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Abstract

In the design of switching control systems, the analysis of tran-
sient signals is of utmost importance. Each time a control trans-
fer takes place, the resulting transient response may degrade
performance. When switching takes place rapidly, interaction
between switching transients may cause instability even when
each of the ‘component’ loops are stable taken separately.

We examine the issues of controller realization and controller
initialization in the context of switching systems. Our objective
is to minimize the performance degradation caused by tran-
sient signals at controller transitions, while guaranteeing sta-
bility under arbitrary switching.

Some theoretical tools are needed to analyze such systems,
where the states are permitted to change discontinuously at
mode switches. We consider a general Lyapunov function ap-
proach to analyze the stability of ‘reset switching systems’, and
use it to devise some LMI methods for synthesizing stabilizing
reset schemes.

1 Introduction

When we design ideal linear controllers (without switching),
the realization of controllers is a relatively peripheral issue.
Similarly the initialization of the controller rarely merits much
thought (zero is good enough most of the time). The reason
is that, once initial transients have died down, only the input-
output transfer functions matter. Furthermore, if the plant state
is unknown at the initial time, it may be impossible to compute
optimal controller initial states in any case.

In a controller switching context, the issues of realization and
initialization are crucialy important. At every controller transi-
tion, new transient signals are introduced which are directly re-
lated both to the controller realizations and the controller states
at switching times. Such transient signals can degrade perfor-
mance or even cause instability.

It is not difficult to construct examples of switching systems
where each component system is stable, yet switching may re-
sult in unstable trajectories (see for example [3]). We can also
construct such examples in a controller/plant framework. That
is, we may switch between stabilizing controllers for a single
(linear) plant in such a way that the trajectories become unsta-
ble (see example 3.1).

All proofs appear in [7]. They are omitted here for brevity.

2 Controller Initialization

Suppose we have a family of stabilizing controllers (with given
realizations) for a particular linear plant. If we switch be-
tween these controllers, what is the correct initial state when we
switch to a new controller? Naive approaches such as resetting
to zero each time, or having a continuous common controller
state (where the controllers all have the same order) may result
in very poor performance or, in the worst case, instability.

We will introduce a system of controller resets, where the new
controller at each transition is initialized by a function of the
plant state (either measured or observed) at that time. We do so
in order to minimize (in some sense) the initial state transient
introduced at each switch, while guaranteeing stability.

2.1 Single switch

Consider first of all a single switch to a controllerK (from an-
other controller, or from manual control) at some timet. If
we have a measurement or observation of the plant statexG(t),
then it is a straightforward matter to minimize the initial state
transients (in the finite or infinite horizon) with respect to the
controller statexK(t) according to some weighted cost func-
tion (see [6] for more details).

For example, suppose the closed loop state space equations can
be written [

xG
xK

]
= A1xG +A2xK +Bu

y = C1xG + C2xK ,

wherey is a generalized output that may include the plant input.

The the minimum initial state transient component ofy in the
interval[t,∞) occurs when the function

V (t) =
∫ ∞
t

yT (τ)y(τ)dτ.

achieves a minimum, assumingu = 0.

The optimal controller state is then

xK(t) = −P−1
22 P21xG(t),

where

P =
[
P11 P12

P21 P22

]
> 0

is the solution to the Lyapunov equation

ATP + PA = −CTC,



A = [A1 A2], and C = [C1 C2].

That is, the solution is achieved at the minimum of the function

V (t) = xT (t)Px(t)

with respect to the controller statexK(t) (which is a Lyapunov
function for the system ifCTC > 0).

Similar solutions can also be obtained by optimizing over
weighted signals.

2.2 Reset switching systems

If we now consider the arbitrary switching case, stability is
clearly a major concern. Since we have seen that the use of
controller resets for switching can improve performance, the
next question is whether a sensible choice of controller resets
can stabilize an otherwise (potentially) unstable switching sys-
tem.

For the stability analysis we introduce some Lyapunov func-
tion results forreset switching systems, where the state of the
system is permitted to change discontinuously when the system
switches.

Consider the family of linear vector fields

ẋ(t) = Aix(t), i ∈ I, x ∈ Rn, (1)

whereI is some index set (typically discrete valued).

Now define a piecewise constantswitching signalσ(t)

σ(t) = ik tk ≤ t < tk+1, ik ∈ I (2)

for some sequence of switching times{tk} and indices{ik}
(k ∈ Z+). We assume thattk < tk+1 andik 6= ik+1 for all k.

