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Abstract

In this paper, a method to determine initial conditions for a
class of positive real non integer order models is given. The
exposed procedure makes use of a positive real approximation-
reduction-realization process. An application, to a second
generation CRONE control model, illustrates the proposed
methodology.

1 Introduction

Following a certain approximation-reduction-realization pro-
cess [13] of a non integer order model with given initial con-
ditions, we need to know how to determine the initial condi-
tions on the dynamic elements which compose the reduced-
order model. To be more precise we must outline the context
of this work.

Given a bond graph model [18, 20] or another type of model
transformed into a bond graph type one, there exists powerful
tools : to analyse [21], to synthesize and design control laws
[15], for stabilization [16], for decoupling [3] and for distur-
bance rejection [2] (to name a few of them).

Unfortunately most of these tools are limited to finite dimen-
sional models. But frequently, we have to deal with infinite
dimensional models built when studying distributed parame-
ter systems or delayed systems for example. When this kind
of system is inserted into a bond graph it can be defined as a
functional node [17]. This node prevents us from the use of
classical bond graph tools.

To overcome this difficulty one could develop specific tools for
bond graphs with functional nodes or, as it will be set out here,
approximate the functional nodes by “classical” nodes (a com-
bination of simple passive elements such asR (resistance) ,C
(capacitance),I (inductance),TF (transformer) andGY (gyra-
tor)), which amounts to build an equivalent electrical circuit, or
bond graph, composed ofR, C, I cells,TF andGY. The models
considered in this paper are linear, time invariant and passive.
In this case the passivity property can be characterized thanks
to the following definition [7] :

Definition 1 An L.T.I. finite or infinite dimensional model with
transfer matrix functionH(s) is said to be passive (orH(s) is
a positive real function) if

H(s̄) = H(s),

H(s) is analytic in <(s) > 0,

H(s) + H∗(s) ≥ 0 in <(s) > 0.

The inputu and outputy signals are chosen here conjugate
power variables (voltage/current or force/velocity) so thatu.y
denotes the power supplied to the system1 [22].

1.1 Proposed Methodology

The general procedure, applied to the model studied here, can
be summarized as follows [12] :

1. approximation of the infinite dimensional model by a
large scale finite dimensional one (say of dimensionN ),

2. reduction of the model’s dimension to obtain a model of
dimensionn ¿ N ,

3. realization of the latter model by aR-C-I-TF-GYnetwork
(a bond graph).

Steps1) and2) of the procedure must keep the key property of
the initial model,i.e. its passivity.

In the third section some techniques are reviewed to approxi-
mate infinite dimensional models by a finite dimensional one.
Next, the fourth section recalls briefly a technique used in
reduced-order modelling. Then the fifth section gives a way
to realize the low-dimension model by using lumped passive
linear elements. Finally in the sequel an example and an appli-
cation illustrate the whole procedure and concluding remarks
are stated.

1.2 Infinite Dimensional Model Approximation

In a few words the approximation (or reduction) problem is the
following one :

1We suppose in the following that the system is a 1-port, that means that
the power is supplied to the system by one single access.



- Given a model, find another one which is fast to compute,
reduced-order and accurate.

The first property, the rapidity of the computation, depends on
the numerical methods involved. Typically it can be measured
by the complexity. The second one (reduced-order) does not
need to be developed. In fact it is easy to quantify the order
decrease. Last but not least, the accuracy is the most subjective
feature to define. Depending on the way one wants to quan-
tify the error between the original model and the reduced-order
one, one needs to choose a different norm (e.g.H∞ for the
supremum). Furthermore, the model will be called accurate
if it retains some properties like stability or passivity. For ex-
ample, balanced truncation retains the largest singular values
and gives an evaluation of the error through the sum of the re-
maining ones. In the reduction process used in this procedure,
moment matching is the key feature.

The in-between model is the result of a finite dimension ap-
proximation of the initial model. Moreover, some properties,
like stability and passivity, must remain. The most important
one is passivity because our models (bond graphs) need ener-
getic coherence. As a matter of fact, passivity has a closure
characteristic. Unlike stability, in the interconnection of pas-
sive networks, the passivity property holds. According to the
sort of infinite dimensional model the plan to follow will differ.
A detailed discussion could be found in [13].

1.3 Large Scale Model Reduction

In this sectionKrylov subspaces techniques used in reduced-
order modelling are recalled. The previous section methods
provide us with an approximate but large scale finite dimen-
sional model. In state-space formalism we can describe it as
follows [8] :

{
Eẋ(t) = Ax(t) + bu(t)
y(t) = cT x(t)

. (1)

In (1) E, A ∈ IRN×N , b ∈ IRN , and c ∈ IRN are given
matrices. The matricesE andA are allowed to be singular but
we assume that the pencil(sE − A) is regular. Applying the
Laplacetransform on (1), one obtains :

H(s) = cT (sE − A)−1b. (2)

Similarly for the reduced-order model (n) :

{
Enż(t) = Anz(t) + bnu(t)
ŷ(t) = cT

nz(t)
, (3)

and :
Hn(s) = cT

n (sEn − An)−1bn. (4)

The model (3) must, in a certain sense, approximate the model
(1). The classical reduction methods, like balanced truncation

or Hankel-norm optimal approximations, do not take advan-
tage of the structure of the matrices. In our case, the ma-
trices are large scale, sparse and/or structured. A reduction
method, which makes use ofKrylov subspaces techniques, ex-
ploits the characteristics of the matrices. The reduced-order
transfer function must match2n moments of certain series ex-
pansions of the initial model transfer function. A table, which
summarizes the different matchings and how to obtain the ap-
proximant, can be found in [10].

