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Abstract

The formulation of a discrete-time anti-windup scheme for lin-
ear systems with constrained control signals is extended to the
sampled-data case. Thus, the control of a continuous-time lin-
ear plant via a discrete linear nominal controller and a discrete
anti-windup compensator is considered. Stability of the anti-
windup compensator is equivalent to the known discrete prob-
lem while a hybrid induced I5/£5 norm is considered for anti-
windup performance. Linear sampled-data lifting techniques
are used to reduce the hybrid problem to an optimization prob-
lem in the discrete-time domain. A flight control example
shows the effectiveness of the discrete and the sampled-data
technique.

1 Introduction

For a control system with constrained control signals, anti-
windup compensation has become a common technique to
prevent destabilization and to retain acceptable performance
during saturation, and to enable the system to recover from
saturation and to resume nominal control performance. Al-
though there now exist various accounts of continuous-time
anti-windup compensation, treatments of discrete anti-windup
problems have been less common [1, 2] for which reason the
work of [3] considers the discrete counterpart of a continuous-
time anti-windup control problem with an £--gain requirement
for performance [4]. Although some ideas on anti-windup in a
sampled-data case are formulated in [5], the strict investiga-
tion of anti-windup control design problems in a sampled-data
frame work has not yet been considered despite the existence of
an extensive number of tools for sampled-data analysis of con-
trol systems, both for considering linear [6, 7] and non-linear
[8, 9] H..-control.

Most anti-windup schemes can be parameterized via one sin-
gle transfer function M (z) such as in [3, 4]. As this can
be also done in the sampled-data case, M (z) decouples the
anti-windup system into the nominal stable linear sampled-data
control loop, a discrete non-linear loop with a dead-zone non-
linearity and a linear disturbance filter with discrete input sig-
nal and continuous output signal. This shows that the global
anti-windup stability problem can be solved for the sampled-
data case, as for the discrete-time case, by considering the
deadzone function as a sector bounded non-linearity in an LMI-
framework. Performance is measured according to the Ls-
norm of the linear disturbance filter output in relation to the
lo-norm of a discrete signal entering the discrete non-linear
loop. This resembles the case of [3] where the respective I5-
gain has been minimized. In the case of the sampled-data
anti-windup system, linear sampled-data lifting methods [6]
are used to convert the linear disturbance filter from a hybrid
filter with discrete-time input and continuous-time output to a
discrete-time filter. This filter then has an /»-output norm of the
same value as the £,-norm of the output signal of the hybrid
filter. This approach allows one to consider an anti-windup
problem in the discrete-time domain as in [3]. Hence in this
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approach, the linear features of the sampled-data anti-windup
scheme are fully exploited preventing the complexity of non-
linear sampled-data analysis.

This article introduces at first a sampled-data control anti-
windup problem to which linear lifting techniques are applied
thereafter. Then, several anti-windup controller configurations
are considered which are finally exemplified for a non-trivial
flight control example in comparison to the discrete-time anti-
windup technique of [3].

2 Thesampled-data anti-windup problem

The sampled-data system of Figure 1 shows from a stability
and a performance point of view the equivalence of a con-
trol signal constrained system considering control signal con-
straints before the continuous-time linear plant, inside the dis-
crete controller or at both points. The schematic of Figure 1
clarifies that it is permissible to consider the anti-windup com-
pensation in terms of a generic anti-windup scheme as we did
in [3]. The sampled-data system from Figure (1) consists of a
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Figure 1: Sampled-data control system with constrained con-
trol input: Case a) switch (a) closed, Case b) switch (b) closed,
Case c) all switches open
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continuous-time linear stable plant G(s) with detectable states
x,(t) € R™

Gls)~ { JZ”(%)

Apry(8)+ Bytt (1) + Bpad(t) )
Cpzp(t) + Dpum (t) + Dpadl(t)

where u,,(t) € R™ is the actual control input to the plant,
d(t) € R™ issome disturbance and y(k) € R? is the measured
output so that

