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controller realization. ) o o
Suppose we have a family of stabilizing controllers (with given

realizations) for a particular linear plant. If we switch be-
Abstract tween these controllers, what is the correct initial state when we

In the design of switching control systems, the analysis of traﬂ’-vItCh to a new controller? Naive approaches such as resetting

sient signals is of utmost importance. Each time a control traf8-28" each time, or having a continuous common controller

fer takes place, the resulting transient response may degriﬁ‘ée (where the controllers a]l have the same o_rder) may result
very poor performance or, in the worst case, instability.

performance. When switching takes place rapidly, interactih
between switching transients may cause instability even whe will introduce a system of controller resets, where the new
each of the ‘component’ loops are stable taken separately. controller at each transition is initialized by a function of the

We examine the issues of controller realization and control!%llarlt state (either measured or observed) at that time. We do so

initialization in the context of switching systems. Ourobjectiv'@ order to minimize (in some sense) the initial state transient

is to minimize the performance degradation caused by trdftroduced at each switch, while guaranteeing stability.
sient signals at controller transitions, while guaranteeing sta- . .
bility under arbitrary switching. 2.1 Single switch

Some theoretical tools are needed to analyze such syste@mnsider first of all a single switch to a controll&r(from an-

where the states are permitted to change discontinuouslyotiter controller, or from manual control) at some titmelf

mode switches. We consider a general Lyapunov function age have a measurement or observation of the plantstate,

proach to analyze the stability of ‘reset switching systems’, atteen it is a straightforward matter to minimize the initial state

use it to devise some LMI methods for synthesizing stabilizirgansients (in the finite or infinite horizon) with respect to the

reset schemes. controller staterx (¢) according to some weighted cost func-
tion (see [6] for more details).

1 Introduction For example, suppose the closed loop state space equations can

L . . .. bewritten
When we design ideal linear controllers (without switching),

the realization of controllers is a relatively peripheral issue. e
Similarly the initialization of the controller rarely merits much {
thought (zero is good enough most of the time). The reason

is that, once initial transients have died down, only the input-

output transfer functions matter. Furthermore, if the plant St%erey is a generalized output that may include the plantinput.
is unknown at the initial time, it may be impossible to compute

Opt|ma| controller initial states in any case. The the minimum initial state transient Componenydﬁ the

o ) o intervallt, co) occurs when the function
In a controller switching context, the issues of realization and

initialization are crucialy important. At every controller transi- >

tion, new transient signals are introduced which are directly re- V()= /t y ()y(r)dr.
lated both to the controller realizations and the controller states

at switching times. Such transient signals can degrade perfachieves a minimum, assumiag= 0.
mance or even cause instability.

:| = Aijzg + Asxg + Bu
TK

y = Crzg + Cazxg,

The optimal controller state is then

It is not difficult to construct examples of switching systems

where each component system is stable, yet switching may re- 2k (t) = =Py Paiza(t),
sult in unstable trajectories (see for example [3]). We can also

construct such examples in a controller/plant framework. Thibere

is, we may switch between stabilizing controllers for a single P= L};“ ?2} >0
(linear) plant in such a way that the trajectories become unsta- 2 S
ble (see example 3.1). is the solution to the Lyapunov equation

All proofs appear in [7]. They are omitted here for brevity. ATP 4+ PA— —CTC



A=1[A; Ay, and C=1[C7 (3] Theorem 2.1. The reset switching syste@@) is uniformly
asymptotically stable for all admissible switching signals
That s, the solution is achieved at the minimum of the functig$ if and only if there exist a family of functions : R* — R
V(t) = 27 () Pa(t) with the following properties:
e V; are positive definite, decrescent and radially un-
with respect to the controller staig (¢) (which is a Lyapunov bounded

function for the system i€7C > 0). e V; are continuous and convex

Similar solutions can also be obtained by optimizing over e There exist constants such that
weighted signals. . Vi(eAita) — V(a) )
lim < —ci x|
At—0t At

2.2 Reset switching systems

If we now consider the arbitrary switching case, stability is ® V;(Gi;z) < Vi(z) forall z € R", andi, j € I.

clearly a major concern. Since we have seen that the use of

controller resets for switching can improve performance, tAde theorem effectively states that stability of the reset switch-
next question is whether a sensible choice of controller restd system depends upon the existence of a family of Lyapunov

can stabilize an otherwise (potentially) unstable switching syfsinctions for the separate vector fields such that at any switch
tem. on the switching system, it is guaranteed that the value of the

B ) ) ‘new’ Lyapunov function after the switch will be no larger than
For the stability analysis we introduce some LyapunoV fungsa value of the ‘old’ function prior to the switch. The func-

tion results foreset switching systemwhere the state of the iong are not necessarily differentiable everywhere, and so are
system is permitted to change discontinuously when the systgiimilar form to those considered by Molchanov in [5].
switches.