1.4 Realization

Knowing a state-space representation of the reduced-order
model a network or a bond graph can be realized.

In the 1-port case the determination of the electrical network
or bond graph component’s values can be achieved thanks to
the Brune process [5]. In them-port case various processes
described in [4] could be used.

Of course, the network synthesis can be done thanks to state-
space procedures like the one outlined in [1].

2 Initial conditions problem : non integer order
models case

Our objective is to design a method to determine the initial con-
ditions of the integer order model approximating the non inte-
ger order one. We need to know how to take into account the
initial values of the output and its derivatives.

Here we recall the results ofF. Mainardi andR. Gorenflo[9].
That is important to understand why we use theCaputodef-
inition of the non integer order derivation operator. We deal
first with ordinary differential equations to make our reasoning
more comprehensible.

The relaxation or first order differential equation is given by :

D1y(t) = y
′

(t) = −y(t) + u(t), t ≥ 0,

whereu(t) is a continuous function, admits the solution :

y(t) = c0e
−t +

∫ t

0

u(t − τ)e−τdτ,

wherec0=̇y(0+) is the initial condition.

Likewise the second order equation is given by :

D2y(t) = y
′′

(t) = −y(t) + u(t),

and admits the solution :

y(t) = c0 cos(t) + c1 sin(t) +

∫ t

0

u(t − τ) sin(τ)dτ,



wherec0=̇y(0+) andc1=̇y′(0+) are the initial conditions.

If we want to generalize these results to a non integer orderα,
the following type of equation has to be considered :

Dα
∗
y(t) = Dα

(

y(t) −

m−1∑

k=0

tk

k!
y(k)(0+)

)

= −y(t) + u(t).

(5)

In (5) m is the integer such thatm − 1 < α ≤ m and the
initial conditions are defined throughy(k)(0+)=̇ck with k =
0, ...,m − 1. The solution, in the integer case (α = m), could
be summed up in the following result :

y(t) =
m−1∑

k=0

ckyk(t)

︸ ︷︷ ︸

response due to the initial conditions

+

∫ t

0

u(t − τ)yδ(τ)dτ

︸ ︷︷ ︸

response due to the output

,

yk(t) = Jku0(t), u
(h)
k (0+) = δkh, h, k = 0, 1, ...,m − 1,

yδ(t) = −y
′

0(t).

If m = 1 (relaxation) we gety0(t) = e−t = yδ(t) and ifm = 2
(oscillation),y0(t) = cos(t) andy1(t) = Jy0(t) = sin(t) =
cos(t − π/2) = yδ(t).

Application of theLaplacetransform to the equation (5) leads
us to :

Y (s) =

m−1∑

k=0

ck
sα−k−1

1 + sα
+

1

1 + sα
U(s),

Y (s) =
m−1∑

k=0

ckHk(s) + H(s)U(s).

It has to be noted that theLaplacetransform ofDα
∗
y(t) is given

by :

L(Dα
∗
y(t)) = sαY (s) −

m−1∑

k=0

y(k)(0+)sα−k−1, (6)

= sα−m

(

smY (s) −

m−1∑

k=0

y(k)(0+)sm−k−1

)

,

= sα−mL(Dmy(t)).

Thus we obtain the following time domain expressions :

y(t) = c0y0(t) +

∫ t

0

u(t − τ)yδ(τ)dτ, (7)

where :

{
y0(t) =

∫
∞

0
e−rtKα,0(r)dr,

yδ(t) = −
∫
∞

0
e−rtKα,−1(r)dr,

(8)

with y0(0
+) = 1, yδ(0

+) = ∞, 0 < α < 1 and :

Kα,k(r)=̇
(−1)k

π

rα−1−k sin(απ)

r2α + 2rα cos(απ) + 1
.

Remark 1 : We limit in the sequel our study to the case where
α is between zero and one because we are only interested
in positive real transfer functions. The transfer function
H0(s) is positive real because it results of the positive real
interconnection of two positive real functionsH1

0 (s)=̇1/s
andH2

0 (s)=̇s1−α. We get :

H0(s) =
H1

0 (s)

1 + H1
0 (s)H2

0 (s)
.

Expression (5) can be compared to the one otained in [19, chap-
ter 1, section 1.4]. In this reference an approximate definition
is given by :

L(Dαf(t)) = sαF (s)−

∞∑

i=0

sα−i−1f (i)(0)+

∞∑

i=0

s−i−1f (n+i)(0).

