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Abstract

We develop the study of primitives of human motion, which
we refer to as movemes. The idea is to understand human mo-
tion by decomposing it into a sequence of elementary building
blocks that belong to a known alphabet of dynamical systems.
How can we construct an alphabet of movemes from human
data? In this paper we address this issue by introducing the no-
tion of well-posednes. Using examples from human drawing
data, we show that the well-posedness notion can be applied in
practice so to establish if sets of actions, viewed as signals in
time, can define movemes.

1 Introduction

Building systems that can detect and recognize human actions
and activities is an important goal of modern engineering. Ap-
plications range from human-machine interfaces to security to
entertainment.

A fundamental problem in detecting and recognizing human
action is one of representation. As explained in [4], our point of
view is that human activity should be decomposed into build-
ing blocks which belong to an “alphabet” of elementary ac-
tions. We refer to these primitives of motion as movemes. We
thus aim to build an alphabet of movemes which one can com-
pose to represent and describe human motion similar to the way
phonemes are used in speech. The word “moveme” intended as
primitive of motion was invented by [2]. They studied periodic
or stereotypical motions such as walking or running where the
motion is always the same and therefore their movemes, like
the phonemes, were repeatable segments of trajectory. [5] stud-
ied motions that were parametrized by an initial condition and a
target. They proposed that movemes ought to be parametrized
by goal and style parameters. Their moveme models are phe-
nomenological and non-causal.

What is the alphabet of movemes? Which are the dynami-
cal models that we should use to represent them? Where do
movemes come from in practice? When human actions can de-
fine movemes according to a dynamical model class

�
? To an-

swer these questions we use system identification tools [6, 7],

we recall the formal definition of moveme already given in [4],
and we introduce the classification problem as a standard prob-
lem of pattern recognition [1, 8]. In [4] and [3] some clas-
sification results have been presented as instrumental for the
segmentation problem. However the assumption that the ac-
tions considered were defining movemes was tacitly made. In
this paper we show with examples from real data that such an
assumption may not hold in practice and we explain the rea-
son. We thus propose a way to establish when real data (seen
as signals in time) can allow the definition of a set of movemes.
To this regard we introduce the definition of well-posed sets of
signals, and we show how such a definition can be checked in
practice. Experiments on drawing data are reported.

2 Dynamical Definition of Moveme

We recall in this section a relaxed version of the definition of
moveme already presented in [4], we introduce the model class,
and we set the classification problem.

2.1 Definitions and properties

Let
�������

denote a linear time invariant (LTI) system class
parameterized by

�
	��
,
�

a linear space, and let 
 denote
a class of inputs. Let � ��������������������� ��� � �!�"�����

, for
�$#%�'&

,
denote the output of

�������
once parameter

��	(�
, input ) 	


 , and initial conditions * & have been chosen. Let + 	,�.-0/1�
be a parameter lying in a subspace of

�
, and define a map 243�657�8-

. We write + � 2 �����
to represent the transformation

from
�9	:�

to the reduced set of parameters + 	,�;-
.

Definition 2.1. Let
�=<>�@?A�������!� + 	CBD< E

and
�GF>�

?H��������� + 	IBJFHE
denote two subsets in

�
with

BLKNMO�8-
forP ��QSRUT

.
�=<

and
�GF

are said to be dynamically independent
if

(i) the class of systems
�

and the class of inputs 
 are such
that

���V����� < ��� �XWY� ���!�!�Z���[�\��������� F ��� �A]!� �����"�Z���"R
for all

�^#_� &
, if and only if

��� < R ) < �`�a��� F R ) F � for
) < 	 
 and ) F 	 
 ;

(ii) the sets
B <

and
B F

are non empty, bounded, and have triv-
ial intersection, i.e.

BD<cb`BJFd�G?HefE
.



Each of the elements of a set � �4?A�4< R������ R ����E
of mutually

dynamically independent model sets is called a moveme. Then
the notion of a model set of being a moveme is relative to a
context comprising other model sets. Note that property (i)
implies the identifiability property of the model set

�
(see [6]

for example.)

