
 

ADVANCED SLIDING MODE STABILIZATION OF A 
LEVITATION SYSTEM 

O. Bethoux *, T. Floquet #, J-P. Barbot * 

* Control of System Research Team (E.C.S.) 
E.N.S.E.A. , 6, Avenue du Ponceau - 95 014 Cergy-Pontoise – France 

e-mail: bethoux@ensea.fr, barbot@ensea.fr 
 

# LAIL,UMR 8021 CNRS 
Ecole Centrale de LiIle , BP48 Cité Scientifique, 59651 Villeneuve d’Ascq – France 

e-mail: floquet@ec-lille.fr 
 

Keywords: magnetic levitation system, nonlinear system, 
higher order sliding mode control. 

Abstract 

Levitation bearings are intrinsically unstable, nonlinear and 
highly uncertain systems. In this paper, we focus our attention 
on sliding mode controllers which allow robust design and 
more particularly on second order sliding mode control which 
appears very relevant with respect to the process structure. 

1 Introduction 

Magnetic levitation systems have received much attention as a 
mean of eliminating Coulomb friction due to mechanical 
contact. They are becoming popular in two different kinds of 
realization: high-speed motion and precision engineering 
industry [6]. 

Levitation bearing has been used from the beginning in 
rotating machinery to support rotors without friction 
providing low energy consumption, high rotational speed, no 
lubrication and greater reliability. It also allows a simpler and 
safer mechanical design as in the case of pumps used in 
nuclear installations where fluid leakage avoidance is of 
primary importance. The most famous application is high-
speed ground transportation systems: Japanese “Maglev” and 
German “Transrapid”, shown Figure 1, are very fast trains 
with linear motor. 

  
Figure 1. Japanese “Maglev” and German “Transrapid” 

 
On an other side, magnetic bearings are becoming 
increasingly popular in the precision industry, which places 
significant demands on accurate positioning. One can quote 
nanometric servo-position actuator in micro-lithography 

industry as well as vibration isolation in precision scientific 
instruments. 

Magnetic levitation highlights phenomenon like 
nonlinearities, fast dynamics and actuator saturation. Many 
control techniques have been quite successfully implemented 
on levitation systems. Within the control methodologies, we 
can, for instance, distinguish feedback linearization control 
[2,3,15], flatness based control [11], passivity based control 
[14] or backstepping design approach [13]. Many of these 
implentations are limited by the model relevance as well as its 
parameters accuracy. 

Among robust control methods, one can quote nonlinear 
output regulation [8], adaptive control laws [18] and sliding 
mode control laws [2,3,9]. The latter works highlighted some 
robustness properties of sliding mode to unmodeled dynamics 
and some classes of disturbances. However, it suffers from the 
chattering phenomenon leading to high frequency switching 
currents. In this paper, we intend to optimize the use of the 
sliding mode approach in order to design a new control law 
robust to a larger class of disturbances and well suited to the 
levitator structure. Process physical properties lead us to a 
second order sliding mode control law. 

2 Magnetic levitation 

2.1 Process presentation 

The system we consider in this paper is a gravity-biased one 
degree-of-freedom magnetic levitation system.  
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Figure 2. The electromagnetic suspension system. 



 

The main goal is to keep a magnetic ball in levitation at a 
reference distance of an electromagnet. The only control 
variable is the current feeding the coil located above the ball. 
The distance between the ball and the electromagnet is 
indirectly measured: a photoelectric cell delivers a voltage 
proportional to the light flux coming from a lamp situated on 
the other side of the ball. Figure 2 gives a front view of the 
main elements. 

2.2 Model of the magnetic levitation system 

The system dynamics describing the behaviour of the moving 
ball is derived from the Newton’s laws: 

 d  mg  )z,i(F  zm mag

..
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where z denotes the position of the ball (as indicated figure 2), 
m its mass, g the acceleration of gravity, i the coil current and 
Fmag(i,z) the electromagnetic force applied to the ball. d 
denotes a bounded perturbation. 

Drawing up the energy balance of the whole system and under 
the assumption that the magnetic core is non saturated (which 
occurs because of the air gap), the electromagnetic force can 
be expressed as following: 
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where L is the coil inductance. 

From equation (2), it can be seen that the electromagnetic 
force is always a negative term since the inductance parameter 
decreases while the ball moves away (z increases). Hence the 
magnetic ball is always pulled over to the electromagnet 
whatever the sign of the coil current is. Moreover magnetic 
force is all the greater as L(z) decreases steeply from L(0) to 
L(∞). As the value of L(∞) is always the same (coil 
inductance value without influence), L(0) has to be as great as 
possible, which is the case with high ball permeability. 

