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Abstract

In this paper we provide a high performance solution to the
anti-windup problem for control systems on saturated fully ac-
tuated robot manipulators. Based on the preliminary work
of [10], we provide here improved anti-windup laws based
on simple and intuitive parameter tuning. Global asymptotic
(and local exponential) stability of the arising closed-loops is
formally proven and demonstrated on a simulation example.
The simulation example also shows dramatic improvements as
compared to previous results.

1 Introduction

Actuator saturation is one of the most common unmodeled phe-
nomena in classical control systems. One of the most stud-
ied fields where actuator saturation is involved is that of lin-
ear control systems for linear plants. In particular, in the past
years great deal of attention has been given to the study of
the so-called “windup” problem for linear plants, wherein a
predesigned linear controller is known to work very desirably
when interconnected to the linear plant but unpredictable be-
havior and, often, instability occurs if the input saturation ef-
fect is taken into account when interconnecting the controller
to the plant. For these windup-prone control systems, “anti-
windup design” denotes the synthesis of suitable (linear or non-
linear) filters which augment the original linear controller with
the goal of

1. preserving the linear response prespecified by the lin-
ear closed-loop as long as the saturation limits are never
reached by the actuators;

2. guaranteeing as much as possible the recovery of this lin-
ear closed-loop response for all other trajectories.

Many useful constructions are nowadays available in the litera-
ture for linear anti-windup designs (see, e.g., [4, 8, 3] for some
recent surveys).

A parallel reasoning can be made when dealing with more com-
plicated control systems, such as a nonlinear controller inter-
connected to a robotic manipulator. In this case, the plant with-
out input saturation is already nonlinear but is characterized by
useful properties (such as the feedback linearizability) which
provide constructive techniques for high performance nonlin-
ear control laws. When saturation is taken into account, these
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control laws exhibit a similar behavior to the “windup” phe-
nomenon widely studied in linear control systems. Indeed, the
windup effects on nonlinear saturated control systems is often
even worse than the parallel effect in the linear control setting.
When dealing with nonlinear plants, we can no longer refer to
“desirable linear responses” and the two above mentioned anti-
windup requirements need to be rephrased as follows:

1. preserve the unconstrained response arising from the di-
rect interconnection between the nonlinear plant and the
nonlinear controller (without saturation) as long as the
plant input does not exceed the saturation limits;

2. guarantee as much as possible the recovery of this uncon-
strained (nonlinear) closed-loop response for all other tra-
jectories.

In this paper we address the anti-windup design problem for
robotic manipulators. In recent years, this problem has been in-
directly tackled in the context of anti-windup design for nonlin-
ear plants. In the discrete-time setting, nonlinear anti-windup
design techniques have been applied to nonlinear systems in
[2, 1]. Interesting results related to the nonlinear anti-windup
problem can also be found in [12, 5], where the attention is re-
stricted to SISO nonlinear plants. MIMO nonlinear plants are
considered in [7, 6]. However, only local stability results are
proven in [6] and restrictions on the local design are necessary
in some cases. In [7], the open-loop plant and other subsystems
internal to the closed-loop are constrained to be asymptotically
stable. Differently from the papers listed above we explicitly
address the problem of anti-windup design for saturated robotic
manipulators here with the goal in mind of guaranteeing high-
performance global results. In particular, we improve our work
recently appeared in [10], where the ideas of [11] were em-
ployed to provide explicit anti-windup constructions for Euler-
Lagrange systems.