In this paper, we choose our model class
�

and input ) as
asymptotically stable linear systems driven by a unit step input
with full state output: �* � � *
	��

� � * R
(1)

where
�C	�
������

, * � � * < R������ R * � � 	�
��
, � 	�
��

, so that� � ���;� � �,	9� ��
����������D<��
and + ���_	=�.-���
������

,
with 2 ��� � � ��� �

. For such a class of models we make the
following assumption.

Assumption 2.1. Given * ����� as the output of model (1) we
assume that the initial condition * & is such that for any ! 	
��"�D<

, we have that !�# * �Z��� �%$
, for

��	'& � < R�� F)( , and
� F+* � < ,

implies ! �'$ , where * � � *�# R!QA� # .
This assumption means that the description that model (1) pro-
vides for * �Z��� is minimal in the sense that * �Z��� cannot also be
described by a lower order dynamical system. A direct conse-
quence of such an assumption is given by the following lemma.

Lemma 2.1. Let * ����� and , �Z��� be generated by two LTI systems�* �-� < *
	�� <�, �'� F ,.	�� F
and let Assumption 2.1 hold. Then , �Z��� � * �Z��� for all

�
if and

only if
��� < � � < � � ��� F � � F � .

Proof.
�0/ �

If
��� < � � < � � ��� F � � F � then , �Z��� � * �Z��� for all

�
by

uniqueness of solutions.�01 �
If , �Z��� � * ����� for all

�
then
�, �Z����� �* �Z��� for all

�
, so that� < *2	3� < �4� F ,�	3� F . This implies

& ��� < � � < �65;��� F � � F � ( * ����� �'$
for all

�
, which by Assumption 2.1 (applied to each column)

implies
��� < � � < � � ��� F � � F � .

This lemma shows that property (i) of Definition 2.1 is satisfied
by our choice of

�
and 
 . Property (ii) is verified by choosing

for example
BLK

,
P � Q�R������ R87

, as balls in

������

with centers� K 9 	:
������
,
P �9Q�R������ R87

, and radii ; K , such that:

B K �'<.=?>X��� K 9 �[R P �=QSR������ R@7
B KBA BBC �9?AefE R PED��F (2)

where
7

is the number of movemes and the matrix norm
is the Frobenius norm. In what follows we assume that the
sets

B K
are described by equation (2). Then we have con-

structed a set � � ?A� < R������ RU��G8E
of
7

movemes where� C � ?H�������;� � ����� �7	4B C E
, for
F=	%?�Q�R������ R87 E

and
�

is
in the form given by equation (1).

Given any signal * ����� we can determine a good representative
of such a signal in the class of models (1) by minimizing the
cost function (see for example [6]):

��H� � H� �[� arg min��IKJ L0� Q
TNM #O � � �* 5I���;� � � * � # � �* 51��� � � � * �8PS� (3)

with * � � *�# R�Q � # , which gives the least squares estimate of
parameters

�KH� � H� � so to get the estimate of * in model class (1)
as �H* �QH� H*R	 H� R H* ��� & �[� * ��� &A�S�
In the case in which * ����� has been generated by (1), by
virtue of Assumption 2.1 it is easy to check that (3) leads to�KH� � H� � � ��� � � � , so that if

� 	 B K
, for some

P 	4? QSR6����� R@7 E
we can classify * �Z��� as output of moveme

� K
just by find-

ing
F 	_?�Q�R���� R P R���� 7 E

such that
H� 	
B C

. This is equiva-
lent by virtue of (2) to finding

F6	 ?�Q�R���� R P R���� 7 E
such thatT H�U54� C9 TWV ; C , whose solution is unique since the sets

B C
are all not intersecting. Then

arg CYX[Z < �]\ � K �]\]\ � G_^ ? T H�`5a� C9 TbV ; C E�
arg CcX[Z < �]\ � K �]\]\ � G_^ ? T �`5a� C9 TbV ; C E � P

In this paper we take a relative straightforward approach to esti-
mation. More sophisticated methods exist for the estimation of
parameters in presence of noise. We leave this to future work.

The following section addresses the same classification prob-
lem in a more general situation in which * ����� has been gener-
ated by a perturbed version of system (1).

