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Abstract

The formulation of a discrete-time anti-windup scheme for lin-
ear systems with constrained control signals is extended to the
sampled-data case. Thus, the control of a continuous-time lin-
ear plant via a discrete linear nominal controller and a discrete
anti-windup compensator is considered. Stability of the anti-
windup compensator is equivalent to the known discrete prob-
lem while a hybrid induced

�
�
/ 	 � norm is considered for anti-

windup performance. Linear sampled-data lifting techniques
are used to reduce the hybrid problem to an optimization prob-
lem in the discrete-time domain. A flight control example
shows the effectiveness of the discrete and the sampled-data
technique.

1 Introduction
For a control system with constrained control signals, anti-
windup compensation has become a common technique to
prevent destabilization and to retain acceptable performance
during saturation, and to enable the system to recover from
saturation and to resume nominal control performance. Al-
though there now exist various accounts of continuous-time
anti-windup compensation, treatments of discrete anti-windup
problems have been less common [1, 2] for which reason the
work of [3] considers the discrete counterpart of a continuous-
time anti-windup control problem with an 	 � -gain requirement
for performance [4]. Although some ideas on anti-windup in a
sampled-data case are formulated in [5], the strict investiga-
tion of anti-windup control design problems in a sampled-data
frame work has not yet been considered despite the existence of
an extensive number of tools for sampled-data analysis of con-
trol systems, both for considering linear [6, 7] and non-linear
[8, 9] �� -control.

Most anti-windup schemes can be parameterized via one sin-
gle transfer function ������� such as in [3, 4]. As this can
be also done in the sampled-data case, ������� decouples the
anti-windup system into the nominal stable linear sampled-data
control loop, a discrete non-linear loop with a dead-zone non-
linearity and a linear disturbance filter with discrete input sig-
nal and continuous output signal. This shows that the global
anti-windup stability problem can be solved for the sampled-
data case, as for the discrete-time case, by considering the
deadzone function as a sector bounded non-linearity in an LMI-
framework. Performance is measured according to the 	 � -
norm of the linear disturbance filter output in relation to the���

-norm of a discrete signal entering the discrete non-linear
loop. This resembles the case of [3] where the respective

���
-

gain has been minimized. In the case of the sampled-data
anti-windup system, linear sampled-data lifting methods [6]
are used to convert the linear disturbance filter from a hybrid
filter with discrete-time input and continuous-time output to a
discrete-time filter. This filter then has an

�
�
-output norm of the

same value as the 	 � -norm of the output signal of the hybrid
filter. This approach allows one to consider an anti-windup
problem in the discrete-time domain as in [3]. Hence in this

approach, the linear features of the sampled-data anti-windup
scheme are fully exploited preventing the complexity of non-
linear sampled-data analysis.

This article introduces at first a sampled-data control anti-
windup problem to which linear lifting techniques are applied
thereafter. Then, several anti-windup controller configurations
are considered which are finally exemplified for a non-trivial
flight control example in comparison to the discrete-time anti-
windup technique of [3].

2 The sampled-data anti-windup problem
The sampled-data system of Figure 1 shows from a stability
and a performance point of view the equivalence of a con-
trol signal constrained system considering control signal con-
straints before the continuous-time linear plant, inside the dis-
crete controller or at both points. The schematic of Figure 1
clarifies that it is permissible to consider the anti-windup com-
pensation in terms of a generic anti-windup scheme as we did
in [3]. The sampled-data system from Figure (1) consists of a

K(z) H
t

S
t

G(s)

a) b)

rk

y(t)

d(t)

zero-order
hold

sampler

Figure 1: Sampled-data control system with constrained con-
trol input: Case a) switch (a) closed, Case b) switch (b) closed,
Case c) all switches open

continuous-time linear stable plant ������ with detectable states��� �
�����! #"�$
������&%

')(��� �
���+*-, �.��� �
���0/21 �4365 �
���0/21 �0798 �
���: �
���;*=< �4��� �
���0/2> �4365 �
���0/2> �0798 �
��� (1)

where 365 �
���?�@ 5 is the actual control input to the plant,8 �
���A�B #"&C is some disturbance and : ��DE�A�B GF is the measured
output so that