Gl(s) ~ (Ap: dev va D;Dd): GQ(S) ~ (A:D: BP: CP? D:D)' (2

For this plant, a discrete nominal controller K(z) =
[K1(2) K2(2)], y. = K1(2)y + K2(z)r, has been designed:

zdk+1) = Acxdk)+Bafk)+ Be,pr(k
K(Z)N{ (yC(—'k_) ) = chc((k))IDcyy((kgiDcrg(k% )

so that poles of (I — K»(2)G2(z)) ! are in the open unit disk
and lim, , o (I — K2(2)Ga(2)) ! exists where z.(k) € R"
is the controller state, y.(k) € R™ is the desired controller
output, (k) € R"  is the reference command and G»(z) =



H,G5(s)S; is the zero-order-hold of G (). The discrete con-
troller acts according to some nominal stability and perfor-
mance criteria which have been determined for the control sys-
tem without the occurrence of saturation. The saturation func-
tion is defined as

sat(u) := [saty(u1),. .., S8t (Umy))] 4)

where sat; (u;) := sign(u;) x min {|u;|,@;} and @; > 0. The
connection between the continuous-time plant G(s) and the
discrete controller K (z) is provided via the sample element

v=_Sy < v(i) =y(kr), k=0,1,2,3..., 7>0, (5

defining, from a continuous-time signal y(t), a discrete-time
output vector v(k) for constant sampling-time 7. In contrast,
the hold element H . is the operator:

un(t)=Ak), k=0.1,... (6)

which converts a discrete-time series z(k) into a continuous
step-function u,,, (¢) using a constant sampling-time .

um=Hz < Vtelkr,(k+1)7) :

It is readily understood from the sampled-data system of Fig-
ure 1 that the closed-loop system’s stability and input-to-output
performance from the relevant exogenous inputs d(t), (k) to
the measured output y(¢) is for all three cases (a), (b) and (c)
equivalent due to the particular linear characteristic of the oper-
ator H.,. This allows us to deal with the saturation non-linearity
via the generic conditioning scheme of Figure 2 involving the
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Figure 2: Anti-windup scheme: Conditioning via M (z)

transfer function M (z) as considered for the discrete case in
[3]. It is readily understood using the linear super-position
principle that this anti-windup scheme is equivalent to the con-
figuration of Figure 3 in terms of stability and input-to-output
behaviour, where the non-linear element Is the dead-zone non-
linearity satisfying:

Dz(u) = u — sat(u). )

Hence, stability of the anti-windup compensator has been re-
duced to a discrete stability problem (the nonlinear loop in-
volves purely discrete elements), while the actual anti-windup
problem of interest, that is the induced norm from w;;, (k) to
ya(t) (which involves a mixture of discrete and continuous el-
ements), for this configuration is defined as follows:

Definition 1 The anti-windup compensator M (z) is said to
solve strongly the anti-windup problem if the closed loop sys-
tem in Figure 3 is internally stable and well-posed and if

1. dist(ugn,U) =0, Vt>0theny, =0, Vt> 0 (as-
suming zero initial conditions for the anti-windup com-
pensator and U := [—aiy, U1]X, . ..y X [—Tm, Um])-
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Figure 3: Equivalent representation for the M (z) conditioned
anti-windup scheme

2. The operator 7 : win — yq is well-defined and has a

finite induced l5/L£5-norm:
> Nlya(t)))? dt
Vo @®

Zl?;o ”ulm(k)”2

Eh/ : ||T||12/C2 =7 = Ssup
Upin 70

Hence, this sampled-data anti-windup problem involves the
computation of a hybrid induced norm. In [3], the discrete anti-
windup problem has been solved by considering the linear plant
and controller characteristics while the saturation/deadzone
non-linearity had been expressed in terms of a sector non-
linearity. This frame-work can be used here also by incorpo-
rating the theoretical frame-work of lifting in sampled-data sys-
tems from [6]. For this, the theoretical background is explained
next. In particular, the £,-norm of the output of the operator
G2 (s)H, is of interest for us for computation of the £,-norm

of yd(t).