2.2 Classification Problem

Let the signal * �Z��� be generated by the perturbed version of
system (1): �* �4� *
	d�e	 P �Z���

� � * (4)

with
� 	 B K

, for some
P 	\? QSR������ R@7 E

and
P �����

is a bounded
realization of white noise. Under what conditions on

�
andP �Z���

can we still classify * �Z��� as output of moveme
� K

? Since� 	9B K
, there exists f`gh; K such that

� �i� K 9 	�f�j withj a unit norm matrix and
�dK 9

center of
B K

. Then system (4)
becomes �* � ��� K 9 	df�j � *R	d�K	 P �����

� � * � (5)

Then the problem of classifying * �Z��� as output of moveme
� K

becomes the same as identifying
P

in system (5) for some con-
ditions on f and

P �����
. In the previous section we showed that ifP �Z�����k$

then we can exactly identify
�dK 9 	`f�j and then cor-

rectly classify * �Z��� . The presence of
P �����

induces an estimation
error so that

H�
will not be equal to

� K 9 	Ef�j , but it is not neces-
sary to achieve equality for our purpose as the following lemma
shows.

Lemma 2.2. Let * �Z��� , �.	�& � & R8l ( be generated by (5), where� K 9
is the center of

B K
for some

P 	G?�QSR6����� R87 E
as in (2). Let



H�
be the least squares estimate according to (3). There exist

positive constants
P

and f such that if f V f and
T P ����� TRV P

,
then

arg CYX[Z < �]\]\]\ K �]\]\]\ G ^ ? T H�`5 � C9 T.V ; C E�� P

Proof. By equation (3) we have

�eH� � H� � � � M #O � �* �Z��� * �Z��� # P���� � M #O � * ����� * ����� # PS����� <
where we can invert ��� #O � * �Z��� * �Z��� #
	 if either

P �Z���,� $
by

Assumption 2.1, or
P ����� D��$

by the fact that
P �Z���

is realization
of white noise that is uncorrelated in time. Using equation (5),
this expression becomes

�KH�;� H� � �=��� K 9 	df�j � � �
	 � M #O � P �Z��� * �Z��� # P���� � M #O � * �Z��� * �Z��� # P���� � <

which leads with some algebra toT H�45a� K 9 T.VUT �KH� � H� ��5I��� K 9H� � � TbV f_	 P��
where f and

P
are upper bounds on f and

P �����
, and

�
is a

suitable positive constant which exists since * ����� is bounded
by the stability properties of the dynamics. Then in order forT H�`5a� C9 TbV ; C to hold for

P �'F
we requireT H�45a� K 9 T.V f_	 P�� V ; K (6)

which is verified for suitable bounds on f and
P �����

.

2.3 Well-posedness

As the previous section highlighted, the basic requirement for
solving the classification problem is the one of having non in-
tersecting sets in parameter space characterizing the sets of dy-
namical models

� K
,
P �6Q�R������ R87

. In practice the sets
BLK

andB C
,
P D� F

may be not defined a priori but are derived from
finite number of elements belonging to the sets of signals 
 K
and 
 C , whose characteristics make each element of one set
different from each element of the other and therefore we can
say that they define two classes of signals. When can these
two classes of signals define two movemes

� K
,
� C

accord-
ing to Definition 2.1? Let the two classes 
 K and 
 C be com-
posed by signals � K � �����[��� �V����� K � �!� � > ��� � � > � �"����� , for � K � �Z��� 	 
 K ,

and � C� �������
��������� C� ��� ������ � ���� �"�Z��� , for � C� �Z���$	 
 C . Let ���
be an estimation procedure establishing a one to one mapping
between the signal

� ����������� � �Y� �f�"�����
and the couple

���;R ) �
which exists by virtue of (i) of Definition 2.1. Then we have

��� C� R ) C� �[� � � � � C� �Z��� � � C� ����� 	 
 C��� K � R ) K � � � ��� � � K � ������� � K � �Z��� 	 
 K �
Let ���(3 ����� 
 �$5 �

be the selection operator, such that� � ���;R ) �:� �
, which selects the first element of the couple