We define a linearreset switching systemby the equations

ẋ(t) = Aσ(t)x(t),

σ(t) = ik, for tk ≤ t < tk+1, ik ∈ I, k ∈ Z+,

x(t+k ) = Gik−1,ikx(t−k ).
(3)

The linear functionsGi,j for i, j ∈ I are reset relationsbe-
tween the discrete statesi andj.

Note that when each of the reset relationsGi,j are identity, the
continuous state is constrained to be continuous across switch-
ing times. Such systems are extensively analyzed in the lit-
erature. See for example [1, 3]. We will use the termsimple
switching systemto distinguish such systems from those where
reset relations are applied.

We shall choose an index setI such that the family of matrices
Ai forms a compact set.

We will denote byS the set of all admissible switching signals
σ. We will assume in general that the signals inS are non-zeno:
that is, there are at most finitely many transitions in any finite
time interval.

Theorem 2.1. The reset switching system(3) is uniformly
asymptotically stable for all admissible switching signalsσ ∈
S if and only if there exist a family of functionsVi : Rn → R
with the following properties:

• Vi are positive definite, decrescent and radially un-
bounded
• Vi are continuous and convex
• There exist constantsci such that

lim
∆t→0+

(
Vi(eAitx)− V (x)

∆t

)
≤ −ci ‖x‖2

• Vj(Gi,jx) ≤ Vi(x) for all x ∈ Rn, andi, j ∈ I.

The theorem effectively states that stability of the reset switch-
ing system depends upon the existence of a family of Lyapunov
functions for the separate vector fields such that at any switch
on the switching system, it is guaranteed that the value of the
‘new’ Lyapunov function after the switch will be no larger than
the value of the ‘old’ function prior to the switch. The func-
tions are not necessarily differentiable everywhere, and so are
of similar form to those considered by Molchanov in [5].

Dayawansa and Martin [1] proved that a simple switching sys-
tem is stable for all switching signals if and only if there exists
a common Lyapunov function for the component systems. Our
theorem can be considered an extension of that theorem to reset
switching systems, and a similar construction is used to prove
existence.

The functionsVi are not necessarily quadratic. Indeed,
Dayawansa gives an example of a stable two component simple
switching system for which no quadratic common Lyapunov
function exists. It still however makes sense to first consider
quadratic functions in attempting to prove stability of a switch-
ing system. We can write the quadratic version of the theorem
as the following sufficient condition.

Corollary 2.2. The reset switching system(3) is uniformly
asymptotically stable for all admissible switching signalsσ ∈
S if there exist a family of matricesPi > 0 with the following
properties:

• ATi Pi + PiAi < 0

• GTi,jPjGi,j − Pi ≤ 0 for all i, j ∈ I.

2.3 Plant/controller structure

Now we consider a class of resets with a particular structure.
We are primarily interested in systems where the component
vector fields are made up of plant/controller closed loops. The
reset relations we consider then are such that the plant state re-
mains constant across switching boundaries, and the controller
state only is reset.

Specifically, we consider a family ofN controllersKi in a
switching arrangement such that at each instant one ofKi are
in feedback with the plantG.



If G andK have the following state-space representations

G =
[
AG BG
CG DG

]
Ki =

[
AKi BKi
CKi DKi

]
, (4)

then the closed loop matricesAi can be written

Ai =
[
Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]
:=
[
AG +BGDKiCG BGCKi
−BKiCG AKi +BKiDGCKi

]
.

(5)

The plant state isxG with dimensionnG, and the controllersKi

have statesxKi with dimensionsnK . For simplicity we restrict
consideration to controllers of the same dimension, however
the results do in fact hold in general for controllers of different
dimensions with relatively straightforward modifications.

We define the current controller state to be

xK(t) = xKi(t) whenσ(t) = i,

and the state of the closed loop system is

x =
[
xG
xK

]
.

Suppose the resets are such that the plant state is continuous,
and the controller state is a linear function of plant state. That
is, we restrict the matricesGi,j to the form

Gi,j =
[
I 0
Xi,j 0

]
(6)

whereXi,j ∈ RnK×nG .

We now make an important observation.

Remark2.1. Consider the reset switching system (3), with reset
matrices with structure given in (6). If theorem 2.1 is satisfied,
then the Lyapunov functionsVi must satisfy the condition

argmin
xK

Vi

([
xG
xK

])
= Xj,ixG.

Put another way, any family of such resets for which stability
is guaranteed must minimize some Lyapunov functions for the
respective subsystems.