Denoting  

 ( )z
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the model of the considered system can be expressed as: 
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 (4) 
In the case of a good magnetic linkage between the 
electromagnet and the magnetic ball, the term k(z) is generally 
given by the relation: 
 

( ) 2

0

0

l
z  1

k  zk









+

=
                             (5) 

where k0 and l0 are some physical parameters depending on 
the electromagnet, the mass and the permeability of the free 
space [17]. 

Since the objective is to find a control law i(t) such that the 
mass position is stabilized at a desired constant position, the 

system is rewritten in terms of the state tracking error 

variables i.e. e1  =  (z-zref) and e2  =  1

.
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This magnetic levitation system is strongly nonlinear, open-
loop unstable and uncontrollable if g + δ < 0. It is also of 
importance to note that this system is subject to parametric 
uncertainties and external perturbations. Indeed, the accurate 
value of parameter k(z) is difficult to evaluate, except by a 
finite-element analysis. Furthermore, the term k(z) depends on 
the magnetic environment and can be perturbed by magnetic 
object and low frequency magnetic fields. In this paper, we 
focus our attention on sliding mode control so as to design a 
robust algorithm.  
Assumption 1: It will be assumed throughout the paper that 
δ is a bounded perturbation and that the lower and upper 
bounds of k(z) are known: 

1  ∆<δ  

( ) maxmin kzk  k <<  

2.3 Linear levitation controller 

The relationship between the position and the current is non 
linear which is the most common case in general modelling. 
Nevertheless, a stabilisation of this unstable process can be 
achieved by the use of a linear controller such as a lead-phase 
compensator. This linear feedback design remains on a small-
signal model.  

Denoting (i0;z0) the steady state and (i0 + i ; z0 + z) the 
operating point, we write a first order approximation of 
equation (4). We hence deduce a linear second order model: 
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The harmonic design of such a feedback is based on Nyquist 
stability criterion (Cauchy theorem). As shown in Figure 3, a 
lead compensator provides a stable closed loop behaviour. 
But its three parameters (C0, a, τ) depend deeply on local 
model values (h0, ω0). Hence the performance is degraded as 
the system moves away from the domain of validity of the 
modelling approximation. 

These poor stability margins on large travel motivate the 
application of nonlinear controls to achieve satisfactory 
performance. Among them, nonlinear control strategies based 
on feedback linearization are limited in the sense that the 
parameters of the suspension must be well known. To achieve  
robustness of the control system, strategies such adaptive 
nonlinear control or sliding mode techniques have been 
applied.  In this paper, it is shown that second order sliding 
modes are of particular interest for the robust control of 



 

magnetic levitation systems. For this, the basic notions of 
higher order sliding modes are given hereafter. 
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Figure 3: Open loop Nyquist diagram of levitation 

bearing H(s) with stabilizing compensator C(s). 

3 Sliding mode background 

In this section are presented the general notions of first and 
higher order sliding modes. The definitions are given in the 
framework of the magnetic levitation and thus in the case of a 
single input and nonlinear system whose dynamics is defined 
by the differential equations: 
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where      x nℜ⊂Χ∈  is the state vector,    U  u ℜ⊂∈  is 

the bounded input,     U    : f nℜ→×Χ×ℜ +  is a sufficiently 

smooth uncertain vector field and        : s ℜ→Χ×ℜ +  is the 
sliding variable. Assume that the control task is fulfilled by 
constraining the state trajectory on a proper sliding manifold S 
in the state space defined by the vanishing of the sliding 
variable i.e ( ){ }  0  xt,s :   x  S =Χ∈= . The resulting behaviour 
of the system is called sliding mode. In classical sliding mode 
control (see [12,16]), this is achieved by means of a 
discontinuous control acting on the first time derivative of the 
sliding variable. In sliding mode, the system can be shown to 
be unsensitive to perturbations and parametric uncertainties 
which are satisfying the well known matching conditions (see 
[5]). However the major drawback is the so-called chattering 
which consists in large oscillation in the neighbourhood of the 
sliding manifold (due to the fact that the control is switching 
between high amplitude opposite values with theoretically 
infinite frequency). To overcome this undesirable 
phenomenon, higher order sliding modes have been 
introduced [7]. Assume that the function s and its (r-1) first 
total time derivatives, along the system trajectories, exist and 
are single valued functions of the state system (then 
discontinuity appears only in the rth total time derivative s(r)). 