Dayawansa and Martin [1] proved that a simple switching sys-

Consider the family of linear vector fields tem is stable for all switching signals if and only if there exists

#(t) = A (D), iel, zeR" (1) @common Lyapunov.functlon for the component systems. Our
theorem can be considered an extension of that theorem to reset
wherel is some index set (typically discrete valued). switching systems, and a similar construction is used to prove
existence.

Now define a piecewise constaswitching signab (t)
The functionsV; are not necessarily quadratic. Indeed,
ot)=ix tp <t<tpp1, ip€l (2)  Dayawansa gives an example of a stable two component simple
switching system for which no quadratic common Lyapunov
function exists. It still however makes sense to first consider
quadratic functions in attempting to prove stability of a switch-
We define a lineareset switching systeby the equations ing system. We can write the quadratic version of the theorem

as the following sufficient condition.
t) = Aoz (t), - o
£) = i, forty, <t <tp1, ixel, keZt Corollary_2.2. The reset SW|tch_|ng_ syste(ﬁ) is un_lformly
N - asymptotically stable for all admissible switching signals
o(t)) = Giy_y iy o(ty)- S if there exist a family of matriceB; > 0 with the following
(3) properties:

for some sequence of switching timés,} and indices{iy }
(k € ZT). We assume thaf, < t;1 andiy # i, for all k.

T

g

(
(

The linear functionsx; ; for i, € I arereset relationsbe-

Tp. A
tween the discrete stateand;. © Aibi+ PAi <0

Note that when each of the reset relaticts; are identity, the * GZJ'PJ'G”' — P <0foralli,j el
continuous state is constrained to be continuous across switch-

ing times. Such systems are extensively analyzed in the B3 Plant/controller structure
erature. See for example [1, 3]. We will use the tesimple
switching systerto distinguish such systems from those whe
reset relations are applied.

rNow we consider a class of resets with a particular structure.
Ve are primarily interested in systems where the component
vector fields are made up of plant/controller closed loops. The
We shall choose an index sesuch that the family of matricesreset relations we consider then are such that the plant state re-
A; forms a compact set. mains constant across switching boundaries, and the controller

We will denote bys the set of all admissible switching signalSate Oy is reset.

o. We will assume in general that the signal$iare non-zeno: Specifically, we consider a family oV controllersk; in a
that is, there are at most finitely many transitions in any finiswitching arrangement such that at each instant orfé; cdre
time interval. in feedback with the plang.



If G andK have the following state-space representations Now consider th@otentially stabilizingesets; of the form

[ A¢ | Be | Aki | Bri G,:{I O] 7
o-[eepe]  me ] @ o) o

then the closed loop matricel can be written where Xz = argminV; [maD andV; is a Lyapunov
) - [ TK ’ [
4= {Ai(l,l) Ai(1,2)] function for thei'th subsystem.

Ai(2,1)  Ai(2,2 _ o .
@1 2.2) (5) Theorem 2.3. Consider the reset switching syst¢8), with

— {AG + BgDkiCa BaCki } reset matrices with structure given(). The system is asymp-
' —BkiCq Agi+ BriDaCri| totically stable for all switching signals € S if and only if
there exists a family of functionls : R™ — R with the follow-
The plant state is¢ with dimensiom, and the controller&’;  ing properties:
have states x; with dimensionsu . For simplicity we restrict
consideration to controllers of the same dimension, however®
the results do in fact hold in general for controllers of different

dimensions with relatively straightforward modifications. » V; are continuous, with continuous partial dervatives
e There exist constants such that