The goal of this paper is twofold. The first goal is to clarify
the construction suggested in [10] when applied to fully actu-
ated robotic manipulators (which is the main application field
for the theory in [10]). The second and main goal is to re-
visit and improve the anti-windup laws of [10] to guarantee ex-
treme performance levels on the saturated closed-loop system
with anti-windup augmentation. To provide compensation laws
that are simple to apply, we explain how the anti-windup gains
should be selected and tuned for achieving high performance
compensation on generic robot manipulators. Indeed, the pa-
rameter tuning boils down to the selection of a proportional
and a derivative gain for each degree of freedom of the robotic
structure. The paper is structured as follows: in Section 2 we
describe the anti-windup problem and introduce some useful
notation; in Section 3 we first report on the results of [10] and
then extend these results to allow for high-performance anti-
windup designs; in Section 4 we discuss useful characteriza-
tions of the anti-windup performance and, based on these, we
provide a simple selection strategy for the anti-windup param-
eters. Finally, in Section 5 we show the dramatic performance



improvements of the new anti-windup law as compared to the
previous one on a simulation example taken from [10].

2 Problem data

We will consider in this paper fully actuated rigid robot ma-
nipulators taking into account the actuator limits affecting their
input signals. Given a manipulator belonging to this family, de-
noting by q ∈ R

n the n joint position variables and by q̇ ∈ R
n

the corresponding velocity variables, it is well known that the
manipulator can be modeled by the following dynamic equa-
tions:

I(q)q̈ + C(q, q̇)q̇ + R(q)q̇ + h(q) = u, (1)
where I(q) is the generalized inertia matrix, C(q, q̇)q̇ repre-
sents the generalized centrifugal and Coriolis terms, h(q) is the
vector of gravitational forces, the function R(q)q̇ represents the
friction forces and u represents the external forces/torques ap-
plied at the robot joints.

The following basic assumption on the regularity of the matri-
ces characterizing (1) will be necessary to prove the main re-
sults of this paper. These assumptions are standard properties
characterizing mechanical systems.

Assumption 1 The following properties hold:

1. the generalized inertia matrix q 7→ I(q) is continuously
differentiable, symmetric and there exist positive numbers
λM and λm such that λmId ≤ I(q) ≤ λMId for all
q ∈ R

n (where Id denotes the identity);
2. the function (q, q̇) 7→ C(q, q̇)q̇ is locally Lipschitz;
3. the vector of gravitational forces q 7→ h(q) is locally Lip-

schitz;
4. the dissipation matrix q 7→ R(q) is locally Lipschitz and

positive semidefinite.

For the robotic manipulator (1), under Assumptions 1 and 2,
we will assume in this paper that a (nonlinear) controller has
been designed such that, when connected in feedback with the
robot without input saturation, global asymptotic and local ex-
ponential stability of the arising closed-loop is guaranteed. One
such controller is the following feedback linearizing controller
with PID action (also known as “computed torque” controller),
which is able to induce linear closed-loop behavior (therefore
global exponential stability) when saturation is not present:

ẋc = q − r

u = I(q)
(

−Kp(q − r) − Kdq̇ − Kixc

)

+ C(q, q̇)q̇ + R(q)q̇ + h(q),

(2)

where xc ∈ R
n is the state of the controller and Kp, Kd, Ki are

suitable square matrices (typically diagonal) chosen in such a

way that the matrix
[

0 I 0

0 0 I
−Ki −Kp −Kd

]

, describing the (linear)

closed-loop (1), (2), is Hurwitz. Based on the value of the
reference input r ∈ R

n, the controller (2) is able to globally
asymptotically stabilize the position (q, q̇) = (r, 0) when inter-
connected to the robot (1).

For simplicity, throughout this paper we will always use the
controller (2). However, the results provided in [10], summa-
rized and extended in the next sections, apply to any control
system which induces global asymptotic stability and local ex-
ponential stability on the closed-loop without input saturation.

In this paper we will characterize the input nonlinearity of (1)
as a symmetric decentralized saturation function. This char-
acterization aims at describing the presence of a pool of actu-
ators, one at each joint of the robotic structure, each of them
associated with a maximum torque/force effort mi attainable
from the related power unit/motor combination. Therefore, the
saturation function sat(·) : R

n → R
n is decentralized and en-

forces the saturation levels mi, i = 1, . . . , n on the input chan-
nels. The approach that we propose could also be applied to
non symmetric saturations, however for simplicity of notation
we only consider the symmetric case here.