�IH
�����&%J��, �LK 1 �07&K < ��K > �07 � K � � �����&%J��, �EK 1 ��K < �EK > � �NM (2)

For this plant, a discrete nominal controller OP�����Q*R OSH4�����TO � �����VU , :XW *YOSH4����� : /ZO � �����\[ , has been designed:

OP�����&%
' �6W ��D]/_^��`*�, W��6W ��DE�0/21 Wa: ��DE�0/21 WVb [a��DE�:XW ��DE�c*d< W��6W ��DE�0/2> Wa: ��DE�0/2> WVb [a��DE� (3)

so that poles of ��eIf?O � �����a� � �������hg H are in the open unit disk
and i j klNmn�!��eofpO � �����a� � ������� g H exists where �6W ��DE�2�q "&r
is the controller state, :�W ��DE�?�� 5 is the desired controller
output, [���DE�S�+ #".s is the reference command and � � �����*



���.� � ����� � � is the zero-order-hold of � � ����� . The discrete con-
troller acts according to some nominal stability and perfor-
mance criteria which have been determined for the control sys-
tem without the occurrence of saturation. The saturation func-
tion is defined as����� � 3 �	� * R ����� H4� 3 H � K M9M9M K ����� 5 � 365 ���VU (4)

where ������
 � 3 
 ��� * � j �� � 3 
 ���Bkoj ����� 3 
 � K��3 
�� and �3 
	��� . The
connection between the continuous-time plant ������ and the
discrete controller OP����� is provided via the sample element� � : � * � � :�� � �"!a� * : ��D$#L� K D* � K ^ K�%�K�& M M M K # �'� K (5)

defining, from a continuous-time signal : �
��� , a discrete-time
output vector ( ��DE� for constant sampling-time # . In contrast,
the hold element �)� is the operator:

365 * ����� �+* ��� R D�# K ��D / ^���#h�	� 365 �
���&* �h��DE� K DG* � K ^ K M M M (6)

which converts a discrete-time series � ��DE� into a continuous
step-function 3 5 �
��� using a constant sampling-time # .
It is readily understood from the sampled-data system of Fig-
ure 1 that the closed-loop system’s stability and input-to-output
performance from the relevant exogenous inputs 8 �
��� , [���DE� to
the measured output : �
��� is for all three cases (a), (b) and (c)
equivalent due to the particular linear characteristic of the oper-
ator ��� . This allows us to deal with the saturation non-linearity
via the generic conditioning scheme of Figure 2 involving the
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Figure 2: Anti-windup scheme: Conditioning via �������
transfer function ������� as considered for the discrete case in
[3]. It is readily understood using the linear super-position
principle that this anti-windup scheme is equivalent to the con-
figuration of Figure 3 in terms of stability and input-to-output
behaviour, where the non-linear element is the dead-zone non-
linearity satisfying: ,�- � 3 �G* 3 f ����� � 3 �NM (7)

Hence, stability of the anti-windup compensator has been re-
duced to a discrete stability problem (the nonlinear loop in-
volves purely discrete elements), while the actual anti-windup
problem of interest, that is the induced norm from 3/. 
 " ��DE� to:X7 �
��� (which involves a mixture of discrete and continuous el-
ements), for this configuration is defined as follows:

Definition 1 The anti-windup compensator ������� is said to
solve strongly the anti-windup problem if the closed loop sys-
tem in Figure 3 is internally stable and well-posed and if

1. 0�j �1� � 32. 
 " K43 � * � K5* ��6 � then :X7 * � K7* ��6 � (as-
suming zero initial conditions for the anti-windup com-
pensator and 3 � * R f �3 H K��3 H�U�� K M9M9M K � R f �365]K��365 U ).
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Figure 3: Equivalent representation for the ������� conditioned
anti-windup scheme

2. The operator 89� 3:. 
 "�;< :X7 is well-defined and has a
finite induced

�
�
/ 	 � -norm:

=?> ��@A8B@ . C�D�EFC * > * �HGFIJ�K L M2NO/P
Q R �P @ :X7 �
���S@ � 8 �Q T �U O/P @ 32. 
 " ��DE�S@ � (8)