3 Sampled-data lifting techniques in applica-
tion to the anti-windup problem

From Section 2, the sampled-data system of interest for us op-
erates in two different domains, in the space of Lebesgue in-
tegrable continuous vector valued functions € and in the space
of vector valued sequences &, considering an appropriately di-
mensioned Eucledian vector space £, e.g. £ = R?. The two
spaces, ¢ and &, are joined via the sample-operator S (5) and
the zero-order hold H, (6). Thus, the sample element S and
the hold H . element are operators satisfying:

S, €56, H 16— ¢

For analysis of the L£,-characteristics of GQ(ngT, it is shown
at first that a continuous-time signal can be lifted into a
discrete-time representation where in particular the respective
inner product and />-norm follow the same rules and have the
same Vvalue as for their continuous-time counterpart [6]: Sup-
pose that for y(t) € € the L,-integral is finite:

y(t) € Lo(R,E) : /000 Y (D (t)dt < oo,
while the inner product of y(t), z(t) € L2(R,E) is
<yl 50 >e= [ 0=t

Then consider

y(B)) L ykr+1), 0<t <1



so that each element y(k)(t) € K where K = £5([0,7),&).
An inner product < - > is defined by:

<y(k) (), z(k)(t) >x= /Or(y(k)(t))’Z(k)(t)dt, ©)

This procedure creates a discrete-time signal y in the space
15(Z, K) via a lifting operator L:

1o
Ly=y=| 4@ (10)
with inner product:
<yz>i=y <y(k),z(k) >k
k=0

which implies that the operator L preserves the inner product
<wy,z>=< Ly, Lz > and respectively the £5-norm on the
infinite horizon defined via the inner product.

The  L-operator allows one to eliminate the
continuous/discrete-time anti-windup problem by creat-
ing an overall discrete system. Hence, we may now consider
the operator LG»(s)H,, where the continuous-time linear
time-invariant system G5(s) is

oo (t)

Apza(t) + Bpus(t)
ya(t)

C 2(t) + Dpus(t)

Ga)~ {

with state-vector z»(t) € €. By [6], it can be shown that the
discrete operator LG H, from L2 (R, &) to I5(Z, K) has the
following state space representation with initial state o (k =

0) = .’Eg(t = 0) and Ug = H—,—uQ(k):
zok+1) = Agws(k)+Baus(k)
LG:H N{ va(R)(®) = (Ca(k)) () + (Dus(k))t)

where the matrices Aq = " and By = [ ¢'4#dtB, are

linear operators between two finite dimensi_onal Eucledian vec-
tor spaces, while C' and D are operators with a vector space as
argument space and K as object space:

(Cas(K)) (1) =
(Dus(K))() ==

Cpettray(k),

t
[D,,Jr / CpeSAPdsBp] usy (k).
0

3.1 The ly-norm of the output of the operator LG H

Using the lifting approach, the £-norm of the output signals
G H, is conveniently calculated by computing the /5-norm of
the output signal of LG, H,. Note that G»(s) is stable and

consider us = (u2(k), £k =0,1,2,...)
ug € 1b(Z,€): Z ) < o0
fory, = LGa(s)Hru, y, € >(Z, K) with state vector 2 (k)

at tlme instant k. We know that

| i Z < alkX) kYD) >

while using the notation of (10) and (9) it follows:

<Ya(k)t) yadk)E) > = [ Coe Ao k)H Dyt [1C* A dsByus(k) ) x
(CpetArao(k)+ Dy +[1CpeA» ds By us(k))dl

[ o[ w0
where

U:[Zl Z5By+ (s —D)(A;1) Cp(Dy = CAT By) |

% U3

Us=B,ZsB,+7D,D,—7D,C, A" B,—7B,,(A,")'C, D
+7B) (A1) CICpA, ' By+ D) CpA, (74 —I)B,
+Ble™—1)(A; ) CLD,—Ble™ v A?) CiC,AT'B,,
—B, (A1) C,CpA, % (e7 — I)B, (11)
and
A OO v dl, Zo =

% /
0 Y——on—
Z1(1)

Zy= / A ATV CIC AT e A .