Since the control input of the robotic system (1) is bounded
by the presence of the saturation nonlinearity, suitable lower
bounds on the saturation levels mi, i = 1, . . . , n need to be im-
posed to guarantee that the actuators have enough power to sus-
tain the robotic structure against the acceleration arising from
the gravitational effects. To this aim, we formalize in the fol-
lowing assumption the requirement that the actuators are pow-
erful enough to be able to compensate the gravitational forces
in any configuration of the robot (corresponding to a selection
of q ∈ R

n) with zero velocity. Note that this condition is also
necessary when wanting to stabilize any configuration of the
robot.

Assumption 2 Given the gravitational forces vector h(·) of
the robotic system (1) and the saturation limits mi, i =
1, . . . , n, the following inequalities hold:

hMi := sup
q∈Rn

|h(q)| < mi, i = 1, · · · , n. (3)

The windup problem discussed in the Introduction arises when
the controller (2) is no longer interconnected to the plant with-
out input saturation but saturation is accounted for in the in-
terconnection. The typical effects of saturation on the closed-
loop behavior is to preserve the desirable unconstrained behav-
ior when signals are small enough not to reach the saturation
limits and to cause performance and (often) stability loss when
signals become large enough so that the saturation enforces
modifications at the plant control input.

3 A nonlinear anti-windup solution

3.1 Prior work

In this section, we summarize the contribution of [10], when
applied to robotic manipulators (which can be described by
equations of the type (1)). As shown in Figure 1, this anti-
windup solution corresponds to the insertion of an “anti-
windup compensator” as an augmentation to the original con-
trol law (2). According to Figure 1, in the following we will
denote by x := (q, q̇) ∈ R

2n the state of the robot, by yc ∈ R
n

the controller output, by u = sat(yc + v1) ∈ R
n the robot

torque/force input and by uc = x+v2 ∈ R
2n the measurement

input of the controller. The anti-windup compensator has ac-
cess to the plant’s state and input and to the controller output.
The authority of the anti-windup compensator, which allows to
add modifications to the original closed-loop, consists in two
compensation signals v1 and v2 which are injected at the con-
troller output and input, respectively. Based on the general ap-
proach in [10], when considering robot manipulators, we can
provide simplified expressions of the compensation laws im-
plemented in the “anti-windup compensator” block of Figure 1.



In particular, denoting the anti-windup compensator’s state by
xe := (qe, q̇e) ∈ R

2n, its dynamics can be written as

q̈e = I−1(q) (sat(yc + v1) − C(q, q̇)q̇ − R(q)q̇ − h(q))
− I−1(q − qe)(yc − C(q − qe, q̇ − q̇e)(q̇ − q̇e)
−R(q − qe)(q̇ − q̇e) − h(q − qe)).

(4)
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+

+
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Figure 1: The anti-windup scheme for robot manipulators.

The anti-windup compensator outputs v1 ∈ R
n and v2 ∈ R

2n

correspond to

v1 = β(x, xe), v2 = −xe = −(qe, q̇e), (5)

where β(·, ·) : R
2n × R

2n → R
n is given by

β(x, xe) := h(q) − h(q − qe) − Kgsat(K
−1

g qe) − K0q̇e. (6)

The two matrices K0 and Kg are positive definite diagonal and
they represent the “tuning” parameters of the anti-windup law.
The diagonal elements κgi, i = 1, . . . , n of Kg need to satisfy
the following constraints:

hMi + κgimi < mi, i = 1, . . . , n. (7)

Note that by definition of hMi in (3), if Assumption 2 holds,
there always exists a positive definite diagonal matrix Kg ful-
filling the constraints (7).

The main result of [10] establishes useful properties of the tra-
jectories of the anti-windup closed-loop system (1), (2), (4), (5),
(6) (whose state will be denoted by (x, xc, xe)) when compared
to the (ideal) trajectories of the unconstrained closed-loop sys-
tem (1), (2) (whose state will be denoted using the subscript
“`”, namely (x`, xc`)). This is formalized in the following the-
orem (reported without proof).