Hence, this sampled-data anti-windup problem involves the
computation of a hybrid induced norm. In [3], the discrete anti-
windup problem has been solved by considering the linear plant
and controller characteristics while the saturation/deadzone
non-linearity had been expressed in terms of a sector non-
linearity. This frame-work can be used here also by incorpo-
rating the theoretical frame-work of lifting in sampled-data sys-
tems from [6]. For this, the theoretical background is explained
next. In particular, the 	 � -norm of the output of the operator� � �����a��� is of interest for us for computation of the 	 � -norm
of :X7 �
��� .
3 Sampled-data lifting techniques in applica-

tion to the anti-windup problem
From Section 2, the sampled-data system of interest for us op-
erates in two different domains, in the space of Lebesgue in-
tegrable continuous vector valued functions V and in the space
of vector valued sequences W , considering an appropriately di-
mensioned Eucledian vector space X , e.g. X *  F . The two
spaces, V and W , are joined via the sample-operator

� � (5) and
the zero-order hold �)� (6). Thus, the sample element

� � and
the hold ��� element are operators satisfying:� �Y�?V < W K ���Y�$W < V#M
For analysis of the 	 � -characteristics of � � �����a��� , it is shown
at first that a continuous-time signal can be lifted into a
discrete-time representation where in particular the respective
inner product and

�
�
-norm follow the same rules and have the

same value as for their continuous-time counterpart [6]: Sup-
pose that for : �
�����ZV the 	 � -integral is finite:

: �
�����S	 � �� K X �[�]\ �P :�^ �
��� : �
��� 8 �`_ba K
while the inner product of : �
��� K � �
�����S	 � �� K X � is

_ : �
��� K � �
��� � E *�\ �P : �
���a� �
��� 8 �
Then consider

: ��DE� �
��� 7dc1e* : ��D$#n/ ��� K ��f �	_g#



so that each element : ��DE� �
���S��� where � * 	 � � R � K #L� K X � .
An inner product _�� ��� is defined by:

_ : ��DE� �
��� K � ��DE� �
��� ��� *�\ �P � : ��DE� �
����� ^ � ��DE� �
��� 8 � K (9)

This procedure creates a discrete-time signal : in the space��� ��� K �n� via a lifting operator � :

� : * : * 	

� : � � � �
���: �a^�� �
���: � % � �
���
...

� � (10)

with inner product:

_ : K � � . * ��U O/P _ : ��DE� K � ��DE� ���
which implies that the operator � preserves the inner product_ :6K � � . * _�� :6K � � � E and respectively the 	 � -norm on the
infinite horizon defined via the inner product.

The � -operator allows one to eliminate the
continuous/discrete-time anti-windup problem by creat-
ing an overall discrete system. Hence, we may now consider
the operator � � � �����a��� , where the continuous-time linear
time-invariant system � � ����� is:

� � ����� %
' (� � �
��� * , �4� � �
��� /Z1 �43 � �
���:X7 �
��� * < �.� � �
��� /Z> �43 � �
���

with state-vector � � �
���o� V . By [6], it can be shown that the
discrete operator � � � ��� from 	 � �� K X � to

��� ��� K �n� has the
following state space representation with initial state � � ��DP*� �G* � � �
�G* � � and 3 � *Y����� � ��DE� :� � � ��� % ' � � ��D]/_^��Z* , 7 � � ��DE�0/21 7 � � ��DE�:X7 ��DE� �
��� *;��< � ��DE��� �
���0/S��> � � ��DE��� �
��� K
where the matrices , 7 *�� ��� $ and 1 7 * R �P ��� � $ 8 �a1 � are
linear operators between two finite dimensional Eucledian vec-
tor spaces, while < and > are operators with a vector space as
argument space and � as object space:

��< � � ��DE��� �
��� � * < � � � � $ � � ��DE� K
��> � � ��DE��� �
��� � * �
> � /'\ �P < � ��� � $ 8 �01 ��� � � ��DE�NM