���;R ) � . Then define � � 3 � 2���� � ��� � , which associates to
each signal � �Z��� the corresponding parameter + lying in

� - /
�

. We can then write that
BLK

is the image of 
 K through � �
and the same for

B C
:� � � 
 K � ��B K R ��� � 
 C � ��B C �

(7)

Definition 2.2. Classes of signals 
 K and 
 C with elements� K � �����N�_� ������� K � ��� � > ��� � � > � �"�Z��� , for � K � �����`	 
 K , and � C� �Z���N�
� �V����� C� �!� �!���� � �"�� �"����� , for � C� �Z��� 	 
 C , such that the corre-

sponding sets
B K

and
B C

given in (7) are non intersecting, that
is

B K b B C �O?AefE
, are said to be well-posed classes according

to model
�

.

From this definition it follows immediately that well-posed
classes of signals define movemes according to Definition
2.1. In practice we have access to a finite set of sig-
nals, # K(�C? � K < �Z���"R������ R � K � > �����UE and # C � ? � C < �����YR������ R � C� � �Z���YE ,

which belong to the two classes 
 K and 
 C , with � K � �Z�����
� �V����� K � ��� � > ��� � � > � �"����� for $ 	 ?�Q�R������ R&% K E and � C� ����� �
� �V����� C� �!� �!���� � �"�� �"����� for $ 	 ?�QSR6����� R&% C E . Let

HB K
and
HB C

be

the images, through � � , of the sets # K and # C respectively. By
construction we have

HB C M B C
and
HB K M%B K

, so that poten-
tially we can have trivial intersection between

HB K
and
HB C

, and
a no-empty intersection between the sets

B C
and

B K
. As shown

in Figure 1, this creates a problem since if we check Definition
2.2 with

HB K
and
HB C

, which are the only ones to which we have
access, the classes of signals 
 K and 
 C turn out to be well-
posed. The issue comes from the fact that we will use the light
 K 
 C # K # C������� �� �

B K B C HB K HB C

Figure 1: Relation between sets
HB K

and
HB C

and
B K

and
B C

.

sets (
HB K

and
HB C

) for solving the classification problem ignor-
ing the existence of the dark region that is generating signals
with undecidable class. Then, one needs to check if 
 C and 
 K
are well-posed. The following lemma gives a possible way to
check for well-posedness without knowing the sets

B0K
and

B C
.

Lemma 2.3. Let � ����� �O� ����������� ��� ���!�!�Z���
denote the output

of model
�

for a choice of
�

, ) and * & . Assume to fix ) , * &
and

� � ' � ')( , so that � �������6� ����� + � �"�Z��� , and let the classes
 K and 
 C be defined as
 K � ? � �Z���!� � �Z��� �\� ����� + � �"�Z���
and * K � � R �� R���� �-$ R,+ K � � R �� R���� V $ E



200 300 400 500 600 700 800

−800

−700

−600

−500

−400

−300

Figure 2: Example of traces in * � plane captured by the cap-
turing system.


 C8� ? � �����!� � �Z��� �\� �V��� + ���!�Z���
and * C � � R �� R���� �-$ R,+ C � � R �� R���� V $ E

for some functions * K , * C , + K and
+ C . Then the classes of sig-

nals 
 K and 
 C are well-posed if and only if the system

� ����� � ������� + � �"�����* K � � R �� R ��� �'$+ K � � R �� R ��� V $* C � � R �� R ��� �'$+ C � � R �� R ��� V $
(8)

is infeasible.