Theorem 1 [10] Suppose that Assumptions 1 and 2 hold and
the parameters of the compensation law (6) satisfy (7). Given
a constant reference signal r, denote by (x`(t), xc`(t)) the re-
sponse of the unconstrained closed-loop system (1), (2) start-
ing from the initial conditions ((x`(0), xc`(0)). Denote also
by u`(t) the corresponding controller output. Then the anti-
windup closed-loop system (1), (2), (4), (5), (6) is such that

1. if u`(t) = sat(u`(t)) for all times and
(x(0), xc(0), xe(0)) = (x`(0), xc`(0), 0), then
(x(t), xc(t), xe(t)) = (x`(t), xc`(t), 0) for all times,
namely the unconstrained response is retained;

2. defining x∗ := (r, 0), there exists a vector x∗

c ∈ R
n such

that the point (x∗, x∗

c , 0) is globally asymptotically stable
and locally exponentially stable.

Theorem 1 establishes two important properties of the anti-
windup closed-loop system (1), (2), (4), (5), (6). The first
one corresponds to the key constraint of anti-windup construc-
tion discussed in the Introduction: the anti-windup compensa-
tion preserves the local response of the original (unconstrained)
closed-loop whenever the saturation limits are not exceeded

by the unconstrained trajectory. The second property states
that the closed-loop with anti-windup augmentation is globally
asymptotically stable, thus the instability effects often experi-
enced when control laws such as (2) reach the saturation limits
(see Section 5 for a notable example of this phenomenon) are
eliminated by the proposed anti-windup augmentation strategy.

3.2 A generalized result

If on one hand the result of the previous section guarantees
important properties of our anti-windup augmentation scheme,
very little is established about the transient response of the
anti-windup closed-loop system after the saturation limits are
reached by the actuators: in this case, the only property guar-
anteed by Theorem 1 (in particular, by item 2) is that the
closed-loop trajectories converge to the desired equilibrium
point where q = r and q̇ = 0. Nothing can be concluded,
however, about the transient behavior of these trajectories. To
allow for high performance selections of the anti-windup com-
pensator parameters (the selection method will be clarified in
the following section), we introduce in this section an extension
of the anti-windup law of [10] summarized above. In particu-
lar, we propose a generalization of the selection for v1 in (6) as
follows:

v1 = sat(yc) − yc + h(q) − h(q − qe)
− Kgsat(K

−1

g Kqqe) − Kqd(qe, q̇e)q̇e,
(8)

where Kg is a diagonal matrix whose elements still satisfy
the constraints (7), Kq is a diagonal positive definite ma-
trix and Kqd(·, ·) is a decentralized diagonal matrix function
whose diagonal function elements (qei, q̇ei) 7→ κqdi(qei, q̇ei),
i = 1, . . . , n are constant in a neighborhood of the origin
and bounded away from zero, and such that the functions
(qei, q̇ei) 7→ κqdi(qei, q̇ei)q̇ei are locally Lipschitz for all i.

By suitably generalizing the proof of the main result of [10]
(corresponding to Theorem 1 above), the following parallel re-
sult can be established for the generalized anti-windup closed-
loop system arising from the interconnection between (1), (2),
(4), (5) and the new compensation law (8). The proof of the fol-
lowing theorem is omitted because of its similarity with Theo-
rem 1 and due to space constraints.

Theorem 2 Suppose that Assumptions 1 and 2 hold and the
parameters of the compensation law (8) satisfy (7). Then the
anti-windup closed-loop system (1), (2), (4), (5), (8) induces
the two properties established in Theorem 1.

Note that the compensation law (8) is a generalization of
(6). This generalization allows for significant performance im-
provements as compared to the results reported in [10] (where
the compensation law (6) was employed). To this aim, in the
next section we will first characterize mathematically the per-
formance of the anti-windup compensation scheme and then
describe suitable selections of the parameters Kg , Kq and
Kqd(·, ·) in (8) that are especially effective at guaranteeing high
performance compensation.

