-
cage rotor fed by a PWM converter. The converter
is built with bipolar transistors and provides a space
vector modulation at a frequency up to 1000 Hz. The
motor parameters are given in Table I. The induc-
tion motor load is simulated by a 7.5 kKWW DC motor
fed by an inverter with current circulation which pro-
vides four quadrants operation. The hardware setup
for controlling the motor consists of a ASPACE sys-
tem with a TMS320C30 floating point DSP and in-
terfaces boards for acquisition and measurement of
different signals. The TMS320C30 operates at a 1 ms
sampling period and the PWM works at 1 kHz.

Description Param. | Value Units
Rated power P 7.5 kW
Rated speed Qnom 1450 | rev/min
Rated current Lhom 16 A
Stator resistance R, 0.63 Q
Rotor resistance R, 0.4 Q
Mutual inductance M 0.091 H
Stator inductance Ly 0.097 H
Rotor inductance L, 0.091 H
Inertia J 0.22 kgm?
Viscous damping coef. S 0.001 | Ns/rad
Poles paires P 2

Tab. I: Motor parameters

In order to validate the controller on a wide operat-
ing domain, the control law is tested with the bench-
mark described in Figure 2. A torque disturbance is
applied as shown in Figure 2.

In experiments, the observer parameters that pro-
vided the best control are ky = 0.7, ks = 0.12,
91 = 4.5, l1 = 11.0, lz = 30 and 92 = 3. The pa-
rameters of the sliding mode controller are chosen as
follows: s1 =100, s2 =1, s3 =100, s4 = 1, l5, = 200,
lsZ = 250, 51: 1, 52: 2, lf1 = 10, and lfz = 10.
The sampling period is relatively large, so the dis-
cretization of the observer is made by developing the
exponential expressions to the 4”% order to improve
the precision.

Figure 3 shows the results obtained for the rotor
speed and motor torque using the proposed scheme.

It includes torque due to acceleration and torque due
to load. Figure 4 shows tracking errors on flux and
speed. The flux tracking error can be determined us-
ing the estimates and the reference, because the real
flux is not available for measurement. The tracking
of flux norm and speed are given in Figure 5. This
information is obtained using wires which are intro-
duced in the stator. The obtained voltage with wires
is integrated in order to have some evaluation of stator
flux. For technological reasons, it is very difficult to
measure flux and electromagnetic torque at low speed.

Figure 6 shows the estimated speed and load torque.
Note that the measured flux is only available at nom-
inal speed. In this case, we can see that the influence
of rotor speed in the load torque estimation.

Finally, in order to show the robustness of the con-
trol strategy under parametric uncertainties in the
system, we proceed as follows: First, the nominal
value of R, is augmented of 50%, i.e. (AR, = +50)
in the induction motor model. Next, the observer and
the control law design are done using the modified
model. Finally, this control strategy is applied to the
induction motor. We proceede in the same way, by de-
creasing the nominal value of R, i.e. (AR, = —50).
Figure 7 shows flux norm and speed, and the corre-
sponding tracking errors are given in Figure 8.

CONCLUSIONS

A nonlinear control-observer strategy based on class
of nonlinear systems has been developed and ap-
plied to an induction motor. The controller was
designed using singular perturbation methods and
sliding-modes. Furthermore, a high gain observer for
a class of nonlinear systems was designed in order to
estimate the rotor flux and the load torque. Using
an experimetal set-up of the induction motor, results
have been obtained where the good performance of
the proposed control strategy has been showed.
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Figure 7. Rotor flux norm and rotor speed
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Figure 3. Speed and torque estimation. Rotor flux norm error (ref. flux - est. flux) [s]
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P Figure 8. Robustness test: tracking errors.
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Figure 4. Tracking errors.
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