3.1 The
���

-norm of the output of the operator � � � ���
Using the lifting approach, the 	 � -norm of the output signals�]��� is conveniently calculated by computing the

���
-norm of

the output signal of � � � ��� . Note that � � ����� is stable and
consider � � * ��� � ��DE� K D* � K ^ K�%�K M M M �

� � � ��� ��� K X � � ��U O/P ��� � ��DE��� ^ � � ��DE�	_ba
for : 7 *�� � � �����a��� � , : 7 � ��� ��� K �n� with state vector � � ��DE�
at time instant D . We know that

\ �P : ^7 �
��� :X7 �
��� 8 � * ��U O/P _ :X7 ��DE� �
��� K :X7 ��DE� �
��� ���

while using the notation of (10) and (9) it follows:!�"�#�$&%(' $ )*',+ "�#-$.% ' $ )*'�/10�243657 $&8:9.;=< >@?&A6B�$&% ' C4D EF9*C63 <7 8:9.;HG�>@?JI�K LM9ON PQB�$&%('*'�R S
��< � � . � $(� � ��DE�0/ R > � / R .P < � � � � $ 8 �01 � U.� � ��DE��� 8 �
*�� � � ��DE�� � ��DE� � ^JT � � � ��DE�� � ��DE� �

whereT *U�WVX H VX ^� 1 � /S��� ���:Y$ fne�� ��,]g H� � ^ < ^� ��> � fI< � ,]g H� 1 � �Z T\[ � K
T\[ * 1 ^� VX [ 1 � / #E> ^� > � f #E> ^� < � , g H� 1 � f #E1 ^� ��, g H� � ^ < ^� > �/�#E1 ^� ��, g H� � ^ < ^� < � , g H� 1 � /2> ^� < � , g �� ��� ��� $ fne��a1 �
/61 ^� ��� ���:Y$ f e�� ��, g �� � ^ < ^� > � f 1 ^� ��� ���:Y$ f e�� ��, g �� � ^ < ^� < � , g H� 1 �
fL1 ^� ��, g H� � ^ < ^� < � , g �� ��� ��� $ f?e��a1 � (11)

and

VX HT*/\ �P � . �:Y$ < ^� < � � . � $] ^O_ `acb=d . e 8 � K VX � * \ �P � . �:Y$ ��, g H� � ^ < ^� < � � . � $] ^O_ `a C d . e 8 � K

VX [ */\ �P � . �:Y$ ��, g H� � ^ < ^� < � , g H� � . � $] ^O_ `agfHd . e 8 � M (12)

Remark 1 The integrals (12) of type
R �P � . �:Y$�h � . � $ 8 � for ap-

propriately dimensioned matrix h are readily computed: From
[10], the matrix function

X �
���X �
���G*i� � �:Y$�h � � � $
is the solution for8 X �
���8 � *_, ^� X / X , ��K X �
�G* � �G* h M
Hence, given

X �"#L� , X � � � , , � , the integral
R �P X �
��� 8 � can be

calculated via the following Lyapunov equation:X �"#L�#f X � � �G*Y, ^� \ �P X �
��� 8 � /'\ �P X �
��� 8 �a, � M (13)

Hence, employing
X 
 � � � , !`*@^ K�%�K�& , from (12), the Lyapunov

equation of (13) can be used to derive the values of VX 
 . j
It is now possible to define a discrete system V:�7 * V� � �����k� �
for � � ��D* � �G* � � �
�G* � � :

V� � �����G% ' � � ��D]/_^�� * , 7 � � ��DE� /Z1 7 � � ��DE�V:X7 ��DE� * V<l� � ��DE� / V>m� � ��DE� K
where T *on V< V>qp ^ n V< V>qp M
for which�� U O P V: ^7 ��DE� V:X7 ��DE�&* �� U O P _ :X7 ��DE� �
��� K :X7 ��DE� �
��� ��� * \ �P : ^7 �
��� :X7 �
��� 8 �NM



Note that the output dimension of V� � ����� is not necessarily sim-
ilar to the one of the output � � �����a��� . Since the