4 Improving the anti-windup performance

Following the anti-windup qualitative goal of recovering as
much as possible “what the response without input saturation



would be”, the quality of the closed-loop response can be mea-
sured in terms of the deviation of the actual plant trajectory x
from the corresponding (ideal) unconstrained plant trajectory
x`. In particular, we are interested in the size of the signal
x(t) − x`(t) for all positive times (and item 2 of Theorem 1
guarantees that, for any constant reference r, x(t)− x`(t) con-
verge to zero because both these signals converge to the equi-
librium (r, 0)).

While item 1 of Theorem 1 guarantees that x(t) − x`(t) is
identically zero when u`(·) never exceeds the saturation lim-
its, no information about the transient behavior of x(t)− x`(t)
is available from the theorem for all other trajectories. On the
other hand, based on continuity of trajectories with respect to
initial conditions on compact time intervals (this is a standard
result of nonlinear systems analysis) and on the GAS property
of item 1, it is reasonable to expect that unconstrained trajec-
tories corresponding to control inputs u` that spend little time
(and little energy) outside the saturation limits will correspond
to trajectories of the anti-windup closed-loop system such that
x(t)−x`(t) is very small (in some sense). For all the remaining
trajectories, not much can be concluded about their transient
behavior from Theorem 1. For these cases, the following result
is a good starting point to monitor and, possibly, make small
the size of x(t) − x`(t).

Theorem 3 Regardless of the selection of v1 in (5), given
any reference signal r(t), t ≥ 0, denote by (x`(t), xc`(t))
the response of the unconstrained closed-loop system (1), (2)
starting from the initial conditions ((x`(0), xc`(0)) and de-
note by (x(t), xc(t), xe(t)) the response of the anti-windup
closed-loop system (1), (2), (4), (5) starting from the initial
conditions (x(0), xc(0), xe(0)) = (x`(0), xc`(0), 0). Then
xe(t) = x`(t) − x(t), ∀t ≥ 0.

Proof. Consider the closed-loop (1), (2), (4), (5) and perform
the change of coordinates (x, xc, xe) → (x̃, xc, xe), where
x̃ := x − xe. Then, defining (q̃, ˙̃q) := x̃, after some com-
putation, the following equations are obtained:



















¨̃q = −I−1(q̃)
(

C(q̃, ˙̃q) ˙̃q + R(q̃) ˙̃q + h(q̃) − yc

)

ẋc = q̃ − r

yc = I(q̃)
(

−Kp(q̃ − r) − Kd
˙̃q − Kixc

)

+ C(q̃, ˙̃q) ˙̃q + R(q̃) ˙̃q + h(q̃),

(9a)



















q̈e = I−1(q̃ + qe)(u − C(q̃ + qe, ˙̃q + q̇e)( ˙̃q + q̇e)
−R(q̃ + qe)( ˙̃q + q̇e) − h(q̃ + qe))
+ I−1(q̃)

(

C(q̃, ˙̃q) ˙̃q + R(q̃) ˙̃q + h(q̃) − yc

)

u = sat(yc + v1).

(9b)

The representation (9) for the anti-windup closed-loop system
is the cascade of two subsystems. The first one (correspond-
ing to (9a)) of coordinates (x̃, xc) driving a second one (cor-
responding to (9b)) of coordinates xe. Note that the dynam-
ics (9a) of the first subsystem are coincident with the uncon-
strained dynamics (1), (2) and that, since xe(0) = 0, then
(x̃(0), xc(0)) = (x(0), xc(0)). Since the dynamics and the
initial conditions are the same, (x̃(t), xc(t)) = (x`(t), xc`(t))
for all positive times. Therefore, by definition, x`(t) = x̃(t) =
x(t) − xe(t) for all positive times and the result follows. •

