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Abstract

The anti-windup problem is formulated in discrete-time using
a configuration which effectively decouples the nominal linear
and nonlinear parts of a closed loop system with constrained
plant inputs. Conditions are derived which ensure an upper
bound on the induced l2 norm of a certain mapping which is
central to the anti-windup problem. Results are given for the
full-order case, where a solution always exists, and for static
and low-order cases, where a solution does not necessarily ex-
ist, but which is often more appealing from a practical point of
view.

1 Introduction

Anti-windup compensation was a term which, some time ago,
was associated with alleviating integral windup in control
systems. This meaning has evolved to represent the now-
common approach to dealing with systems containing control
constraints: (i) firstly, design the nominal controller without
directly taking into account control constraints; (ii) secondly,
design a conditioning network to limit performance deteriora-
tion in the event of a control constraint being encountered.

There is a significant amount of practical merit in this two-stage
approach, as compared to a one-stage synthesis. The first ad-
vantage is, assuming we are dealing with systems which are
linear other than the input saturation, one can use all the linear
control design tools for the nominal controller design. The sec-
ond advantage is that anti-windup compensation can be intro-
duced to an already designed controller, which perhaps func-
tions perfectly unless saturation is encountered, which makes
the approach more flexible than the one-stage alternative. The
third advantage, and one which is sometimes overlooked, is
that in terms of the optimisation procedure, the two-stage ap-
proach can often be less time consuming and less computation-
ally demanding.

Although papers on discrete-time anti-windup have appeared,
sporadically, in the literature (such as [11, 8]), many of these
papers are perhaps not as rigorous as one would like. For exam-
ple, most do not ensure stability of the overall nonlinear system
and few tackle performance. Even fewer tackle performance in
the spirit of the “true goal” of anti-windup compensation (see
later). Notable exceptions exist of course; for example [1] tack-
led this problem some time ago, although their results were
confined to single-loop systems. Recent work has also been

contributed in [4], where the “true goal” of anti-windup com-
pensation is considered explicitly. Our paper gives a precise
formulation of the discrete-time anti-windup problem, which
is roughly the discrete-time counterpart of [10] (see also [9]
and [3]). This formulation is, in our opinion, central to the
“true goal” of anti-windup compensation - that the saturated
response should deviate as little as possible from the nominal
linear response without saturation. This idea first appeared,
at around the same time, in [7], [9] and [12] (which we fol-
low here), but in the continuous time context. Using this prob-
lem definition, we then solve the problem for several types of
anti-windup compensators, for the class of asymptotically sta-
ble linear plants 1. The first type of compensator which we
consider is that of full-order (order equal to that of the plant),
where we show that a compensator always exists which solves
the problem and we also give conditions, in terms of LMI’s,
which can be used to synthesise an optimal compensator. The
second type of compensator is that of zeroth order, that is a
static compensator: although one is not guaranteed to exist, in
practical situations it is often preferable due to its low complex-
ity. We then extend this static synthesis to include low-order
compensators, which can often work for systems where static
compensators would not, but are also of less complexity than
full-order compensators.

The paper is organised as follows. The next section introduces
notation and various preliminary concepts which we shall need
in the remaining parts of the paper. Section 3 formulates the
discrete-time anti-windup problem. Section 4 solves the full-
order version of the problem, while Section 5 treats the static
and low-order versions. Some concluding remarks are made in
Section 6.