(pAit ) e
iy (DY)
At—0t At

V; are positive definite, decrescent and radially un-
bounded

We define the current controller state to be

v (t) = v (t) wheno(t) = 4,

and the state of the closed loop system is
e Vj are such that

z=|"¢ T
Tr |’ X,rq = argminV; ¢
TK .'I;K

Suppose the resets are such that the plant state is continuous,for all zg € R"<
and the controller state is a linear function of plant state. Thate

is, we restrict the matriceS; ; to the form . “iel 1 “iel
J inL'G - XZlG
I 0 n o
Gij= |:X7L,j O] (6) forall zg € R"¢ andi,j € I

This theorem says that for reset switching system (of the form
whereX; ; € Rmxxne, (7)) to be asymptotically stable for all switching signals, there
must exist Lyapunov functiong;, such that the level curves

. o . have the same projection into the plant subspace.
Remark2.1 Consider the reset switching system (3), with reset

matrices with structure given in (6). If theorem 2.1 is satisfiedVe now have quite strict conditions which must be met if a
then the Lyapunov function‘g must Satisfy the Condition reset SWitChing System is to be stable for all admissible Signals
o. Itis a relatively straightforward matter to test the condition
argminV; <EGD X, a0 for quadratic Lyapunov functions.
K

TK

We now make an important observation.

An immediate consequence of the previous theorem is that if
_ _ _the plantis first order, and the family of reséfsare equivalent
Put another way, any family of such resets for which stabiligg the minimization of quadratic Lyapunov functions for the

is guaranteed must minimize some Lyapunov functions for tieh |oop, then stability is automatically guaranteed.

respective subsystems. ) o
For plants of more than first order, theorem 2.3 is difficult to

A further consequence of this observation is thatzif; are satisfy for given resets. It does, however lead to a good method

stabilizing resets of the form (6) and the arguments for synthesizing stabilizing resets for given systems.
) ] ) o
argminV; < L"K} ) 2.4 Reset synthesis for stability
TK

For a set of given controllers, we may ask the question of
whether a family of reset relations exist which guarantee
%ﬁgmptotic stability for all switching signals.

are unique, then the matricés ; and hence thé;; ; can only
depend on the index of the new dynamjcg his makes sense,
since the future behaviour of the system is not dependent on
previous values of the switching signal. We will writg; ; = We shall call such a family of resetstbilizingfamily of reset
X;, andG; ; = G; subsequently when appropriate. relations.



It is a relatively straightforward matter Computationally, wevhere
may easily to perform computations on

: : : (L) =ATTAL DT+ Qi(1,2)A4:(1,2)"
While a general search for Lyapunov functions which satisfy

1 T
theorem 2.3 is a difficult problem, it is relatively straightfor- + A (1L, AT + A(1,2)Qi(1,2) 7,
ward to find quadratic Lyapunov functions, and the correspond- ®,(1,2) = A~ 1A-(2 DT 4+ Qi(1,2)4;(2,2)"

ing stabilizing resets if they exist. A(1,1)Qi(1,2) + A;(1,2)Q4(2,2),
The aim is to find a set of positive definite matrices ;(2,1) = Q; ( 9T 41,17 + Q4(2,2)A:(1,2)T
b _ [P(LD) PR(12) Ai(2, 1A+ Ai(2,2)Qi(1,2)",
COLR2) Ri(2,2) @(272):@( 2)TA:(2, )" +Qi(2,2)A4:(2,2)"
such that Ai(2,1)Qi(1,2) + Ai(2,2)Q4(2,2).
Pi(1,1) = Pi(1,2)Pi(2,2) "' Pi(2,1) The reset relations guaranteeing stability are
= Pi(1,1) = P;(1,2)P;(2,2)" ' P;(2,1) vx = —P(2,2) 7 P(2,1),
for all j # 4, and that the Lyapunov inequalities where
ATP, + PA; <0 Py(1, ) )

are satisfied for ald.

Using Schur complements, we can now form an equivaldhtis not always possible to find controller resets which will

problem in terms of matriceQ; whereQ; = P, *. guarantee stability under arbitrary switching. This is trivially
shown by constructing an example of a dynamic plant with two
static gain controllers, but where no common Lyapunov func-

A=P(1,1) — P(1,2) (2, 2)713(2’ 1). tion exists. Since the controllers have no state, a reset cannot
help! We shall see however that we can always construct a

A can be thought of as the inverse of {ie1) block of the in- non-minimal realization of the controllers such that stabilizing
verse ofP;, so the equivalent problem is to find positive definitéesets do exist.

matrices The reset results so far depend on precise knowledge of the

Define

—1 .
Q; = Q-(Al 2)7 818’3 plant state. In fact the results hold if we reset based on ob-
n ne served plant states, as long as the observer converges (that is,
satisfying the system is observable).

