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Abstract

Synthesis of static anti-windup compensators is considered.
LMI conditions are established for stability and performance
analysis of the closed loop system. The performance criterion
describes the servo problem for the resulting closed-loop piece-
wise linear system. The synthesis of the anti-windup compen-
sators will be given by some bilinear matrix inequalities.

1 Introduction

All real world control systems must deal with actuator satura-
tion. This give rise to interesting control challenges. As result
of actuator saturation the plant input will be different from the
controller output. When this happens the control loop is bro-
ken and the controller output does not drive the plant. Thus
the states of the controller are updated incorrectly, resulting in
serious performance deterioration [2].

A well-known and successful methodology used to cope with
this problem is anti-windup compensation or conditioning.
This methodology give rise to a compensator that during sat-
uration improves the performance of the closed loop system.

In [4] synthesis of anti-windup compensators is proposed with
guaranteed performance. Here theL2 induced norm has been
used to measure performance for the anti-windup compensator.

In [7] the problem of anti-windup compensation has been rec-
ognized as being that of returning the system to linear behavior.
That is, return of the system output to the one that would have
been without saturation. This problem is not directly captured
by the work in [4]. In [8] the before mentioned goal is imposed
for the synthesis, while the system configuration introduced in
[9] is used.

This article presents a simple solution for the latter mentioned
problem. In addition to [8] the performance criterion takes into
account time varying reference signals to the control system.
The methodology used here is based on the results in [6], [5].
There, a general method for characterizing the servo problem
for a class of nonlinear systems is presented. It is shown that for
piecewise linear systems the servo problem can be described
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Figure 1: The anti-windup scheme considered in the article.

using LMIs.

The outline of the paper is as follows: the next section will
pose the anti-windup problem in the framework of piecewise
linear systems. Section 3 will summarize the result in [6]. Sec-
tion 4 presents the main contribution of the article. Section 5
will present a simple example where the method is applied. In
Section 6 some concluding remarks are presented.

2 The Anti-windup scheme

In Figure 1 the considered anti-windup scheme is presented.
Here the linear controllerK(s) is designed to stabilize the plant
P(s) without taking the saturation intoaccount.

The problem is to design the static compensator blockΛ ac-
cording to some appropriate performance criterion.

The description of this system as a piecewise linear system pre-
sented below is similar to that presented in [3].

The linear plantP(s) has a state-space description given by the
matricesAp, Bp, Cp, Dp. The state-space description of the
linear controllerK(s) is given byAc, Bc, Cc, Dc.It is assumed
that P(s) is stable andK(s) has been designed such that the
closed loop linear system is stable.

The saturation function is defined as

sat(u) =

8><
>:

um; u< um

u; um� u� uM

uM; u> uM

The saturation nonlinearity will give rise to a partitioned state-
space for the system, obtaining a piecewise linear system. The
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Figure 2: Computable bounds on the map from ˙r to jx� xr j

describe the servo problem

three resulting regions will be denoted through this paper as
follows X0 – the linear region,X1 – the region whereu < um

andX2 denotes the region whereu> uM.

The anti-windup compensation blockΛ enters the controller as
follows:

ẋc = Acxc+Bce+Λ1(u�sat(u))

yc =Ccxc+Dce+Λ2(u�sat(u))

whereΛ =

�
Λ1
Λ2

�
. Thus, in the three partitions the dynamics

will be given by:(
˙̄x= A1x̄+a1+B1r

y= C1x̄+D1r
, x̄2 X1

(
˙̄x= A2x̄+B2r

y= C2x̄+D2r
, x̄2 X2

(
˙̄x= A3x̄+a3+B3r

y= C3x̄+D3r
, x̄2 X3

Here the matricesAi , Bi depend linearly on the parameter
Λ1(I +Λ2)

�1. For details about the matrices see [3].

3 The Servo Problem

The servo problem for a general nonlinear systems can be ana-
lyzed in a framework presented in Figure 2. The problem is to
obtain information about the difference between the system tra-
jectory (x) and a predetermined trajectoryxr in presence of an
input signalr. The exogenous input considered in this frame-
work will be the time derivative ofr. ChoosingL2 norm as
measure for the signals, it is natural a choice of theL2 gain
to characterize the systems behavior. Thus by computing the
L2 gain from the input signal’s derivative (˙r) to the “distance”
between system trajectories (x) and reference trajectories (xr ),
one obtains information relating the convergence of the studied
system trajectories.

The following theorem presents the result from [6]. This gives
an upper bound on theL2 gain from the input signal derivative

to the “distance” from the system state to a defined trajectory
xr .