2 Preliminaries

2.1 Mathematical notation

The following notation is used throughout the paper. The l2
norm of the time sequence of vectors x

�
k � is defined as

�
x
�

2 : �
�

∞

∑
k � 0

�
x
�
k � � 2

where
�	�
�

is the Euclidean (induced) norm. Any sequence
x
�
k � with finite l2-norm is said to belong to the space l2. For

the (nonlinear) operator H : l2 �� l2 the induced l2 norm is

defined as
�
H
�

i 
 2 : � sup0 �� x � l2 � H � x � � 2� x � 2 . If H is linear, the in-

1This class of plants is the only class for which the problem can be solved
globally (in a strong sense).



duced l2 norm reduces to the � ∞ norm
�
H
�

i 
 2 � �
H
�

∞ �
sup

z � ¯� � H �
z � � , where H

�
z � is the z-domain transfer function2

of H and ¯� is the closure of the unit disk in the complex plane.
Note that this definition assumes that H is finite gain l2 stable.
The saturation function is defined as

sat
�
u � : ��� sat1

�
u1 �����	���
� satm

�
um � ���

where sati
�
ui � : � sign

�
ui ��
 min ��� ui ��� ūi � , where ūi � 0 is the

i’th saturation limit. The following identity holds

Dz
�
u � � u � sat

�
u �

where Dz
�
u � is the deadzone function. A decentralised nonlin-

ear element � � � � � diag
�
n1

� � �����	����� nm
� � � � is said to belong to

the Sector � 0 � I � if all ni

� � � belong to the Sector � 0 � 1 � , that is:

n2
i
�
ui ��� uini

�
ui ��� u2

i � ui ��� (1)

Note that both the saturation and deadzone operators belong to
Sector � 0 � I � . In fact, the results derived later in the paper actu-
ally hold for all Lipschitz nonlinear elements in the Sector � 0 � I � ,
rather than just the narrow class we consider here. For a decen-
tralised Sector � 0 � I � nonlinearity, it follows that there exists a
diagonal matrix W such that

� �
u ���W �

u � � �
u � ��! 0 � u �"� m (2)

We define the set # as

# : �$�%� ū1 � ū1 �

&�	�����	�'
(�%� ūm � ūm �
It is evident that sat

�
u � � u � Dz

�
u � � 0 ) u � # and that this

is the set in which the saturation element behaves linearly. The
distance from a vector x to a set * is defined as dist

�
x ��* � : �

infw �,+ �
x � w

�
. - i . j represents the space of all real rational

transfer function matrices of dimension i 
 j.

2.2 Anti-windup configuration
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Figure 1: A general anti-windup configuration

We consider the design of compensators, Θ
�
z � , for the frame-

work of Figure 1, which we call a “general” anti-windup con-
figuration. In such a configuration, the signals generated by
the anti-windup compensator are fed into the controller output
and the controller input. We also consider the system in Figure
2 where the anti-windup compensation is introduced into the
system using the free parameter M

�
z � . As noted in [12], most

linear conditioning schemes can be interpreted in the frame-
work of Figure 2, and, indeed, this interpretation is central to
our paper.

2For linear systems, we often do not distinguish explicitly between the op-
erator and its transfer function.

The stabilisable and detectable plant, G
�
z � �/�G1

�
z � G2

�
z �0� , has

the following state-space description

G
�
z ��132 xp

�
k 4 1 � � Apxp

�
k �54 Bpum

�
k �54 Bpdd

�
k �

y
�
k � � Cpxp

�
k �54 Dpum

�
k �54 Dpdd

�
k � (3)

where xp
�
k � �6� np is the plant state, um

�
k � �7� m is the ac-

tual control input to the plant, d
�
k � ��� nd is some disturbance,

y
�
k � �8� q is the output which is fed back to the controller and

G1

�
z �91 �

Ap � Bpd � Cp � Dpd � and G2

�
z �:1 �

Ap � Bp � Cp � Dp � rep-
resent the disturbance feedforward and feedback transfer func-
tions of G

�
z � . As the work here is seeking global results, we are

necessarily forced to assume that G
�
z � is asymptotically stable;

that is � λmax
�
Ap �;�=< 1. This is necessary in the approach we

take, as will be clear later.