Qid; @ 3 Controller realization

Then the required reset relations are Recent work by Hespanha and Morse [2] considers the problem

ok = —Pi(2,2)" P (2, 1)zc, pf selection of approprigte realizations for a family of stabiliz—_
ing controllers for a particular process. They have shown that it
whereP, = Q; . is possible to choose realizations for families of stabilizing con-

_ . . _ trollers such that the (simple) switching system is stable under
Theorem 2.4. Consider the continuous-time linear pla6t  arpitrary switching. The scheme uses an internal model control
and N controllers k; defined according tq4), and let the arrangement, where the realized controller contains a model of

closed loop matrices both the plant and the desired closed loop.
A — A(1,1) A;(1,2) We can also realize controllers to guarantee stability by imple-
CTA2,1) Ai(2,2) menting the controllers in a particular coprime factor form.

Suppose we have a pla@it and a set of stabilizing controllers
K;. We may choose a right coprime factorization of the plant
There exists a stabilizing family of reset relations when thegg —= N 1/-1, and left coprime factorizations of the controllers

be defined according to eqquati¢s).

exist matrices\, K; = V;'U;, such that for eachthe bezout identity
Qi(1,2) € R"¢*"k gand Q,(2,2) € R"«iX"« for eachi =
{1,..., N} such that the following system of LMIs is satisfied: ViM +UN =1
Q;(1,1) @4(1,2) is satisfied . Furthermore given ady such that@, Q! e
®,(2,1) ;(2,2) <0 (8) R, the factorization&? = NM 1, andK; = V,7'U; also



.

(a) Unstable trajectory (b) Coprime factor realization

Figure 1: Switching arrangement

satisfy the bezout identities

Vil + U;N =1, ,

whereN = NQ, M = MQ,U; = Q~'U;, andV; = Q~1V;.
) . o (c) Coprime factor realiza- (d) Coprime factor realiza-

A particular choice ofy for a controller factorization can also tions (Lyapunov based reset tions (Lyapunov based reset,
be thought of as a particular choice for the plant factorization full state knowledge) state observer)
(via Q), orvice versa In the switching controller case, this is
true provided that all of the controllers have the same choice of Figure 2:
Q.

Now consider the coprime factor switching arrangementin figye 4osume that the sighalsandv are bounded with bounded
ure 1. The switching connection is such that) = o), o norm, and we know all of the coprime factors are stable.
whereo (t) is the switching signal governing the controller serpap, the signal§/, w, V, v, U,w, andl, v will all be bounded
lection. The signals, v, andw are common to the loops. We it bounded two norm.  Hence anay are bounded with
can think of this system as a plafitin a feedback loop with 1, \nded two norm, and the switching system is stable for all
the augmented controlléf,,. admissible switching sequences.

Note that for each loop we have We can write these closed-loop relationships in the compact

~ ~ ~ ~ form
ﬁZ:(If‘/;)UfUZPU7UZPw+UZ’U U 7([7]\2"70_) Mﬁg w
:(I—‘Z’—UiNM_l)U—UiP’w%—UiU I:y:|_|: NVU NUU:| l: :|
:M—ViM—UiNM_l —U,'P Ul - . . . o~
( _ - ) 1f Wi The stability of this switching system is guaranteed sinfe

=({I—-M ")u—UPw+ Up. N, and eactU; andV; are stable. Note that the states of the

controllers evolve identically irrespective of which controller
Sinceu = 1., We can write is active.

~ This structure is similar to that employed in the work of
Miyamoto and Vinnicombe [4] for controllers subject to satura-

= —-MU;Pw+ MUsv tion. In that case) may be computed via a2, optimization

= N(U,N)M~‘w + MU,v without reference to the controller. Hence the samay be
- . - used to guarantee stability in the switching case.

= —M(I — V,M)M " 'w+ MU,v

~ ~ We may combine the results on controller realization and ini-
tialization. The addition of a reset arrangement to a system of
controllers realized for stability can result in a substantial per-

and . .
formance improvement as the following example shows.
Example 3.1. Take a second order lightly damped plant

1
— NV,w + NU,w. Pe)= a 02511



implemented in controller canonical form Since the reset scheme as applied for figure 2(c) requires full
state knowledge, it is not quite a fair comparison with the (non-

{531} _ {—02 —1} {331] " H u reset) coprime factor scheme. Therefore, we also implement
Ty 1 0] |22 0 the results using a plant state observer. The results, shown in
x1 figure 2(d) show that while performance is slightly worse than

y=[1 0] L"J ) the full-state knowledge case, it is still substantially better than

the other schemes.
and two static stabilizing feedback gaikis= 2, andk, = 4.