(9)

(9) is a generalization to the non integer case of the well known
expression :

L(Dnf(t)) = snF (s) −

n−1∑

i=0

sn−i−1f (i)(0),

wheren is an integer. This expression makes use of an infinite
number of dependant initial conditions. In the expression (6),
derived thanks to the use of theCaputodefinition of the non
integer derivation operator, only a finite independant number
of initial conditions is needed.

An analog remark could be made about the response to an arbi-
trary input to a second generation CRONE control with initial
conditions different from zero. The equation corresponding to
such a control in the case of an unitary relaxation constant [19,
chapter 1, section 1.5]) is given by :

Dαy(t) = −y(t) + u(t),

in the time domain, and by :

Y (s) =

∞∑

k=0

y(k)(0)
sα−k−1

1 + sα
−

−

∞∑

k=0

y(α+k)(0)
s−k−1

1 + sα
+

1

1 + sα
U(s),



in theLaplacedomain.

The next section gives several realization solutions in terms of
passive elements (R, I andC) of the transfer functionsH0(s)
andH(s).

3 Initial conditions problem : the second gener-
ation CRONE control case

The equation corresponding to the second generationCRONE
control for a unitary relaxation constant is given by [19] :

Dα
∗
y(t) = Dα

(

y(t) −

m−1∑

k=0

tk

k!
y(k)(0+)

)

= −y(t) + u(t),

(10)

In (10),m is the integer such thatm− 1 < α ≤ m and the ini-
tial conditions are given byy(k)(0+)=̇ck with k = 0, ...,m−1.

Applying theLaplacetransform to (10) we get :

Y (s) =

m−1∑

k=0

ck
sα−k−1

1 + sα
+

1

1 + sα
U(s), (11)

Y (s) =

m−1∑

k=0

ckHk(s) + H(s)U(s).

If 0 < α ≤ 1 then (11) becomes :

Y (s) = c0H0(s) + H(s)U(s),

Y (s) = c0
sα−1

1 + sα
+

1

1 + sα
U(s).

Thanks to the positive realness property of the two transfer
functionsH0(s) and H(s) we could obtain a realization by
means of a passive bond graph model after an approximation-
reduction process.

Remark 2 : The effect of the initial conditions is obtained
through the realization ofH0(s) but it has a cost in terms
of additional dynamical elements. This number of addi-
tional elements is given by the rank of the chosen approx-
imate model.

Several approximation-reduction scheme could be applied to
H(s). A method developed for a fractional power pole model
[11] could be used with a shift of theLaplacevariable. After
that, we obtain an approximate model for1/sα. Then a unitary
feedback loop gives us an approximate model of1/(1 + sα) =
H(s).

An interesting alternative method could be found in [14]. It
consists also in the construction of an approximate model of
sα for α between minus one and one.

Concerning the transfer functionH0(s) we just need to add
a feedback loop comprising an integrator to an approximate
model ofsα−1. The resulting approximate model will be posi-
tive real by construction.

Example 1 : Forα = 1/2 andc0 = 1, we get :

H0(s) =̇
s−1/2

1 + s1/2
=

1
s1/2

1 + s 1
s1/2

,

H(s) =̇
1

1 + s1/2
.

If the approximate model ofs1/2 is derived from the
approximation-reduction of a fractional power pole model
[11], we get :

H6
0 (s) =

1

s + 1
H6

kl((s−1)pT )

,

H6(s) =
1

1 + 1
H6

kl((s−1)pT )

,

H6
kl ((s − 1)pT ) =

6∑

i=1

ri

pT
.

1

s − (1 + pi/pT )
.

where the parametersri andpi are those of table 1.

The transfer function of the reduced-order model is given by :

Hkl
6 (s) =

6∑

i=1

ri
1

s − pi
,

Poles (pi) Residues (ri)
−63.95 0.250
−18.02 0.173
−5.076 0.132
−1.430 0.106
−0.4033 0.0972
−0.1132 0.241

Table 1: Pole and residues values of the reduced-order model
of 1/s1/2

Example 2 : The lower frequencies precision
H6

kl ((s − 1)pT ) depends on the closeness to zero of
the least large pole, i.e. the value of1 + p0/pT . For
example if the order is equal to six theKrylov-Lanczos
method gives a value of0.0932 and the singularity
function method [6] a value of0.256. To reach the same
value with the latter method we need to increase the order
to nine.

To have an idea of the performance achieved, if the reduced-
order model fors−1/2 is given byH6

kl ((s − 1)pT ) then the
relative gain error is less than0.5% on a pulsation range from1
to 135 rad.s−1. A significant improvement could be considered
with a careful choice of the interpolation points anticipating the
variable shift.



4 Conclusion

In this paper we have exposed an approximation-reduction-
realization process and a method to take into account the initial
conditions applied to the original model in case of a non integer
order model.

It has to be noted that the initial conditions on the reduced-
order model are obtained through a passive realization. In con-
sequence the more we want the model to be precise, the more
dynamic elements we need to construct the approximate model
of the non integer order operator.
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