We assume the following stabilisable, detectable, linear con-
troller K

�
z � �>�K1

�
z � K2

�
z ��� has been designed to control the

plant G
�
z � ,

K
�
z �?1@2 xc

�
k 4 1 � � Acxc

�
k �=4 Bcy

�
k �54 Bcrr

�
k �

yc
�
k � � Ccxc

�
k �=4 Dcy

�
k �54 Dcrr

�
k � (4)

where xc �"� nc is the controller state, yc ��� m is the controller
output - the desired control signal, r �A� nr is the reference com-
mand and K1

�
z �B1 �

Ac � Bcr � Cc � Dcr � , K2

�
z �91 �

Ac � Bc � Cc � Dc � .
The plant input um is given by um � sat

�
u � . We make the fol-

lowing formal assumption on the closed-loop systems

Assumption 1 1. The poles of
�
I � K2G2 �	C 1 � z � are in the

open unit disk.

2. limz D ∞
�
I � K2

�
z � G2

�
z � � C 1 exists E

The first statement ensures the nominal closed-loop system is
stable; the second ensures it is mathematically well-posed and,
in state-space terms, is equivalent to the existence of the matri-
ces

∆ : � �
I � DpDc � C 1 � ∆̃ : � �

I � DcDp � C 1
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Figure 2: Conditioning with M
�
z �

A novel way of representing most anti-windup configurations
was introduced in [12], where one interprets the conditioning
of controllers in terms of a single transfer function M

�
z � . The

discrete-time equivalent of this system is shown in Figure 2.
In [12], it was shown that such a scheme could exhibit an at-
tractive decoupled structure. This also holds for discrete-time
systems and, with all signals labelled identically, Figure 2 can
be re-drawn as Figure 3. Notice that this configuration reveals
a useful decoupling into nominal linear system, nonlinear loop
and disturbance filter. This was analysed, in continuous time,
in terms of existing schemes in [13] and extended to static and
low-order compensators in [10].
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Figure 3: Equivalent representation of conditioning with M
�
z �

2.3 Problem definition

Bearing in mind our argument in the introduction that the true
goal of anti-windup compensation is to ensure that the response
of the saturated system deviates as little as possible from that
of the nominal linear system, it stands to reason in terms of the
framework of Figure 3 that the performance of our anti-windup
compensator can be judged on how small the size of yd is in re-
sponse to ulin. As y � ylin � yd, the size of yd is a direct measure
of the saturated system’s deviation from the nominal linear per-
formance in response to ulin. In [10], the continuous time ver-
sion of the mapping � : ulin �� yd was picked as a measure of
the anti-windup compensator’s performance. Similar to [10],
we shall choose to minimise

� � �
i 
 2 in our anti-windup syn-

thesis. We now formally define the problem we seek to solve
in the remainder of the paper.

Definition: The anti-windup compensator Θ
�
z � is said to solve

the anti-windup problem if the closed loop system in Figure 3
is internally stable and well-posed and if

1. dist
�
ulin �0# � � 0 � ) t ! 0 then yd � 0 � ) t ! 0 (assum-

ing zero initial conditions for Θ
�
z � ).

2. dist
�
ulin �0# � � l2, then yd � l2.

The anti-windup compensator Θ
�
z � is said to solve strongly the

anti-windup problem if, in addition, the following condition is
satisfied.

3. The operator � : ulin �� yd is well-defined and finite gain
l2 stable. E

Remark 1: In this paper we actually only deal with the strong
version of the anti-windup problem. The weaker version is in-
cluded to enable the reader to make comparisons with other
techniques in the literature, such as that in [10]. E E
3 Full-order anti-windup synthesis

Before considering the actual anti-windup synthesis, we first
make the following observation:

Observation 1 There always exists a full-order compensator
which solves strongly the anti-windup problem

Proof: To see this note that setting M � I results in the non-
linear “loop” reducing to a pure deadzone, that is, there is

no stability issue. So the operator � � Dz
�
G2

� � � � for which� � �
i 
 2 � �

G2

�
∞ since

�
Dz

� � � � i 
 2 � 1. By stability and linear-
ity of G2

�
z � , condition 1 of the problem is solved. E E

By choosing M � I, we have effectively recovered the globally
stable internal model control scheme (IMC) (see [14]). It is
well known [2] that although IMC always ensures stability, it
can lead to very poor performance. This therefore motivates the
search for compensators which improve on the performance of
the IMC scheme, but also retain its stability properties.