From a performance perspective, the relevance of Theorem 3,
stands in the fact that it clarifies the impact of the selection of

v1 on the error variables xe = x − x`. By virtue of the cas-
cade structure (9) pointed out in the proof of Theorem 3, we
can focus on the second dynamics (9b) to study selections of
v1 of the type (8) that are particularly effective at keeping qe

small, so that the actual trajectory q is as close as possible to
the (ideal) unconstrained trajectory q`. Note, however, that the
global asymptotic (and local exponential) stability of (9b) is
already assured by Theorem 2 for all selections of the param-
eters that satisfy (7), so we can disregard the stability property
(which has already been addressed and proven) and concentrate
on performance.

One first thing to point out is the fact that, according to the
second equation in (9b), the term yc acts like a disturbance
for the dynamics qe. This motivates the term sat(yc) − yc in
equation (8) which alone leads to highly improved responses
(as compared to (6)) in the first instants of the closed-loop re-
sponse. Indeed, especially in aggressive control systems, yc

often presents very large peaks that result in undesired un-
dershoots at the beginning of the anti-windup closed-loop re-
sponse. Adding this extra term transforms the disturbance
from yc into sat(yc), thus reducing significantly its negative
effects. 1

To understand the impact of the selection (8) on the error dy-
namics (9b), it is useful to substitute v1 and u in the first equa-
tion of (9b). We are especially interested in the dynamics of
qe associated with times where the plant input is not anymore
saturated, so that full authority is available for the signal v1 to
suitably drive the state xe. Therefore, substituting u = yc + v1

in the first equation of (9b) we get (recall that q` = q − qe):

q̈e = I−1(q` + qe)
(

−Kgsat(K
−1

g Kqqe) − Kqd(qe, q̇e)q̇e

)

+ I−1(q` + qe)(sat(yc) − C(q` + qe, q̇` + q̇e)(q̇` + q̇e)
−R(q` + qe)(q̇` + q̇e) − h(q`)) − q̈`

Interestingly enough, it results that when (qe, q̇e) is small and
sat(yc) = yc, by continuity, the second line of the above equa-
tion is almost zero and the saturation at the first line is not ac-
tive. Then we get

I(q)q̈e ≈ −Kgsat(K
−1

g Kqqe) − Kqd(qe, q̇e)q̇e, (10)
which describes a dynamic system close to a double integrator
controlled by a saturated proportional action and by a derivative
action, whose gains are associated with the design parameters
Kq and Kqd(·, ·) (recall that Kqd(·, ·) is diagonal and strictly
positive for all values of its argument, by construction.

Let us denote by γE(qe) the equivalent gain associated
with the saturation of the proportional action, namely γE(·)
is a diagonal decentralized matrix function which satisfies
Kgsat(K

−1

g Kqqe) = γE(qe)Kqqe. Then given a positive
definite diagonal matrix K0, we select each diagonal element
κqdi(·, ·) of the decentralized function Kqd(·, ·) as

κqdi(qei, q̇ei) :=

{

γEi
(qei)κ0i, if qeiq̇ei > 0

κ0i, otherwise
(11)

so that the by means of Kqd(·, ·) we can “modulate” the deriva-
tive action of the controller based on the depth into saturation
of the proportional element. 2 This modulating action leads

1One may think that the best strategy is to eliminate completely yc. How-
ever, Theorem 2 couldn’t be proven in that case.

2Note that since the operating region of the robot is bounded, by the closed-
loop stability established in Theorem 2, also qe is bounded, therefore the se-
lection (11) is bounded away from zero, as required.



to significant performance improvement when qe is very large
and then, due to the saturation nonlinearity, the proportional
term becomes too small as compared to the derivative term in
(10). Note that with the selection (8), (11), when the satura-
tion element in (8) is not active, the approximate dynamics (10)
transform into the simple dynamics

I(q)q̈e ≈ −Kqqe − K0q̇e, (12)
which suggest that the diagonal elements of Kq and K0 should
be selected in an almost decoupled way (“almost” because of
the presence of I(q)), with the goal of improving the perfor-
mance at each joint, following a selection approach similar to
the heuristic approach for the selection of linear PD gains.