Z3(1)

/\elA’p(Agl)lcécpelAidl’
Za(1)

(12)

Remark 1 The integrals (12) of type [ e!r X el4r dl for ap-
propriately dimensioned matrix X are readily computed: From
[10], the matrix function Z(t)

Z(t) = e XelAr
is the solution for

az(0)

=X.
dt 0)

= A Z+ZA, Z(t=

Hence, given Z(7), Z(0), A, the integral fo t)dt can be
calculated via the following Lyapunov equation:
2(r) - Z(0) = A;,/ Z(t)dt +/ Z(0)dtA,.  (13)
0 0
Hence, employing Z;(1), i = 1,2, 3, from (12), the Lyapunov
equation of (13) can be used to derive the values of Z;. o

It is now possible to define a discrete system §4 = G2(z)us
for IL'Q(k = 0) = QTQ(t = 0)

~ 2ok +1) = Azxa(k) + Baua(k)
Gz‘z)w{xmm — Caai) + Dus(h)
where
u=[¢ D][¢ D]
for which
S HGAR) Z<yd B).wdkXt >K—/ Yt

=0



Note that the output dimension of G5 (z) is not necessarily sim-
ilar to the one of the output G2 (s) H. Since the l,-norm of the

output signal of Go(z) is of the same value as the £2-norm of
G4 (s)H, for given uy and initial state zo2(k = 0) = z2(t =
0), it is now readily used in the anti-windup analysis as de-
picted in Figure 4 for optimization of the induced l5/L£5-norm,
which is the induced l;-norm from u;;,, t0 §4.

M(z)-1
I
Uy, o -

+ o M)

u

Figure 4: Equivalent configuration of the strong, M (z)-
conditioned sampled-data anti-windup problem

<
U

62 (2)

4 Full order anti-windup synthesis

As in [3], an anti-windup controller with the same order as
G»(z) may be termed a full order compensator. From Sec-
tion 2 and [3], it is understood that the choice M (z) = I pro-
vides an anti-windup compensator which solves strongly the
anti-windup problem of Definition 1 as it recovers the internal
model control scheme. Hence, also for the sampled-data anti-
windup problem, there always exists a full-order anti-windup
compensator.

For minimization of ||7]|,/z,, the artificial plant G(z)
may be expressed in terms of its right coprime factorization
G2(z) = N(2)M(z)~" for which we choose N (z) and M (z)
to have the same state-space as G» (z). Hence, as in [3] choose:

xo(k+1) = (Ag+ BaF)xa(k) + Bau(k) (14)
uq(k) = Faxo(k) (15)
Ja(k) = (C+ DF)xy(k) + Dii(k) (16)

where @(k) = Dz(uin(k) — ua(k)). Hence, as in [3], the lo-
gain for the input-output u,;,, to 4 can be minimized for the
parameter F' using the following Theorem:

Theorem 1 There exists a dynamic compensator M (z) of or-
der n, which solves strongly the anti-windup problem if there

exist matrices @ > 0,W = diag(p1,...pm) > 0,L €

R(m+49)xm and a scalar ¢ > 0 such that the following linear
matrix inequality (LMI) is satisfied

-Q -L' 0 QC+L'D" QA4+ LB,

* 22U I UD' UB,

* x  —ul 0 0 <0 (17)
* * * —I 0

* * * * —Q

Furthermore, if this inequality is satisfied, a suitable F' for
(14)-(16) achieving || |;,/c, < v = /1, is given by F' =

Lo~

The proof of this theorem readily follows from the proof of
Theorem 1 in [3].