As in [12] for continuous-time, M
�
z � can be chosen as a co-

prime factor of G2

�
z � . So if G2

�
z � � N

�
z � M C 1 � z � , we can

search for a coprime factor of G
�
z � such that the anti-windup

closed-loop has the best performance in terms of the gain of � .
This approach is also related to that of [7] and, to a lesser ex-
tent, that of [6]. To achieve full-order stabilisation we would
like to choose coprime factors, which share the same state
space and are of order equal to that of G2

�
z � . Employing Figure

3, such coprime factorisations can be characterised by�
M
�
z � � I

N
�
z � � 1��� Ap 4 BpF Bp

F 0
Cp 4 DpF Dp

��
(5)

where ũ
�
k � � Dz

�
ulin

�
k � � ud

�
k � � . Note that these equations

are parameterised by the free parameter F and therefore we
attempt to choose F such that

� � �
i 
 2 is minimised.

Theorem 1 There exists a dynamic compensator Θ
�
z � of order

np which solves strongly the anti-windup problem if there exist
matrices Q � 0 � W � diag

�
µ1 �	���	� µm � � 0 � L �"� � m � q �0. m and a

scalar µ � 0 such that the following linear matrix inequality is
satisfied

�			�
� Q � L � 0 QCp 4 L � D �p QAp 4 L � B �p
 � 2U I UD �p UB �p
 
 � µI 0 0
 
 
 � I 0
 
 
 
 � Q

������ < 0

(6)
Furthermore, if this inequality is satisfied, a suitable F for (5)
achieving

� � �
i 
 2 < γ ��
 µ , is given by F � LQ C 1.

Proof: Let us choose a Lyapunov function candidate as
V
�
k � � x

�
k � � Px

�
k � � 0. We define the Lyapunov difference

as ∆V
�
k � : � V

�
k 4 1 � � V

�
k � . Next we consider the function

∆Ṽ
�
k � which is defined as

∆Ṽ
�
k � : � ∆V

�
k �=4 2ũ

�
k � �W � ulin

�
k � � ud

�
k � � ũ

�
k ���4 � yd

�
k � � 2 � γ2 � ulin

�
k � � 2 (7)

This function is a combination of the Lyapunov difference (first
term), the sector bounds from (2) associated with the deadzone
nonlinearity (second term), and terms which ensure we have a
certain level of l2 performance. If we can ensure that equation
(7) is negative definite, we have

1. Asymptotic stability When ulin

�
k � � 0 and

∆Ṽ
�
k � � ∆V

�
k �54 2ũ

�
k �0�W � ulin

�
k ��� ud

�
k ��� ũ

�
k �0�� ��� ��

0



4 � yd

�
k � � 2� ��� ��
0

< 0

for � x � k � ũ
�
k � ulin

�
k ������ 0 asymptotic stability is implied

from ∆V
�
k ��< 0.

2. l2 gain < γ .

Summing ∆Ṽ
�
k � from 0 to ∞ gives:

∞

∑
k � 0

∆V
�
k �54 2

∞

∑
k � 0

ũ
�
k ���W � ulin

�
k ��� ud

�
k ��� ũ

�
k �0�

4 � yd

� 2
2 � γ2 � ulin

� 2
2 < 0

As ∑∞
k � 0 ∆V

�
k � � V

�
∞ ��� V

�
0 � � 0 we get

V
�
∞ �� � � �� 0

� V
�
0 �54 2

∞

∑
k � 0

ũ
�
k � �W �%� ud

�
k ��� ũ

�
k ���� ��� ��

0

4 � yd

� 2
2 � γ2 � ulin

� 2
2 < 0

which implies
�
yd

�
2 < γ

�
ulin

�
2 4 V

�
0 � and

� � �
i 
 2 < γ .