Proof. (
1

). Let us show that well-posed classes 
 K and 
 C
imply infeasibility of (8). According to Definition 2.2 this is
equivalent to showing that non-intersecting sets

B0K
and

B C
(de-

fined in equation (7)) imply infeasibility of the system of equa-
tions (8). Let again � � be the one to one mapping between the
signal

���V�������!� ���"� � �"�Z���
and the couple

���;R ) � . Since input ) ,
initial condition * & and

� � ' � ' ( have been fixed, � � becomes
one to one correspondence between � �����;� � ����� + � �"�Z��� and
+ . Then we can redefine the sets

BLK
and

B C
as

B K �9? + � + � � � � � �Z��� �YR and � �Z��� 	 
 K E (9)

and BBC��G? + � + � � � � � �Z�����"R and � ����� 	 
 C�E[�
(10)

If (8) is feasible then there exist � �Z��� such that � �Z��� 	
 K and � �Z����	 
 C and also there exist + � 3;� �Z���d� ��� + ���"����� ,
so that by (9) and (10) + � 	 B K

and + � 	 B C
, which in turn

implies
B C b B K D� ?HefE

. Then trivial intersection of sets
B0K

and
B C

defined in (9) and (10) implies infeasibility of (8).
(
/

). Let us show that if classes 
 K and 
 C are not well-
posed, then system (8) is feasible. By Definition 2.2, this is
equivalent to show that if

B C b B K D�C?HefE
then system (8) is

feasible.
B C b`B K D� ?Ae E

implies that there exist + � 	 B K
and + �^	GB C

which from (9) and (10) implies that there ex-
ist a signal � �X����� such that + �;� ��� � � ���Z�����"R � �H�����8	 
 K and
+ � � ��� � � �S�Z�����"R � �S�Z���,	 
 C , which means that the signal
� �X����� is both in 
 K and 
 C which implies that it satisfies (8),
then (8) is feasible.

3 Experiments

To test our approach, we studied a 2D drawing task in which
a set of shapes were drawn by five different subjects using a
computer mouse.

3.1 Experimental setup

Our subjects drew using the XPaint program on a PC running
Red Hat Linux 7.2 with a screen measuring

Q���$ $���QAT"$�$
pixels

and a working window of � $�$ ���"$�$ pixels. The user left the
trace of the trajectory in the working window only when the left
mouse button was pressed. For acquiring * and � time traces
we implemented a C routine which was activated in the back-
ground at the beginning of each experimental session and sam-
pled the

� * R � � position of the pointer everywhere on the screen
at the rate of

QY$�$
Hz and a spatial resolution of one pixel. The

time interval between one sample and the following one turned
out to be mostly constant except for slight variations every once
in a while due to higher priority of other processes. In order to
have constant sampling time the data was processed through an
algorithm that linearly interpolates data in the regions in which
the time interval is not exactly 10 ms. Pixelization of the co-
ordinates does not heavily affect the data since the trajectories
under study are usually more than 50 pixels long.

We defined 4 different drawings by means of prototypes: car,
sun, ship, and house. Each of the 5 subjects was shown the
prototypes and was asked to reproduce them on a � $�$ ���"$�$
pixel canvas; the dimensions of each drawing could be chosen
arbitrarily according to the ones with which the user was more
comfortable, the only specification was to reproduce the proto-
types with as high fidelity as possible in a reasonable amount
of time. Some of the data captured is shown in Figure 2. Each
subject drew 10-20 examples for each shape. In order to ac-
complish each drawing task the user had to perform a sequence
of actions such as “reach a point A” and “draw a line up to point
B”. These actions are the ones that we will consider as candi-
dates for being elementary motions and then defining a pair of
movemes. Thus we check if reach and draw actions define a
well posed pair of movemes according to Definition 2.3.

3.2 Classification

We start from the hypothesis that “draws”, which are straight
lines traced with a specific intention (like drawing a side of
the house), and “reaches”, which happen with the intention of
shifting fast the equilibrium position, define a well-posed pair
of movemes. We segmented out by hand a set of straight draws
from houses and cars drawn by 2 of the subjects. Reach exam-
ples were obtained from a special experiment session in which
the users had to point and click at random buttons appearing on
a � $ $ ���"$ $ pixels window during a simple video game imple-
mented in MATLAB 6.0.