A further consequence of this observation is that ifGi,j are
stabilizing resets of the form (6) and the arguments

argmin
xK

Vi

([
xG
xK

])
are unique, then the matricesXi,j and hence theGi,j can only
depend on the index of the new dynamicsj. This makes sense,
since the future behaviour of the system is not dependent on the
previous values of the switching signal. We will writeXi,j =
Xj , andGi,j = Gj subsequently when appropriate.

Now consider thepotentially stabilizingresetsGi of the form

Gi =
[
I 0
Xi 0

]
, (7)

whereXixG = argmin
xK

Vi

([
xG
xK

])
, andVi is a Lyapunov

function for thei’th subsystem.

Theorem 2.3. Consider the reset switching system(3), with
reset matrices with structure given in(7). The system is asymp-
totically stable for all switching signalsσ ∈ S if and only if
there exists a family of functionsVi : Rn → R with the follow-
ing properties:

• Vi are positive definite, decrescent and radially un-
bounded
• Vi are continuous, with continuous partial dervatives
• There exist constantsci such that

lim
∆t→0+

(
Vi(eAitx)− V (x)

∆t

)
≤ −ci ‖x‖2

• Vi are such that

XixG = argmin
xK

Vi

([
xG
xK

])
for all xG ∈ RnG
•

Vj

([
xG
XjxG

])
= Vi

([
xG
XixG

])
for all xG ∈ RnG andi, j ∈ I

This theorem says that for reset switching system (of the form
(7)) to be asymptotically stable for all switching signals, there
must exist Lyapunov functionsVi, such that the level curves
have the same projection into the plant subspace.

We now have quite strict conditions which must be met if a
reset switching system is to be stable for all admissible signals
σ. It is a relatively straightforward matter to test the condition
for quadratic Lyapunov functions.

An immediate consequence of the previous theorem is that if
the plant is first order, and the family of resetsXi are equivalent
to the minimization of quadratic Lyapunov functions for the
i’th loop, then stability is automatically guaranteed.

For plants of more than first order, theorem 2.3 is difficult to
satisfy for given resets. It does, however lead to a good method
for synthesizing stabilizing resets for given systems.

2.4 Reset synthesis for stability

For a set of given controllers, we may ask the question of
whether a family of reset relations exist which guarantee
asymptotic stability for all switching signals.

We shall call such a family of resets astabilizingfamily of reset
relations.



It is a relatively straightforward matter Computationally, we
may easily to perform computations on

While a general search for Lyapunov functions which satisfy
theorem 2.3 is a difficult problem, it is relatively straightfor-
ward to find quadratic Lyapunov functions, and the correspond-
ing stabilizing resets if they exist.

The aim is to find a set of positive definite matrices

Pi =
[
Pi(1, 1) Pi(1, 2)
Pi(2, 1) Pi(2, 2)

]
such that

Pi(1, 1)− Pi(1, 2)Pi(2, 2)−1Pi(2, 1)

= Pj(1, 1)− Pj(1, 2)Pj(2, 2)−1Pj(2, 1)

for all j 6= i, and that the Lyapunov inequalities

ATi Pi + PiAi < 0

are satisfied for alli.

Using Schur complements, we can now form an equivalent
problem in terms of matricesQi whereQi = P−1

i .

Define

∆ = Pi(1, 1)− Pi(1, 2)Pi(2, 2)−1Pi(2, 1).

∆ can be thought of as the inverse of the(1, 1) block of the in-
verse ofPi, so the equivalent problem is to find positive definite
matrices

Qi =
[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]
satisfying

QiA
T
i +AiQi < 0

Then the required reset relations are

xK = −Pi(2, 2)−1Pi(2, 1)xG,

wherePi = Q−1
i .

Theorem 2.4. Consider the continuous-time linear plantG,
and N controllersKi defined according to(4), and let the
closed loop matrices

Ai =
[
Ai(1, 1) Ai(1, 2)
Ai(2, 1) Ai(2, 2)

]
be defined according to eqquation(5).