Substituting for x
�
k ��� ud

�
k � and yd

�
k � in (7), we have that

∆Ṽ
�
k ��< 0 if��

x � k �
ũ � k �

ulin � k �
��
	���

VF11 VF12 0� VF22 W� � 
 γ2I

��
� ��� �

VF

��
x � k �
ũ � k �

ulin � k �
����

0 (8)

where

VF11 � �
Ap 4 BpF � � P � Ap 4 BpF ��� P4 � Cp 4 DpF � � � Cp 4 DpF � (9)

VF12 � �
Ap 4 BpF �0� PBp � F �W 4 �

Cp 4 DpF ��� Dp (10)

VF22 � � 2W 4 D �pDp 4 B �pPBp (11)

The remainder of the proof follows by standard Schur comple-
ment and congruence transformation arguments to show that
VF < 0 is equivalent to (6). Note that as there is no ‘direct
feedthrough’ term in the nonlinear loop, well-posedness is en-
sured. To see that condition 1 of the anti-windup problem def-
inition is satisfied, note that Θ

�
z � is linear and Schur stable.E E

Remark 2: It is easy to see that in terms of the configuration in
Figure 1, we have Θ1

�
z � � M

�
z ��� I and Θ2

�
z � � G2

�
z � M �

z � .E E
4 Static anti-windup synthesis

Full-order anti-windup synthesis may often lead to the re-
sponses which deteriorate the least during saturation. How-
ever, such compensators require a significant amount of extra
on-line computation to be performed, which may not always
be possible in some applications. This is good motivation for
static compensators, which we consider in this section.

4.1 Representing M
�
z �

The closed loop analysis is examined in terms of conditioning
via M

�
z � . Hence, the first step in the static synthesis is to derive

an expression for M
�
z � in terms of the now-static compensator,

Θ �$�Θ �1 Θ �2 � � ��� � m � q �0. m . To do this, we proceed in much the
same manner as in [10]. Comparing Figure 1 with Figure 2, we
see that we have the following expressions

u � K1r 4 K2y 4 �
K2Θ2 � Θ1 � ũ (12)

u � K1r 4 K2y �6� � I � K2G2 � M � I � ũ (13)

Obviously, for the two schemes to be equivalent, we must have

M � �
I � K2G2 � C 1 � � K2Θ2 4 Θ1 4 I � �

Note that M
�
z � is well defined by virtue of Assumption 1. From

this we can form the state-space realisation�
M
�
z � � I

G2

�
z � M �

z � � 1 �� � x̄
�
k 4 1 � � Ā x̄

�
k �54 �

B0 4 B̄Θ � ũ � k �
ud � C̄1 x̄

�
k �54 �

D01 4 D̄1Θ � ũ � k �
yd � C̄2 x̄

�
k �54 �

D02 4 D̄2Θ � ũ � k �
(14)

where Θ is a static matrix. A “minimal realisation” of the re-
maining matrices is given in the appendix.

4.2 Solution of problem

The following theorem, which is the discrete-time equivalent
of Theorem 1 in [10], is the main result of the section:

Theorem 2 There exists a static compensator Θ �3�Θ �1Θ �2 � � �� � m � q ��. m which solves strongly the anti-windup problem if
there exist matrices Q � 0 � U � diag

�
µ1 ���	���
� µm � � 0 � L �� � m � q ��. m and a positive real scalar µ � 0 such that the fol-

lowing LMI is satisfied����� 
 Q 
 QC̄
	
1 0 QC̄

	
2 QĀ

	� 
 X I UD
	
02 � L

	
D̄
	
2 UB0 � L

	
B̄
	� � 
 µI 0 0� � � 
 I 0� � � � 
 Q

� ���� �
0 (15)

where X � 2U 4 D01U 4 D̄1L 4 UD �01 4 L � D̄ �1. Furthermore, if
this inequality is satisfied a suitable Θ achieving

� � �
i 
 2 < γ �
 µ is given by Θ � LU C 1.