The closed loop equations formed by setting= k1 (r — y),

andu = ko (r —y) (Wherer is some reference) are respectivelé Conclusions

. We have introduced a new Lyapunov stability theorem which

I —-0.2 -3 T 1 . . .

L } = [ 1 0 } L ] + M r allowg usto gnalyze stability of SV\_/ltch!ng syste.ms yvhere the
2 2 state is permitted to reset at switching times. This primarily al-
y=[1 0] [m} ’ !ows us to examine resets of the controller in controller switch-

2 ing systems.
and The theorem has a number of important consequences. Prin-
) cipally, it leads us to a method for synthesizing reset rules for

Fl} — [_0'2 _5} [“31] + H r a given switching system, which then guarantee stability under

T2 1 0] |2 0 arbitrary switching.
y=1[1 0] Bj . This approach may also be combined with methods for realiz-

ing controllers such that stability may be guaranteed for arbi-

We shall refer to the respective state-space matricels ad,, trary switching, and performance substantially improved.
B andC. ltis reasonably straightforward to show that whil&keferences
both A; and A, have eigenvalues in the left half plane, they d

not share a common quadratic Lyapunov function. Pl] W. P. Dayawansa and C. F. Martin. A converse Lya-

punov theorem for a class of dynamical systems which un-
The switching system defined by dergo switchinglEEE Transactions on Automatic Contyol
44(4):751-760, 1999.
T = Ag(t)fL‘ + Bu
y=Cz [2] J. P. Hespanha and A. S. Morse. Switching between stabi-
lizing controllers.Automatica 38(8):1905-1917, 2002.

is therefore not guaranteed to be stable for all switching sig- i q . bl . bili
nalso(t). Indeed, we can construct a destabilizing signal By) D- Libérzon and A. S. Morse. Basic problems in stability

switching fromk; to k, whenz? is a maximum (for that loop), ~ 2nd design of switched system$EEE Control Systems
and fromks to &, whenz? is a maximum. This produces the ~Magazing19(5):59-70, 1999.
unstable state trajectories shown in figure 2(a) from an initi@fl]

S. Miyamoto and G. Vinnicombe. Robust control of plants
state ofr; = x5 = 1, and zero reference.

with saturation nonlinearities based on coprime factor rep-
Since the controller is static, we obviously cannot improve sta- esentations. IRroceedings IEEE Conference on Decision
bility by resetting controller states! We can, however imple- and Contro] pages 2838-2840, Kobe, 1996.

ment the controllers in a non-minimal form, for which stabﬂﬂiﬁ] A. P Molchanov and Y. S Pyatnitskiy. Lyapunov functions

can be guaranteed. We use here the coprime factor approa that specify necessary and sufficient conditions of absolute
When we implement these controllers in the arrangement of stability of nonlinear nonstationary control systems, part .
figure 1 using the same initial condition and switching criterion Automation and Remote Contydi7:344-354, 1986.

as before (the non-minimal are initialized to zero), we obta
the stable trajectory shown in figure 2(b). Note however, th
the performance is poor and the states take d0eseconds to
converge.

We now apply the results of theorem 8 to the loops formed ¢l J- P. Paxman. Stability of reset switching systems. Tech-
these non-minimal controllers. We find that there exist as ex- Nical Report CUED/F-INFENG/TR.460, Cambridge Uni-
pected, Lyapunov functions of the respective closed loops with Versity Engineering Department, July 2003. http://www-
common projection into plant-space. Hence we can find a sta- control.eng.cam.ac.uk/jpp27/reset.html.

bilizing controller reset. This results in the stable trajectory

shown in figure 2(c). Note the performance improvement ob-

tained by using the extra freedom in the controller states at the

switching times.

in

t'ﬂ] J. Paxman and G. Vinnicombe. Optimal transfer schemes
for switching controllers. IfProceedings IEEE Conference
on Decision and Contrgpages 1093-1098, Sydney, 2000.
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