���
-norm of the

output signal of V� � ����� is of the same value as the 	 � -norm of� � �����a��� for given � � and initial state � � ��D * � �]* � � �
�]*� � , it is now readily used in the anti-windup analysis as de-
picted in Figure 4 for optimization of the induced

���
/ 	 � -norm,

which is the induced
�
�

-norm from 32. 
 " to V:X7 .
M(z)-I

M(z)+
-
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Figure 4: Equivalent configuration of the strong, ������� -
conditioned sampled-data anti-windup problem

4 Full order anti-windup synthesis
As in [3], an anti-windup controller with the same order as� � ����� may be termed a full order compensator. From Sec-
tion 2 and [3], it is understood that the choice ������� *de pro-
vides an anti-windup compensator which solves strongly the
anti-windup problem of Definition 1 as it recovers the internal
model control scheme. Hence, also for the sampled-data anti-
windup problem, there always exists a full-order anti-windup
compensator.

For minimization of @A8 @ . C�D�EFC , the artificial plant V� � �����
may be expressed in terms of its right coprime factorizationV� � ����� *��Z�������������hg H for which we choose �Z����� and �������
to have the same state-space as V� � ����� . Hence, as in [3] choose:� � ��D]/_^�� * ��, 7 /Z1 7�� � � � ��DE� /Z1 7 V3 ��DE� (14)3 7 ��DE� * � � � ��DE� (15)V:X7 ��DE� * � V<_/ V> � � � � ��DE� / V> V3 ��DE� (16)

where V3 ��DE� * > � � 32. 
 " ��DE�Gf 3 7 ��DE��� . Hence, as in [3], the
�
�

-
gain for the input-output 3:. 
 " to V:X7 can be minimized for the
parameter � using the following Theorem:

Theorem 1 There exists a dynamic compensator ������� of or-
der � � which solves strongly the anti-windup problem if there
exist matrices � � � K�� * 0�j �  �	� H K M9M9M
� 5 � � � K � � d 5�� F e��5 and a scalar � � � such that the following linear
matrix inequality (LMI) is satisfied	


� f�� f�� ^ � � V< / � ^ V> ^ �T, 7 / � ^ 1 ^7� f %�� e � V> ^ � 1 ^7� � f��9e � �� � � fLe �� � � � f��

� � _ � (17)

Furthermore, if this inequality is satisfied, a suitable � for
(14)-(16) achieving @A8B@ . C�D�EFC _ > *�� � , is given by � *���2g H .
The proof of this theorem readily follows from the proof of
Theorem 1 in [3].

5 Static anti-windup synthesis
As for [3], in practice it is not desirable to increase the con-
troller order from � W to � W /�� � to compensate for the case of

saturation. It seems to be more suitable to keep the anti-windup
compensator as simple as possible for which the easiest choice
are static matrix elements �nH and � � (instead of the dynamic
elements ������� fZe and � � ������������� ) as depicted in Figure 5.
From Figure 2 and 5 using the same approach as in [3], both

K(z) H
t

S
t

G(s)

d(t)

r

y(t)

Q
1

-

+

+

+

+ -

u~

u

ud

yd(k )t

ulin

Q
2

Figure 5: Static anti-windup configuration

schemes are equivalent if

� *d��enf?O � �����a� � ������� g H �af`O � ������� � /��]H /Ze��NM (18)

Considering (18), a state space representation for the transfer������� f?e and V� � ������������� is given by:�����! #"%$'&()+* �, #" �-�, #"/.�0213 4%56 �!798;:%"�< 5= 56 �!7>"?8@�!ACBD8 5AFEG" (H �I7�"HKJ �!7�"L< 5M�N 56 �!7>"?8@�!OPB N 8 5O N EG" (H �!7>"(Q J �I7�"R< (M�* 56 �!7>"?8@� (O B * 8 (O * EG" (H �!7>"
(19)

and �+* R � ^ H � ^� U ^ for which a minimal realization is presented
in the Appendix. In this sense, a sub-optimal result for the
static anti-windup compensator is readily obtained from [3]:

Theorem 2 There exists a static compensator � * R � ^ H � ^� U ^ � d 5�� F e��5 which solves strongly the anti-windup problem if
there exist matrices � � � KS� * 0�j �  �	�#H K M9M9M K � 5 � � � K �+� d 5�� F e��5 and a postive real scaler � � � such that the fol-
lowing LMI is satisfiedTUUUVXWSY WSY[Z\>]^ _ YF`\�]a YbZc ]d WSe f[Whghi ^ f[WCZg ^ j Whf�g ]i ^ W j ] Zg ]^lk fF`g ]i anm j ] `g ]a f�o#i m j ] Zo ]d d W�p k _ _d d d W k _d d d d WSY

q rrrs�t _
(20)

Furthermore, if this inequality is satisfied a suitable � achiev-
ing @A8B@ . C�D�EFC _ > *u� � is given by � * � � g H .
Remark 2 Note that the low order anti-windup compensator
and well-posedness of all the anti-windup schemes can be dis-
cussed as in [3]. j
6 Case study: high v aircraft
To demonstrate a comparative analysis of our results, we study
a simple model of a high w aircraft, linearised at a high angle-
of-attack ( w ) [11, eqn. A2-A4]. This is an interesting model
to study, partly due to the poor performance it exhibits un-
der saturation constraints on the control magnitude and partly
due to the highly coupled system characteristics which makes
this plant an ideal test-bed for multivariable anti-windup tech-
niques.

For our study, we used the first design approach of [11], anx � mixed sensitivity design from Figure 2 and equation (19)-
(21) of [11]. To obtain from the continuous design problem a
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(d) Control: � -step response

Figure 6: Step response for �� , � without saturation constraints
for 	�
��� ms; light=demand, black=data

discrete problem, it has been zero-order hold discretized which
ensures the design of a stable controller for any sampling time	 . For our work, we considered a sampling time 	�
���� ms
as stated in [11] and the significantly higher sampling time of	�
���� � sec. The higher sampling time is only of academic
interest to show the characteristics of the sampled-data anti-
windup technique as opposed to the discrete anti-windup tech-
nique of [3]. In contrast to [11], we did not attempt any order
reduction, yielding a nominal controller order of 12. The con-
trolled variables are �������� � which represent the stability-axis
roll rate, the angle-of-attack and the side-slip angle, respec-
tively. The plant inputs are ��� � ��� � �! which represent the ele-
vator deflection, the aileron deflection and the rudder deflection
respectively. These actuators are subject to the following con-
straints: " ���#"%$�&�'�( , " ���%")$*&+�,( and " �! ,")$-���,( .
Considering the control performance for 	.
/��� ms first, Fig-
ure 6 shows the response of the high- � aircraft to demands in
the �� and � channels without saturation constraints showing a
high actuator activity in most of the control channels. This indi-
cates a significant amount of coupling. (Due to space reasons,
channel � is not considered.) Figure 7 shows the response of
the high- � aircraft when the saturation constraints are imposed
on the control signal for the same demands as those used for
the unconstrained responses. In particular for 	0
1��� ms, the
performance has deteriorated in both channels. The demand
in �� causes the aircraft to lose virtually all its tracking ability
in the �� channel; the demand in � gives rise to a highly cou-
pled and oscillatory type of behaviour. In order to improve the
response of the system, a full-order anti-windup compensator
was synthesised using the LMI in Theorems 1 from [3] and
from this paper. This yielded an optimal value of 2�31'%� 4+&+5
( 	6
7��� ms) for the discrete and 2839'%� 4+&,4;:*< 	 for the
sampled-data anti-windup optimization. Both, the discrete and
the sampled-data anti-windup optimization result, show iden-
tical performance results as presented in Figure 8. Hence, the
aircraft responses have been dramatically improved. For the
demand on �� , the tracking performance has been tightened
considerably; for the demand on � , apart from an initial pe-
riod, the coupling has been eliminated and the oscillatory re-
sponse damped, compared to the response without using anti-
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Figure 7: Step response for @A , B with control constraints forC�DFE�G ms; light=demand, black=data
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(b) Output: J -step response