Proof: Let us choose a Lyapunov function candidate as V
�
k � �

x
�
k � � Px

�
k � � 0. As with the proof of Theorem 1, if we can find

a function ∆Ṽ
�
k � such that for � x � k � ũ

�
k � ulin

�
k �0���� 0

∆Ṽ
�
k � � ∆V

�
k �54 2ũ

�
k ���W � ulin

�
k ��� ud

�
k ��� ũ

�
k �0�4 � yd

�
k � � 2 � γ2 � ulin

�
k � � 2 < 0 (16)

we know that we have asymptotic stability (when ulin

�
k � � 0)

and l2 gain less than γ . Substituting for x
�
k � � ud

�
k � and yd

�
k � ,

it follows that

∆Ṽ � k ���
��

x̄
ũ

ulin

���	���
VR11 VR12 0� VR22 W� � 
 γ2I

��
� ��� �

VR

��
x̄
ũ

ulin

��
(17)



where

VR11 � Ā � PĀ � P 4 C̄ �2C̄2

VR12 � Ā � P � B0 4 B̄Θ ��� C̄ �1W 4 C̄ �2 � D02 4 D̄2Θ �
VR22 � � 2W � W

�
D01 4 D̄1Θ ��� � D01 4 D̄1Θ ���W 4�

D02 4 D̄2Θ � � � D02 4 D̄2Θ �=4 �
B0 4 B̄Θ � � P � B0 4 B̄Θ �

and ∆Ṽ
�
k � is negative definite for VR < 0. The LMI in the

theorem follows from VR < 0 using standard Schur complement
and congruence transformation procedures.

Thus far we have proved internal stability of the closed loop
and condition (3) of the anti-windup problem (from which
condition (2)) follows. To see that condition (1) is satisfied,
note that Θ is linear and static. It thus remains to prove well-
posedness. To aid us in this, the following lemma (based on a
result from [3]) is required.

Lemma 1 Assume that � 2V � D̃V � VD̃ � < 0 for some diag-
onal positive definite matrix V � 0. Also assume that the map
Π
�
w
�
t � � : � l �� � l . l is unique for all w

�
t � . Then I 4 D̃Π

�
w
�
t � �

is nonsingular for all matrices Π ��� , where

� : � � Π �
w
�
t � � : Π � diag

�
π1

�
w1

�
t � � �	�����
� πl

�
wl

�
t � � �

and πi

�
wi

�
t � � � � 0 � 1 � ) i. E

Note that in order for the anti-windup system to be well-posed,
we must have existence and uniqueness of the equations in the
nonlinear loop. For this, we must be able to determine ud

�
k �

uniquely from the expression

ud

�
k � � C̄1 x̄

�
k �54 �

D01 4 D̄1Θ � ũ � k � (18)

where ũ
�
k � � Dz

�
u
�
k � � . Note that we equivalently write ũ

�
k � �

H
�
u
�
k � � u � k � for some discrete-time varying diagonal gain

H
�
u
�
k � � � diag � h1

�
u
�
k � � �	���	�
� hm

�
u
�
k � ��� , where hi

�
u
�
k � � �� 0 � 1 � ) u

�
k � (by virtue of Dz

� � � � Sector � 0 � I � ). Furthermore,
as Dz

� � � is a well defined operator we know that H
�
u
�
k � � is

unique for each u
�
k � . Hence existence and uniqueness of (18)

are equivalent to studying existence and uniqueness of solu-
tions to

ud

�
k � � C̄1 x̄

�
k �54 D̃H

�
u
�
k � � ulin

�
k ��� D̃H

�
u
�
k � � ud

�
k � (19)

where we have defined D̃ : � �
D01 4 D̄1Θ � . A solution (or

solutions) exists iff I 4 D̃H
�
u
�
k � � is invertible for all u

�
k � .