Theorem 1 Let f :Rn�Rm!Rn be locally Lipschitz. For ev-
ery r2R �Rmlet xr 2R

n be a unique solution to0= f (xr ; r).

If there existsγ > 0 and a non-negativeC 1 function V, with
V(xr ; r) = 0 and

" ∂V
∂x f (x; r)+ jx�xr j

2 1
2

∂V
∂ r

1
2

�
∂V
∂ r

�T
�γ2I

#
< 0 (1)

for all (x; r) 2S , then for each solution to

ẋ= f (x; r); x(0) = xr0
; r(0) = r0 (2)

such that r(t) 2R and(x(t); r(t))2S for all t, it holds that

Z T

0
jx�xr j

2dt� γ2
Z T

0
jṙj2dt (3)

Proof:
Multiplying (1) from left and right with

�
1 ṙT

�
one obtains:

∂V
∂ x

f (x; r)+ jx�xr j
2+

∂V
∂ r

ṙ� γ2jṙj2 < 0

that is
dV
dt

+ jx�xr j
2� γ2jṙj2 < 0

which in turns by integration on[0; T] gives

V(x(T); r(T))+
Z T

0
jx�xr j

2dt� γ2
Z T

0
jṙj2dt< 0

and inequality (3) results since V(x; r)� 0.

Obviously, for a generic nonlinear system as considered in (2)
it might be difficult to find aV(x; r) such that (1) is fulfilled.
In case of piecewise linear systems convex optimization can be
used to compute the mentioned upper bound.

Consider now a particular kind of nonlinear systems, a piece-
wise linear system, of the form:

ẋ= Aix+Bir; x(t) 2 Xi (4)

with
�

Xi

	
i2I �R

n a partition of the state space into a number
of convex polyhedral cells with disjoint interior. Suppose that
for any constantr 2R the piecewise linear system has a unique
equilibrium point.

Furthermore, consider symmetric matricesSi j that satisfy the
inequality:�

x�xr

r

�T

Si j

�
x�xr

r

�
> 0; x2 Xi ; r 2R j (5)

Define

Bj
∆
=

�
A�1

j Bj

1

�
; I

∆
=

�
In 0
0 0m

�
(6)



Ai j
∆
=

�
Ai �AiA

�1
j Bj +Bi

0 0

�
(7)

The following proposition is useful for application of Theorem
1.

Proposition 1 Let f(x; r) = Aix+ Bir, xr = �A�1
j Bj r with

x(0) = xr(0), r(0) = r0. If there existγ > 0, P> 0 such that
P̄= diagfP;0g satisfies"

A
T
i j P+PAi j +Si j + I PBj

B
T
j P �γ2I

#
< 0; i 6= j (8)

"
AT

j P+PAj + I PA�1
j Bj

(A�1
j Bj)

TP �γ2I

#
< 0 (9)

then V(x; r) = (x� xr)
TP(x� xr ) satisfies (1) for all x2 Xi,

r(t) 2R j .

Remark 3.1 In particular, in the case wheṅr(t)= 0, for t > T,
by finding a finiteγ > 0 it is shown that all trajectories of the
nonlinear system (4) will converge to xr .

Remark 3.2 When the local linear systems contain affine
terms the argument vector of the Lyapunov function will be ex-
tended to(x r 1). Then the definitions in (6), (7) become:

Bj
∆
=

2
4A�1

j Bj

1
0

3
5 ; (10)

Ai j
∆
=

�
Ai �AiA

�1
j Bj +Bi ai

0 0 0

�
(11)

The conservatism of the theorems can be reduced by consid-
ering piecewise quadratic Lyapunov function. In this case the
Lyapunov function will be piecewiseC 1 instead ofC 1. Im-
posing that is non-increasing at the points of discontinuity, the
results hold (see [1]).

4 Synthesis of static anti-windup compensators

The anti-windup problem can naturally be posed as a servo
problem for the nonlinear system (i.e. the closed-loop piece-
wise linear system). The goal is to return to the behavior of the
linear system as fast as possible. In this context,xr introduced
in the previous section can be used to define a trajectory that
describes the linear behavior of the system. That is, define

xr =�A�1
2 B2r (12)

Computing theL2 gain from the derivative of the input sig-
nal to x� xr , gives a measure on the behavior of the system
trajectories with respect toxr . Notice that the input signal is
smoothly time varying.