Summarizing the above, a successful strategy for the selection
of v1 is (8), (11), whose design parameters are three positive
definite diagonal matrices Kg , Kq , K0. The first parameter,
Kg , should always be chosen as large as possible within the
design constraints (7) to maximize the authority of the propor-
tional gain in the compensation law (note that Kg < I by def-
inition). The parameters Kq and K0 should be tuned with the
goal of improving the transients at each joint following a quasi
decoupled PD tuning strategy.

5 Simulation example

In [10], the effectiveness of the proposed anti-windup law has
been tested on a SCARA robot (Selective Compliance Assem-
bly Robot Arm). We use here the same example to emphasize
the performance improvement that can be guaranteed when em-
ploying the improved anti-windup law given by (8), (11). The
SCARA robot has four links. The first two links correspond
to a planar robot on the horizontal plane. The third link corre-
sponds to a prismatic joint imposing the tilt of the end effector
on the working surface and the last joint is a rotational joint
corresponding to the end effector orientation with respect to
the vertical rotation axis.

Link li [m] Mi [kg] Ii [kgm2] mi

1 0.6 12 0.36 55 Nm
2 0.4 6 0.08 60 Nm
3 1 3 0.08 70 N
4 0 1 0.08 25 Nm

Table 1: Parameters of the SCARA robot.

In Table 1 we report the same parameters used in [10] for our
simulations. These parameters have been taken from [9]. Ta-
ble 1 should be read according to the following notation: li is
the length of the i-th link, Mi is the total mass of the i-th link
(including the actuators’ masses), Ii is the rotational inertia of
the i-th link and mi is the saturation level of the i-th actuator.

The unconstrained controller is a “computed torque”
controller of the type (2) with the following se-
lection for the proportional, integral and deriva-
tive gains: Kd = diag(121.5, 30, 150, 150), Kp =
diag(17.79, 8.25, 24.75, 20.13), Ki = diag(7.5, 10, 1, 0.5).
We report on simulations using two different anti-windup
constructions. The first one is the original construction of
[10], where the control law (6) is used with the selection
Kg = diag(0.9, 0.9, 0.4, 0.9), K0 = diag(7.5, 4.5, 3.5, 2).
The second simulation corresponds to the new construction
(8), (11) with the following selection for the parameters:

Kg = diag(0.9, 0.9, 0.4, 0.9) K0 = diag(60, 40, 30, 20)
Kq = diag(280, 70, 70, 70).
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Figure 2: Input responses to the reference (13) of the follow-
ing closed-loop systems: unconstrained (bold solid), saturated
(dotted), anti-windup from [10] (dashed) and new anti-windup
law (thin solid).
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Figure 3: Output responses to the reference (13) of the follow-
ing closed-loop systems: unconstrained (bold solid), saturated
(dotted), anti-windup from [10] (dashed) and new anti-windup
law (thin solid).

We first reproduce the same simulation reported in [10], where
the reference signal has been selected as

r = (6 deg,−4 deg, 4 cm, 4 deg). (13)

The corresponding responses are reported in Figures 2 and 3.

Note that the new anti-windup law leads to extremely improved
performance as compared to the previous law. The correspond-
ing output response is almost coincident with the unconstrained
trajectory thus providing almost full recovery of the original
linear response. The unpleasant undershoot characterizing the
previous anti-windup response from [10] has been completely
eliminated and the unconstrained response recovery time re-
duced to 0.75 seconds (the response from [10] requires approx-
imately 25 seconds to recover the unconstrained response on
the first joint). Note also that for this simulation, the saturated



response leads to persistent oscillations (this was already ob-
served in [10]).
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Figure 4: Input responses to the reference (14) of the follow-
ing closed-loop systems: unconstrained (bold solid), saturated
(dotted), anti-windup from [10] (dashed) and new anti-windup
law (thin solid).
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Figure 5: Output responses to the reference (14) of the follow-
ing closed-loop systems: unconstrained (bold solid), saturated
(dotted), anti-windup from [10] (dashed) and new anti-windup
law (thin solid).