Note that, in terms of Lemma 1, H
�
u
�
t � � ��� , and hence

I 4 D̃H
�
u
�
t � � will be invertible for u

�
t � , as the map H

� � � : � m ��� m . m is unique, if � 2V � D̃V � VD̃ � < 0 for some positive defi-
nite diagonal matrix V : but this will be the case if the LMI (15)
is satisfied for Θ � LU C 1 (from looking at the 2,2 term). To
prove uniqueness of solutions is somewhat harder and, due to
space restrictions, is omitted. E E
5 Low-order compensator synthesis

Low order compensators are potentially useful as they combine
some of the advantages of both full-order and static schemes
while some of the disadvantages of static anti-windup schemes

can be prevented: for certain plant-controller combinations,
static anti-windup is not feasible and the lack of frequency
shaping can lead to robustness problems.

The approach we take mirrors the continuous time case given
in [10], where we split the anti-windup compensator into two
parts: a dynamic part which is chosen by the designer; and a
static part which is synthesised in an optimal fashion. Note
that this type of approach is definitely sub-optimal, but it has
yielded good results in various case studies.

5.1 Representing M
�
z �

The approach we take to synthesising a low-order compensator
is based on the static approach. Let Θ

�
z � be described by

Θ
�
z � � �

Θ1

�
z �

Θ2

�
z � � � �

F1

�
z � Θ̃1

F2

�
z � Θ̃2 � � - � m � q ��. m (20)

where F1

�
z � � - m . m and F2

�
z � � - q . q are transfer function

matrices and Θ̃1 � � m . m and Θ̃2 � � q . m are constant matri-
ces. Since F1

�
z � and F2

�
z � are chosen by the designer, only

Θ̃1 � Θ̃2 are synthesised in an optimal way, similar to the pure
static synthesis described earlier. Obviously the resulting com-
pensator will be sub-optimal in terms of its � 2 gain but simula-
tion results have shown that using relatively simple choices for
F1

�
z � � F2

�
z � , such as first order low pass filters (which suppress

high frequency signals in yd), good responses can be obtained.
As before we obtain that M � �

I � K2G2 � C 1 � � K2Θ2 4 Θ1 4 I � .
Similar to before, this implies that�

M
�
z ��� I

G2

�
z � M �

z � � 1 �� � x̄
�
k � � Ā x̄

�
k �=4 �

B0 4 B̄Θ̃ � ũ � k �
ud

�
k � � C̄1 x̄

�
k �=4 �

D01 4 D̄1Θ̃ � ũ � k �
yd

�
k � � C̄2 x̄

�
k �=4 �

D02 4 D̄2Θ̃ � ũ � k �
(21)

where the matrices are described in the appendix and Θ̃ is given
as Θ̃ : �$� Θ̃ �1 Θ̃ �2 � � .
5.2 A sub-optimal synthesis routine

Theorem 3 Given F1

�
z � � F2

�
z � , where deg

�
F1

�
z � � � n1 and

deg
�
F2

�
z � �	� n2, and Θ̃ �>� Θ̃ �1 Θ̃ �2 � � � � � m � q �0. m , then there

exists an n1 4 n2’th order compensator of the form of (20) which
solves strongly the anti-windup problem if there exist matrices
Q � 0, U � diag

�
µ1 �	���	�	� µm � � 0, L � � � m � q �0. m and a posi-

tive real scalar γ such that the LMI (15) is satisfied (with the
state-space realisation of equation (21)). From (15), a suitable
Θ̃ achieving

� � �
i 
 2 < γ is given by Θ̃ � LU C 1. E

Proof: The proof is similar, mutatis mutandis, to that of Theo-
rem 2.