Definition (see [10]) If the state trajectory of the system (8) 
lies, after a finite time, in the following manifold  

( )  0  s  ...   s  s :   x  S 1-r
.

r







 ====Χ∈=  

then it is said that this system evolves featuring a rth order 
ideal sliding mode with respect to s (or a rth order ideal sliding 
mode on the sliding manifold S). 

A control law u leading to such a behaviour is called a rth 
order ideal sliding mode algorithm with respect to s. In this 
definition, it is supposed that the prescribed constraint s = 0 is 
ideally kept. That is not the case in practice since it would 
imply that the control commutes at an infinite frequency. 
Because of the technological limitations of the actuators, such 
as switching time delays and/or small time constants in the 
actuators, this frequency is finite. Thus, the motion only takes 
place in a neighbourhood of the sliding manifold and is said to 
be a rth order real sliding mode if the following relations are 
satisfied: 
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 where τ is the sampling period. 

From this definition, it can be seen that the higher the order of 
the sliding mode is, the more accurate the convergence on S 
is. Here, we are more particularly interested in second order 
algorithms, whom several examples have been develop in the 
literature [10]. The following one is called the real twisting 
algorithm [7]. Assume that f and s are respectively C1 and C2 
functions and that the relative degree of the system with 
respect to s is r = 1. By differentiating the sliding variable s 
twice, the following expression is derived: 
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where it is assumed that there exists some positive constants 
s0, Km, KM and C0 such that in a neighbourhood 
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Then under additive assumptions (see [7]), it can be shown 
that with the control law  
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where λm and λM are satisfying the conditions:  
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the system trajectories evolve, after a finite time, in the sliding 
set 
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The interest of the real twisting algorithm with respect to 
other algorithms is that it does not require the knowledge of 
the derivative of the sliding variable and takes into account 
some practical constraints such as the sampling of the 
measures and the control law. 

4 First order sliding mode levitation 
stabilization 

4.1 Control law 

It is proposed in this section to stabilize the ball at its desired 
position with a first order sliding mode control law.  

For this, let us consider the nonlinear system (6) and define 
the sliding surface: 

( ) ( ){ }0  e T  e  e,es  :  e,e    L 212121s =+==                   (11) 
If a control law can constrain the levitation system to remain 
on the line Ls, then the ball motion satisfies a linear first order 
differential equation: the tracking error reaches exponentially 
the origin. This property occurs if the control action i(t) 
implies the fulfillment of the reachability condition: 

 s  -    s s
.

µ≤  (12) 
The time derivative of the sliding variable is given by: 
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If the relation 
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 is satisfied, the following discontinuous control law 
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guarantees the Ls reachability condition (12). This ensures 
that, in finite time, the levitator motion intercepts the sliding 
surface Ls and is forced to remain on it whatever the 
disturbances or mismatches between the rough model and the 
real system are. 

4.2 Simulations 

Some simulation results (Figure 4) have been obtained using 
the control law (15-16) with IMAX = 20A and τ = 0.1s. The 
values of the system parameters have been chosen as 
g=9.81m/s2, l0 = 0.01m and k0 = 1 m/s2/A2. The initial 

conditions are z = 4 mm and 0  z
.
=  whereas the reference 

value is set at zref = 5 mm. A sinusoidal disturbance with 
amplitude D=0.5m/s2 and frequency f=10Hz occurs at time 
t=0.8s. 
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Figure 4 : Levitation with a 1srt order sliding mode controller 

 
It is important to note that this control strategy faces several 
drawbacks. The action required to bring about such a sliding 
mode is discontinuous and results in the chattering 
phenomenon, large control efforts (particularly in order to 
reject the parametric variations and the perturbations 
satisfying the matching condition, see (16)) and heat 
dissipation since the control force Fmag is driven by the current 
variable i(t). Furthermore, this variable is a continuous 
variable and its maximum slope rate is limited by the voltage 
value of the power supply. Therefore, the real control signal 
applied to the system will be an approximation of the desired 
robust and stabilizing control required by the switching 
function. 

Another difficulty  to apply a first order sliding mode for that 
kind of system is linked to the fact that the control input enters 
square in the model. As it was shown in [1], the equivalent 
control may in that case not be uniquely defined (or not exist) 
and some unstability may appear [4]. Furthemore, a control 
law that switches between high amplitude opposite values can 
not be designed. Thus, the inequality (14) ensuring the 
reachability condition defines a sliding domain that can be 
only enlarged by increasing the time constant T. However the 
greater T is, the slower the convergence of the tracking errors 
is. 