There exists a stabilizing family of reset relations when there
exist matrices∆,
Qi(1, 2) ∈ RnG×nK andQi(2, 2) ∈ RnKi×nK for eachi =
{1, . . . , N} such that the following system of LMIs is satisfied:[

Φi(1, 1) Φi(1, 2)
Φi(2, 1) Φi(2, 2)

]
< 0 (8)

where

Φi(1, 1) = ∆−1Ai(1, 1)T +Qi(1, 2)Ai(1, 2)T

+Ai(1, 1)∆−1 +Ai(1, 2)Qi(1, 2)T ,

Φi(1, 2) = ∆−1Ai(2, 1)T +Qi(1, 2)Ai(2, 2)T

+Ai(1, 1)Qi(1, 2) +Ai(1, 2)Qi(2, 2),

Φi(2, 1) = Qi(1, 2)TAi(1, 1)T +Qi(2, 2)Ai(1, 2)T

+Ai(2, 1)∆−1 +Ai(2, 2)Qi(1, 2)T ,

Φi(2, 2) = Qi(1, 2)TAi(2, 1)T +Qi(2, 2)Ai(2, 2)T

+Ai(2, 1)Qi(1, 2) +Ai(2, 2)Qi(2, 2).

The reset relations guaranteeing stability are

xK = −Pi(2, 2)−1Pi(2, 1),

where

Pi =
[
Pi(1, 1) Pi(1, 2)
Pi(2, 1) Pi(2, 2)

]
=
[

∆−1 Qi(1, 2)
Qi(1, 2)T Qi(2, 2)

]−1

.

It is not always possible to find controller resets which will
guarantee stability under arbitrary switching. This is trivially
shown by constructing an example of a dynamic plant with two
static gain controllers, but where no common Lyapunov func-
tion exists. Since the controllers have no state, a reset cannot
help! We shall see however that we can always construct a
non-minimal realization of the controllers such that stabilizing
resets do exist.

The reset results so far depend on precise knowledge of the
plant state. In fact the results hold if we reset based on ob-
served plant states, as long as the observer converges (that is,
the system is observable).

3 Controller realization

Recent work by Hespanha and Morse [2] considers the problem
of selection of appropriate realizations for a family of stabiliz-
ing controllers for a particular process. They have shown that it
is possible to choose realizations for families of stabilizing con-
trollers such that the (simple) switching system is stable under
arbitrary switching. The scheme uses an internal model control
arrangement, where the realized controller contains a model of
both the plant and the desired closed loop.

We can also realize controllers to guarantee stability by imple-
menting the controllers in a particular coprime factor form.

Suppose we have a plantG, and a set of stabilizing controllers
Ki. We may choose a right coprime factorization of the plant
G = NM−1, and left coprime factorizations of the controllers
Ki = V −1

i Ui, such that for eachi the bezout identity

ViM + UiN = I

is satisfied . Furthermore given anyQ such thatQ,Q−1 ∈
RH∞, the factorizationsG = ÑM̃−1, andKi = Ṽ −1

i Ũi also
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Figure 1: Switching arrangement

satisfy the bezout identities

ṼiM̃ + ŨiÑ = I,

whereÑ = NQ, M̃ = MQ, Ũi = Q−1Ui, andṼi = Q−1Vi.

A particular choice ofQ for a controller factorization can also
be thought of as a particular choice for the plant factorization
(viaQ), or vice versa. In the switching controller case, this is
true provided that all of the controllers have the same choice of
Q.

Now consider the coprime factor switching arrangement in fig-
ure 1. The switching connection is such thatu(t) = ûσ(t),
whereσ(t) is the switching signal governing the controller se-
lection. The signalsu, v, andw are common to the loops. We
can think of this system as a plantP in a feedback loop with
the augmented controller̂Kσ.

Note that for each loopi, we have

ûi = (I − Ṽi)u− ŨiPu− ŨiPw + Ũiv

= (I − Ṽi − ŨiÑM̃−1)u− ŨiPw + Ũiv

= (M − ṼiM − ŨiÑ)M̃−1u− ŨiPw + Ũiv

= (I − M̃−1)u − ŨiPw + Ũiv.

Sinceu = ûσ, we can write

u = (I − M̃−1)u− ŨσPw + Ũσv

= −M̃ŨσPw + M̃Ũσv

= −M̃(ŨσÑ)M̃−1w + M̃Ũσv

= −M̃(I − ṼσM̃)M̃−1w + M̃Ũσv

= −(I − M̃Ṽσ)w + M̃Ũσv,

and

y = P (u+ w)

= ÑM̃−1((−(I − M̃Ṽσ)w + M̃Ũσv) + w)

= Ñ Ṽσw + Ñ Ũσv.
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(a) Unstable trajectory
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(b) Coprime factor realization
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(c) Coprime factor realiza-
tions (Lyapunov based reset
full state knowledge)
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(d) Coprime factor realiza-
tions (Lyapunov based reset,
state observer)

Figure 2:

We assume that the signalsw andv are bounded with bounded
two norm, and we know all of the coprime factors are stable.
Then the signals̃Vσw, Ṽσv, Ũσw, andŨσv will all be bounded
with bounded two norm. Henceu and y are bounded with
bounded two norm, and the switching system is stable for all
admissible switching sequences.