Remark 3: We have only given a guide on one way to choose
a low-order compensator. Another way of doing so is to solve
the full-order Theorem for a full-order compensator, then, us-
ing Hankel Model reduction, reduce the order of this compen-
sator, making sure it works well in simulation. Then solve the
LMI (15) using the given reduced-order compensator, the di-
rectionality matrix, U and search for a new Lyapunov matrix, Q
and a performance bound γ . Note that with this procedure, the



state space matrices change from those given in the appendix
as F

�
z � is no longer partitioned into F1

�
z ��� F2

�
z � . An alternative

approach to this was used in [5]. E E
6 Conclusion

This paper has formulated a discrete time anti-windup problem
and has presented several types of solution: full-order, static
and low-order. These solutions can be found by solving a set of
linear matrix inequalities, which for plants of small-moderate
size is reasonably easy using modern computers. Moreover,
in our opinion, the problem has been posed in a manner that
is central to the “true” anti-windup problem: the deviation of
the saturated system’s response from that of the nominal linear
system has been minimised explicitly.
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A State-space matrices

For the static case, the state-space matrices are given as

x̄ : � � xp
xc ��� Ā : � � Ap � Bp∆̃DcCp Bp∆̃Cc

Bc∆Cp Ac � Bc∆DpCc �
B0 : � � Bp∆̃

Bc∆Dp � � B̄: � � Bp∆̃ 
 Bp∆̃Dc
Bc∆Dp


 Bc∆ � � Θ: � � Θ1
Θ2 �

C̄1 : ��� ∆̃DcCp ∆̃Cc � � D01: � ∆̃DcDp � D̄1: ��� I� ∆̃DcDp

 ∆̃Dc �

C̄2 : ��� ∆Cp ∆DpCc � � D02: � ∆Dp � D̄2: ���∆Dp

 ∆DpDc �

For the low-order case, if we assign the state-space realisations

Θ3 � z � � Θ1 � z � � I 	�
 x1 � k � 1 � � A1x1 � k � � B1Θ̃1ũ � k �
y1 � k � � C1x1 � k � � � D1Θ̃1 � I � ũ � k �

Θ2 � z ��	 
 x2 � k � 1 � � A2x2 � k � � B2Θ̃2ũ � k �
y2 � k � � C2x2 � k � � D2Θ̃2ũ � k �

where x1 
�� n1 � x2 
�� n2 . Some tedious algebra then yields the state-
space matrices for a minimal realisation of �M 	 
 I � GM � 	 � 	 as

x̄ �
��� x

xc
x2
x1

� �� 
�� n̄

Ā �
��� A11 A12


 B12C2 B11C1
A21 A22


 B22C2 B21C1
0 0 A2 0
0 0 0 A1

� �� 
�� n̄ � n̄

B̄ �
��� B11D1


 B12D2
B21D1


 B22D2
0 B2

B1 0

� �� 
�� n̄ ��� m � q �
B0 �

��� B11
B21
0
0

� �� 
�� n̄ � m

Θ̃ � �
Θ̃1
Θ̃2 � 
�� � m � q ��� m

C̄1 ���C11 C12

 D12C2 D11C1 � 
�� q � n̄

D01 � D11

 I 
�� q � m

D̄1 ���D11D1

 D12D2 � 
�� q ��� m � q �

C̄2 ���C21 C22

 D22C2 D21C1 � 
�� m � n̄

D02 � D21 
�� m � m

D̄2 ���D21D1

 D22D2 � 
�� m ��� m � q �

where �
A11 A12
A21 A22 � : � �

Ap � Bp∆̃DcCp Bp∆̃CC
Bc∆Cp Ac � Bc∆DpCc ��

B11 B12
B21 B22 � : � �

Bp∆̃ Bp∆̃Dc
Bc∆Dp Bc∆ ��

C11 C12
C21 C22 � : � �

∆̃DcCp ∆̃Cc
∆Cp ∆DpCc ��

D11 D12
D21 D22 � : � �

I � ∆̃DcDp ∆̃Dc
∆Dp ∆DpDc �

and n̄ : � np 4 nc 4 n2 4 n1
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