In order to deal with these problems while keeping the key 
property of robustness due to the switching function, we 
intend to design a control feedback based on second order 



 

sliding mode. In this approach, the coil current i(t) will be a 
continuous variable. 

5 Second order sliding mode levitation 
stabilization 

5.1 Control law 

If we consider that the control input is the coil voltage and if 
we neglect the coil resistance, the magnetic levitation state 
equations are now described by the following third-order 
nonlinear system: 

 
( )

( )












=

+−=

=

zL
V

u

uzkge

ee

.

2
.

2

2

.

1

δ
 (17) 

where u denotes the coil current i(t) and V the new control 
input. One can note that the uncertainties does not enter the 
state equation at the same point as the control input. 

Assumption 2:  

- The coil inductance is bounded: 
( ) maxmin L  zL  L <<  

- The disturbance δ is now assumed to be a bounded 
and derivable disturbance (which is the case of low 
frequency magnetic fields) such that: 

2

.
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- The time derivative of k(z) is bounded: 
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The discontinuous control input is the voltage V(t) and the 
current is in that case a smooth variable. This is well suited 
here since the actuator is in practice a power converter which 
is itself of discontinuous kind. 

The sliding variable s whose vanishing implies the asymptotic 
stabilization of the tracking error remains ( )       , 2121 eTeees += . 
The second time derivative of s is given by: 
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Note that thanks to a suitable choice of the control gains, the 
coil current i(t) (that is to say u, the integral of the 
discontinuous control) can be maintained at a strictly positive 
value. Thus, under assumptions 1 and 2, there exist Km, KM, 
C0 such that: 
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Applying the real twisting algorithm  
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where the gains are defined by (10), the system evolves after a 
finite time in the domain defined by: 
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Then, in sliding mode, z is asymptotically stabilized at its 
desired position zref since s=0 defines a differential equation 
whose dynamics asymptotically converges to zero. 

Remark: Although it is not essential to know the nominal 
model (5) to design the sliding mode control laws, one could 
take advantage of its use, particularly in order to reduce the 
control gains. 

This second order sliding mode exhibits some good 
properties. In sliding mode, since  

( ) ( )[ ] 0,, 2
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dt
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the value of the coil current is stabilized at ( )refzk
gi δ+= .  

In steady state, first order sliding mode also leads to the mean 
control value: ( )refzk

gi δ+=2 . Hence, the electrical coil power 

losses are the same in both cases. But 2nd order sliding mode 
law yields a continuous control value which means no 
magnetic core losses, whereas 1st order sliding mode 
algorithm yields a varying control value at high frequency 
which means a varying induction field generating core 
heating. On an other hand, the accuracy of the convergence 
onto the sliding manifold  is improved since it is of the order 
of the square of the sampling period (whereas it is of the order 
of the sampling period for a first order sliding mode). That 
can be an important point of interest for applications in the 
precision industry. It has also been seen that the second order 
sliding mode has some robustness properties, even in the case 
of  disturbances and parametric uncertainties that are not 
satisfying the matching condition, provided that they are 
derivable. This is essential for the design of a sliding mode 
controller for the system (17). Indeed, in [2], Charara et al. 
developed a first order sliding mode control law for a 
magnetic levitation system whose control input was the coil 
voltage. However, some disturbances are not matching so that 
the sliding condition (12) can not be satisfied in all cases. 
Furthermore, the control has the drawback to require the 
knowledge of the acceleration, which is not the case with a 
real second order sliding mode strategy.  



 

5.2 Simulations 

The Figure 5 illustrates simulation results with the second 
order sliding mode control strategy, obtained in the same 
condition as in the paragraph 4.2. It can be seen that the 
magnetic ball is stabilized at the desired position following 
the dynamics imposed by the sliding manifold and that the 
coil current is smooth. This simulation also highlights the 
robustness properties of the control law since its design only 
relies on the bounds of some uncertain model. Furthermore, it 
is shown that the system is not affected by the sinusoidal 
disturbance appearing at t=0.8s. 
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Figure 5: 2nd order sliding mode control 

6 Conclusion 

In this paper, we proposed a robust nonlinear controller based 
on second order sliding mode for the stabilization of a one 
degree-of-freedom magnetic levitation system. This strategy, 
which is of a relative simplicity of design, particularly allows 
to take into account the nature of the process: the 
discontinuous control acts on the power converter and not on 
the coil current. This strategy results in low energy 
consumption and even in a high-resolution position accuracy, 
which is of crucial importance in precision industry. 
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