Figure 8: Step response for KL and M with full order anti-windup
for NPOQ�R ms, light=demand, black=data

windup. On the negative side, the anti-windup compensator
does slow down the tracking performance in this channel. The
main problem with full-order anti-windup is that it requires a
significant amount of extra on-line computation to implement.
Static-anti-windup, although not guaranteed to be feasible can
be an alternative to this. For this plant and controller combi-
nation static anti-windup was indeed feasible and, using Theo-
rems 2 from [3] and from this paper, resulted in a S�T8UWV XWQ!Y
( N6O7Q�R ms) for the discrete and S8OZUWV XWQ�[]\*^ N for the
sampled-data technique, where both optimization approaches
show again the same performance result as depicted in Figure
9. For the demand on KL , the response is almost identical to that
of the full-order anti-windup compensator. For the demand inM , we can again see that the coupling has been improved, ex-
cept for a sharp initial peak. In fact, the tracking performance
of the compensator seems somewhat better than for the full or-
der case, with a sharper response in M . It was also possible to
obtain some good low order response, although space prohibits
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(b) Output: a -step response

Figure 9: Step response for bc and d with static anti-windup fore�fFg�h ms, light=demand, black=data



a discussion of these.
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0 5 10 15 20 25

−40

−20

0

20

40

time [sec]

c
o

n
tr

o
l 
[d

e
g

]

δ
h

δ
a

δ
r

(d) Control: � -step response

Figure 10: Step response for �� , � without saturation constraints
for �����
	���� ms, light=discrete AW, black=sampled-data AW
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(b) Output: J -step response

Figure 11: Step response for KL , M with control constraints, N�OQ
�R�R ms, light=discrete AW, black=sampled-data AW
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(b) Output: a -step response

Figure 12: Step response for bc and d with full order anti-
windup for e-f g
��h�h ms, light=discrete AW, black=sampled-
data AW

In most of our examples, we have found that the discrete ap-
proach and the sampled-data approach to performance opti-
mization show very similar results. Only for a very large
sampling time of e f�g�� � sec, we observed an advantage of
the sampled-data technique over the discrete optimization ap-

proach. The nominal behaviour of the controller without any
anti-windup compensation is shown in Figures 10 and 11 for
control without and with control signal constraints respectively.
A full-order anti-windup optimization according to Theorems
1 from [3] and from this paper, gives the respective results of� f���� ����� and � f���� ��������� e . The discrete anti-windup
approach does not seem to improve the nominal control be-
haviour as presented in Figures 11 and 12. The sampled-data
techniques provides largely similar results where, in contrast to
the discrete approach, the settling behaviour in the bc -channel
appears to be improved. It is believed that significant research
has to be invested in this issue considering also other plants
with rich high frequency system dynamics.

7 Conclusions
This paper has provided an extension of a novel approach to
anti-windup compensator design from discrete to sampled-data
compensator optimization. The theoretical frame-work consid-
ers linear sampled-data lifting techniques to derive a solution
for the overall nonlinear anti-windup problem. An example
shows that both anti-windup compensator design approaches
are effective while the sampled-data technique shows some ad-
vantage for a Nyquist frequency significantly smaller than the
maximal frequency range of the plant dynamics.

A The state space representation for the static
anti-windup scheme

Considering all the notation from the Sections 3 and 5 and us-
ing the fact that �����! #"%$&�!')(�*,+-(�*/.10#*,230�" it follows for (19)
and 4&5 f �!6879230:2<;/"/=?>@*BA4C5 f �!6�792<;,230�"/=?> that:DEGF3H EJI/K?LMIONP�Q?RSLMITNP�U#RLMR P�U�V EJRWK?LMR P�QXV U#R/Y[Z LJ\]F3H LMI^NPLMR P�Q_V@Y[Z DL`F3H LMI^NP abLMI^NP�QcRLMR P�Q_V&abLMRdPeY
fgGh#ikj_lmXn-o g?p lm g o�q?r n)s h�i lm n8o n p r fn h�ikj^t�uvlmXn-o n pxw lm_n8oyqz{�|/}%~ z{X� z� z� �[� {:� z� z�:{ �^�]� z�[� |,}�� z� � z� z� � � � �y� � z� |/}%~ z� � z� z� �_� � ��� z� z� �[� �]�
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