5 Static anti-windup synthesis

As for [BJ, in practice it is not desirable to increase the con-
troller order from n, to n. + n, to compensate for the case of

saturation. It seems to be more suitable to keep the anti-windup
compensator as simple as possible for which the easiest choice
are static matrix elements ©, and ©, (instead of the dynamic
elements M (z) — I and G2(z)M (z)) as depicted in Figure 5.
From Figure 2 and 5 using the same approach as in [3], both

r
—

K(z) y(1)

Figure 5: Static anti-windup configuration
schemes are equivalent if
M = (I — KQ(Z)GQ(Z))il(_KQ(Z)GQ + (")1 + I) (18)

Considering (18), a state space representation for the transfer
M(z) — I and G2(z)M(z) is given by:

M()—1 Hk+1) = _Axk)+(Bo+BO)i(k)

[ S ]N ua(k) = Cra(k)+(Do1 + D:©Yi(k)
Az)JMz Ga(k) :Cg.i(k)+(Do2+D2@)ﬁ(é€)g)

1

and © = [©7 5] for which a minimal realization is presented
in the Appendix. In this sense, a sub-optimal result for the
static anti-windup compensator is readily obtained from [3]:

Theorem 2 There exists a static compensator © = [0 0%)' €
R(m+a)xm which solves strongly the anti-windup problem if
there exist matrices Q > 0,U = diag(p1,---,um) > 0,L €
R(m+a)x™m and a postive real scaler ;1 > 0 such that the fol-
lowing LMI is satisfied

—Q -1 _ 0 Q0 QA"
* X —-DoU-DiL-UD{;—L'Dy I UD{+L'Dy UBo+L'B
* * —u 0 0 <0
* * * -1 0
* * * *
(20)

Furthermore, if this inequality is satisfied a suitable © achiev-
ing [| 7|,z <7 =+/misgivenby ® = LU~

Remark 2 Note that the low order anti-windup compensator
and well-posedness of all the anti-windup schemes can be dis-
cussed as in [3]. o

6 Casestudy: high « aircraft

To demonstrate a comparative analysis of our results, we study
a simple model of a high « aircraft, linearised at a high angle-
of-attack (a) [11, eqn. A2-A4]. This is an interesting model
to study, partly due to the poor performance it exhibits un-
der saturation constraints on the control magnitude and partly
due to the highly coupled system characteristics which makes
this plant an ideal test-bed for multivariable anti-windup tech-
niques.

For our study, we used the first design approach of [11], an
H ., mixed sensitivity design from Figure 2 and equation (19)-
(21) of [11]. To obtain from the continuous design problem a
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Figure 6: Step response for fi, 8 without saturation constraints
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discrete problem, it has been zero-order hold discretized which
ensures the design of a stable controller for any sampling time
7. For our work, we considered a sampling time 7 = 10 ms
as stated in [11] and the significantly higher sampling time of
7 = 1.3 sec. The higher sampling time is only of academic
interest to show the characteristics of the sampled-data anti-
windup technique as opposed to the discrete anti-windup tech-
nique of [3]. In contrast to [11], we did not attempt any order
reduction, yielding a nominal controller order of 12. The con-
trolled variables are i, , 8 which represent the stability-axis
roll rate, the angle-of-attack and the side-slip angle, respec-
tively. The plant inputs are §,, d,, §, which represent the ele-
vator deflection, the aileron deflection and the rudder deflection
respectively. These actuators are subject to the following con-
straints: |95 < 25°, |dq] < 20° and |4, < 30°.

Considering the control performance for - = 10 ms first, Fig-
ure 6 shows the response of the high-a aircraft to demands in
the 1 and 3 channels without saturation constraints showing a
high actuator activity in most of the control channels. This indi-
cates a significant amount of coupling. (Due to space reasons,
channel « is not considered.) Figure 7 shows the response of
the high-« aircraft when the saturation constraints are imposed
on the control signal for the same demands as those used for
the unconstrained responses. In particular for - = 10 ms, the
performance has deteriorated in both channels. The demand
in 1 causes the aircraft to lose virtually all its tracking ability
in the £ channel; the demand in 3 gives rise to a highly cou-
pled and oscillatory type of behaviour. In order to improve the
response of the system, a full-order anti-windup compensator
was synthesised using the LMI in Theorems 1 from [3] and
from this paper. This yielded an optimal value of v ~ 5.729
(r = 10 ms) for the discrete and v ~ 5.727 x /7 for the
sampled-data anti-windup optimization. Both, the discrete and
the sampled-data anti-windup optimization result, show iden-
tical performance results as presented in Figure 8. Hence, the
aircraft responses have been dramatically improved. For the
demand on i, the tracking performance has been tightened
considerably; for the demand on 3, apart from an initial pe-
riod, the coupling has been eliminated and the oscillatory re-
sponse damped, compared to the response without using anti-