It is reasonable to assume that the reference signals have such
a magnitude that they can be achieved by the system output
without violating the saturation constraints in stationarity. Us-
ing this assumption it is enough to use only thexr defined by
(12) in the synthesis.

Thus, a solution to the considered anti-windup problem is given
by Proposition 1, withi = 1;3 and j = 2 using the definition
in (10) and (11). Unfortunately, if one is searching also for
the parametersΛ1, Λ2 in the same time as solving forP, the
matrix inequality becomes a BMI (bilinear matrix inequality).
Iterative approaches can be used to solve this kind of problems,
however no formal proof for convergence exists.

Regarding the S-procedure terms (Si j ) describing the partitions,
a suitable description of the state space partition can be ob-
tained by constructing a polyhedral cell bounding using the
matrix: h

Hxi
Hri

+Hxi
(�A�1

j Bj) Hei

i
where the state space partition for the nonlinear system is given
by the hyperplanes:

�
Hxi

Hri
Hei

�24x
r
1

3
5= 0

with i = 1;3 and j = 2. Notice that also the size ofSi j will be
increased due to presence of affine dynamics and partition.

5 Example

To demonstrate the method, a simple SISO example with a PI
controller will be used. This example has been studied also in
[3], [8]. The plant and controller are:

P(s) =
0:5s2+0:5s+1
s2+0:2s+0:2

K(s) = 2

�
1+

1
s

�

The saturation on the control signal is set to�0:5. The output
in case there is no saturation acting on the plant is shown in
Figure 3, while in the case of saturation acting on the control
output the performance deteriorates considerably (see Figure
4). The reference signal in both cases is a step filtered by a first
order linear system with a time constant of 0:01 seconds.

Due to the integrator in the controller the LMIs are not strictly
feasible. For this reason a leakage is introduced in the integra-
tor by moving its pole to�0:01. For practical applications it is
reasonable to consider a “forgetting factor” in the integrator.

Applying the algorithm, a static compensator of the formΛ1 =
�0:45, Λ2 = 0 is found. Piecewise quadratic Lyapunov func-
tions are used in the algorithm. The best upper bound found on
theL2 gain from ˙r to x� xr is 5:0856. For a lower bound on
thisL2 gain, a local analysis in the linear region can be car-
ried out. This way, a lower bound of 3:8639 is obtained. The
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Figure 3: Output and control signal when no saturation is
present.
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Figure 4: Output and control signal when saturation is acting
on the control signal.
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Figure 5: Output and control signal when saturation is acting
on the control signal. Anti-windup compensation is applied on
the control system.

output of the compensated system is shown in Figure 5. Notice
the significant improvement in the performance of the control
system.

6 Conclusions

A synthesis method for static anti-windup compensators has
been presented. TheL2 gain from ˙r to x� xr is used as a
performance measure for the compensated system. A simple
example has been shown to demonstrate the method.

References

[1] M. Johansson and A. Rantzer. “Computation of piecewise
quadratic lyapunov functions for hybrid systems.” IEEE
Transactions on Automatic Control,43:4, pp. 555 –559,
April 1998.

[2] M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett. “A
unified framework for the study of anti-windup designs.”
Automatica,30:12, pp. 1869–1883, 1994.

[3] E. F. Mulder and M. Kothare. “Synthesis of stabiliz-
ing anti-windup controllers using piecewise quadratic lya-
punov functions.” In Proceedings of the Amercian Control
Conference, Chicago, Illinois, 2000.

[4] E. F. Mulder and M. Kothare. “Multivariable anti-windup
controller synthesis using linear matrix inequalities.” Au-
tomatica, 2001.

[5] S. Solyom. “Synthesis of a model-based tire slip
controller.” Technical Report Licentiate thesis LUTFD2/
TFRT--3228--SE, Department of Automatic Control,
Lund Institute of Technology, Sweden, June 2002.

[6] S. Solyom and A. Rantzer. “The servo problem for piece-
wise linear systems.” In Proceedings of the Fifteenth Inter-
national Symposium on Mathematical Theory of Networks
and Systems, Notre Dame, August 2002.

[7] A. R. Teel and N. Kapoor. “TheL2 anti-windup problem:
Its definition and solution.” In Proceedings of the European
Control Conference, 1997.

[8] M. C. Turner and I. Postlethwaite. “A new perspective
on static and low order anti-windup synthesis.” To be pub-
lished.

[9] P. F. Weston and I. Postlethwaite. “Analysis and design of
linear conditioning schemes for systems containing satu-
rating actuators.” In IFAC Nonlinear Control System De-
sign Symposium, 1998.


	Session Index
	Author Index