Next, we report on a different experiment which is aimed at
testing the reliability of the anti-windup law when the external
reference corresponds to the following unreasonably high level:

r = (150 deg,−100 deg, 1 m, 200 deg). (14)

The resulting trajectories are reported in Figures 4 and 5. In this
case, as expectable, the saturated response (dotted) oscillates in
an unreasonable way. However, also the anti-windup technique
from [10] (dashed) provides poor performance, where the first
three joints exhibit unacceptable undershoots and are associ-
ated with extremely slow transients. The new strategy (thin
solid), instead, provides a response that almost coincides with
the unconstrained one in the last three joints, while it is asso-
ciated with a very fast transient on the first joint, requiring ap-
proximately 1.5 seconds to settle on the desired steady state. It
is important to emphasize that different transients on each joint

could be imposed by suitably adjusting the diagonal entries of
the matrices Kq and K0.

6 Conclusions

In this paper we proposed extensions of the anti-windup algo-
rithm of [10], which lead to radical performance improvements
of the compensated closed-loop behavior. Among other things,
one advantage of the strategy here proposed is that the tran-
sient response of the anti-windup closed-loop system can be
tuned by acting on simple decoupled proportional and deriva-
tive gains. The performance of the closed-loop system has
been tested and verified by simulation on a model of a SCARA
robot.

References
[1] D. Angeli and E. Mosca. Command governors for con-

strained nonlinear systems. IEEE Trans. Aut. Cont.,
44(4):816–820, April 1999.

[2] A. Bemporad. Reference governor for constrained non-
linear systems. IEEE Trans. Aut. Cont., 43(3):415–419,
March 1998.

[3] C. Edwards and I. Postlethwaite. Anti-windup and
bumpless-transfer schemes. Automatica, 34(2):199–210,
1998.

[4] R. Hanus. Antiwindup and bumpless transfer: a survey.
In Proceedings of the 12th IMACS World Congress, vol-
ume 2, pages 59–65, Paris, France, July 1988.

[5] Q. Hu and G.P. Rangaiah. Anti-windup schemes for
uncertain nonlinear systems. IEE proc. Control Theory
Appl., 147(3):321–329, May 2000.

[6] N. Kapoor and P. Daoutidis. An observer-based anti-
windup scheme for non-linear systems with input con-
straints. Int. J. Contr., 72(1):18–29, 1999.

[7] T.A. Kendi and F.J. Doyle III. An anti-windup scheme
for multivariable nonlinear systems. Journal of Process
Control, 7(5):329–343, 1997.

[8] M.V. Kothare, P.J. Campo, M. Morari, and N. Nett. A
unified framework for the study of anti-windup designs.
Automatica, 30(12):1869–1883, 1994.

[9] G. Mester. Adaptive force and position control of rigid-
link flexible-joint SCARA robots. In Proc. of the IEEE In-
dustrial Electronics Conference, volume 3, pages 1639–
1644, Bologna (Italy), September 1994.

[10] F. Morabito, A.R. Teel, and L. Zaccarian. Anti-windup
design for Euler-Lagrange systems. In IEEE Conference
on Robotics and Automation, pages 3442–3447, Wash-
ington (DC), USA, May 2002.

[11] A.R. Teel and N. Kapoor. Uniting local and global con-
trollers. In Proc. 4th ECC, Brussels, Belgium, July 1997.

[12] S. Valluri and M. Soroush. Input constraint handling and
windup compensation in nonlinear control. In Proceed-
ings of the American Control Conference, pages 1734–
1738, Albuquerque (NM), USA, June 1997.


	Session Index
	Author Index