(a) Output: fi-step response (b) Output: 5-step response
Figure 7: Step response for f, 8 with control constraints for

7 = 10ms;

=demand, black=data
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Figure 8: Step response for j and 3 with full order anti-windup

for 7 = 10ms, =demand, black=data

windup. On the negative side, the anti-windup compensator
does slow down the tracking performance in this channel. The
main problem with full-order anti-windup is that it requires a
significant amount of extra on-line computation to implement.
Static-anti-windup, although not guaranteed to be feasible can
be an alternative to this. For this plant and controller combi-
nation static anti-windup was indeed feasible and, using Theo-
rems 2 from [3] and from this paper, resulted in a v ~ 6.814
(r = 10 ms) for the discrete and v = 6.812 x /7 for the
sampled-data technique, where both optimization approaches
show again the same performance result as depicted in Figure
9. For the demand on /i, the response is almost identical to that
of the full-order anti-windup compensator. For the demand in
3, we can again see that the coupling has been improved, ex-
cept for a sharp initial peak. In fact, the tracking performance
of the compensator seems somewhat better than for the full or-
der case, with a sharper response in 3. It was also possible to
obtain some good low order response, although space prohibits
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Figure 9: Step response for & and 3 with static anti-windup for
T = 10ms, =demand, black=data



a discussion of these.
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Figure 12: Step response for j and 8 with full order anti-
windup for = = 1300ms, =discrete AW, black=sampled-
data AW

In most of our examples, we have found that the discrete ap-
proach and the sampled-data approach to performance opti-
mization show very similar results. Only for a very large
sampling time of 7 = 1.3 sec, we observed an advantage of
the sampled-data technique over the discrete optimization ap-

proach. The nominal behaviour of the controller without any
anti-windup compensation is shown in Figures 10 and 11 for
control without and with control signal constraints respectively.
A full-order anti-windup optimization according to Theorems
1 from [3] and from this paper, gives the respective results of
~ = 5.727 and v = 5.727 x /7. The discrete anti-windup
approach does not seem to improve the nominal control be-
haviour as presented in Figures 11 and 12. The sampled-data
techniques provides largely similar results where, in contrast to
the discrete approach, the settling behaviour in the fi-channel
appears to be improved. It is believed that significant research
has to be invested in this issue considering also other plants
with rich high frequency system dynamics.

7 Conclusions

This paper has provided an extension of a novel approach to
anti-windup compensator design from discrete to sampled-data
compensator optimization. The theoretical frame-work consid-
ers linear sampled-data lifting techniques to derive a solution
for the overall nonlinear anti-windup problem. An example
shows that both anti—windur compensator design approaches
are effective while the sampled-data technique shows some ad-
vantage for a Nyquist frequency significantly smaller than the
maximal frequency range of the plant dynamics.

A The state space representation for the static
anti-windup scheme

Considering all the notation from the Sections 3 and 5 and us-
ing the fact that G2(z) = (A4, Ba, Cp, D) it follows for (19)

and A := (I -D,D.)" ', A:=(I-D.D,) " that:
i_|A +BdADc Bnd = Ba!A _BdADc
A= [BjACp AC+BCAD,0J +Bo= [BCADJ’ —BiA }

Ci=[ApC, AC.),Dyn=ADD,,Di=[I+ADD, -AD]
Co=[C+DAD,C, DAC,],Dox=(D+DAD.D,), D:=[D+DAD.D, —DAD,)].

= Bd&
5=[ 3,
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