We can write these closed-loop relationships in the compact
form [

u
y

]
=
[
−(I − M̃Ṽσ) M̃Ũσ

Ñ Ṽσ Ñ Ũσ

] [
w
v

]
.

The stability of this switching system is guaranteed sinceM̃ ,
Ñ , and each̃Ui and Ṽi are stable. Note that the states of the
controllers evolve identically irrespective of which controller
is active.

This structure is similar to that employed in the work of
Miyamoto and Vinnicombe [4] for controllers subject to satura-
tion. In that case,Qmay be computed via anH∞ optimization
without reference to the controller. Hence the sameQ may be
used to guarantee stability in the switching case.

We may combine the results on controller realization and ini-
tialization. The addition of a reset arrangement to a system of
controllers realized for stability can result in a substantial per-
formance improvement as the following example shows.

Example 3.1. Take a second order lightly damped plant

P (s) =
1

s2 + 0.2s+ 1



implemented in controller canonical form[
ẋ1

ẋ2

]
=
[
−0.2 −1

1 0

] [
x1

x2

]
+
[
1
0

]
u

y =
[
1 0

] [x1

x2

]
,

and two static stabilizing feedback gainsk1 = 2, andk2 = 4.
The closed loop equations formed by settingu = k1(r − y),
andu = k2(r−y) (wherer is some reference) are respectively[

ẋ1

ẋ2

]
=
[
−0.2 −3

1 0

] [
x1

x2

]
+
[
1
0

]
r

y =
[
1 0

] [x1

x2

]
,

and [
ẋ1

ẋ2

]
=
[
−0.2 −5

1 0

] [
x1

x2

]
+
[
1
0

]
r

y =
[
1 0

] [x1

x2

]
.

We shall refer to the respective state-space matrices asA1,A2,
B andC. It is reasonably straightforward to show that while
bothA1 andA2 have eigenvalues in the left half plane, they do
not share a common quadratic Lyapunov function.

The switching system defined by

ẋ = Aσ(t)x+Bu

y = Cx

is therefore not guaranteed to be stable for all switching sig-
nalsσ(t). Indeed, we can construct a destabilizing signal by
switching fromk1 to k2 whenx2

2 is a maximum (for that loop),
and fromk2 to k1 whenx2

1 is a maximum. This produces the
unstable state trajectories shown in figure 2(a) from an initial
state ofx1 = x2 = 1, and zero reference.

Since the controller is static, we obviously cannot improve sta-
bility by resetting controller states! We can, however imple-
ment the controllers in a non-minimal form, for which stability
can be guaranteed. We use here the coprime factor approach.

When we implement these controllers in the arrangement of
figure 1 using the same initial condition and switching criterion
as before (the non-minimal are initialized to zero), we obtain
the stable trajectory shown in figure 2(b). Note however, that
the performance is poor and the states take over50 seconds to
converge.

We now apply the results of theorem 8 to the loops formed by
these non-minimal controllers. We find that there exist as ex-
pected, Lyapunov functions of the respective closed loops with
common projection into plant-space. Hence we can find a sta-
bilizing controller reset. This results in the stable trajectory
shown in figure 2(c). Note the performance improvement ob-
tained by using the extra freedom in the controller states at the
switching times.

Since the reset scheme as applied for figure 2(c) requires full
state knowledge, it is not quite a fair comparison with the (non-
reset) coprime factor scheme. Therefore, we also implement
the results using a plant state observer. The results, shown in
figure 2(d) show that while performance is slightly worse than
the full-state knowledge case, it is still substantially better than
the other schemes.

4 Conclusions

We have introduced a new Lyapunov stability theorem which
allows us to analyze stability of switching systems where the
state is permitted to reset at switching times. This primarily al-
lows us to examine resets of the controller in controller switch-
ing systems.

The theorem has a number of important consequences. Prin-
cipally, it leads us to a method for synthesizing reset rules for
a given switching system, which then guarantee stability under
arbitrary switching.

This approach may also be combined with methods for realiz-
ing controllers such that stability may be guaranteed for arbi-
trary switching, and performance substantially improved.
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