We considered several discrete time dynamical models for rep-
resenting the reach and draw signals, starting from a first order,
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Figure 3: Parameter estimates for reach (stars) and draw (circles) examples projected on the first two Fisher linear discriminants
(left). Diamonds represent some of the parameters corresponding to straight
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diamonds of the left picture (center). Typical reach and draw velocity profiles (right).

decoupled model for * and � motion,�* C �D< ��� < � * C 	�� ��� C �D< ��� <�� � C 	�� � R
and proceeding to a second order coupled model,

� C � < �
���
�
$ Q $ $� < � � F � �	� � ��
 �$ $ $ Q�	� � ��
 � � <�� � F
�

����
� � C 	

���
�
$� �$� �
����
� R

(11)

where
� C � � * C � < R * C R � C � < R � C � . The reach dynamical pa-

rameters were estimated from 140 examples of reach trajecto-
ries obtained from the video game implemented in MATLAB,
and the draw dynamical parameters were estimated from 140
examples of draw trajectories segmented out from cars and
houses of 2 of the subjects. The dynamical parameters were
estimated for each one of the dynamical models proposed (first
order for * and � , decoupled; first order for * and � , coupled;
second order for * and � , decoupled; second order for * and � ,
coupled).

By proceeding with standard pattern recognition techniques
(see [1] for example), we trained a Gaussian classifier for the
parameters derived from the 140 examples per class (training
set) for each one of the model classes proposed, and obtained
the best results for the second order for * and � , decoupled, dy-
namical model (obtained by letting

��� � �'$
,
��
 � �'$

,
��� � �4$

,��
 � �4$
in system (11)):

� C �D< �
���
�
$ Q $ $� < ��� F � $ $$ $ $ Q$ $ � <�� � F
�

� ��
� � C 	

���
�
$� �$� �
� ��
� � (12)

For such a model we obtained � � T�� training error, and we
tested the generalization properties of the resulting classifier on
a test set of 323 additional reach examples (obtained from the
MATLAB videogame) and 118 additional draw examples ob-
tained from the drawings of other two subjects (different from

the ones used for the training set) and obtained � � � � � test er-
ror. Figure 3 (left) represents the projection of the parame-
ters belonging to the training set (living in


 

) on the first two

Fisher linear discriminants [1] and typical velocity profiles for
the draw and reach trajectories. We let

HB��
and
HB��

denote the
reach and draw clusters, respectively, according to the notation
used in Section 2.3.

3.3 Well-posedness

By looking at the sets
HB �

and
HB �

of Figure 3 (left) one notice
that we have a quite good separation. Anyway, since these two
sets are just estimates of the real ones

B��
and

B��
, we have to

check that situation depicted in Figure 1 does not happen. To
check this, we find candidate constraints which can describe
reach and draw trajectories, so that we may apply Lemma 2.3.
Reach trajectories are asymptotically stable with bell-shaped
velocity profiles. Draw trajectories are characterized by asymp-
totic stability properties and by straight lines in * � plane. These
characteristics are not incompatible with each others. The di-
amonds shown in Figure 3(left) are parameters corresponding
to straight lines in * � plane (

� < � ��� <�� and
� F � ��� F
� ), and

we see clearly that they can be both reach and draw parameters.
We have a situation analogous to the one reported in Figure 1,
where the light sets are

HB��
and
HB��

and the dark set is made
up by elements like the diamonds in Figure 3(left). Thus there
exist parameters that generate trajectories satisfying both draw
and reach constraints whose class is undecidable. As an ex-
treme example of this, we show in Figure 3 (center) the shape
of a house that has been artificially generated by parameters
lying in the region in between the clusters of Figure 3 (left),
which the classifier classifies as reaches.

This happens because the dynamical parameters associated to
draw trajectories are task dependent, and in some cases they
correspond to straight trajectories with bell shaped velocity
profiles (as it happens in the rays of the sun). We show these
differences in Figure 4, where we report the draw parameters
when a user draws straight lines between two points (as it hap-
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Figure 4: Parameter estimates for reach and draw targeting, draw tracing and free motion draw.

pens in the draws of the house, ship, car), or a line trying to
trace an already existing line, or just a line with no constraints
(as it happens in the rays of the suns). We decide therefore
to use three classes instead of one for the draw: we call them
targeting, tracing, and free motion respectively.

From Figure 4 we see that there is an evident overlapping of the
parameter sets of the reach class and free motion class. There-
fore we exclude from the panorama the free motion class, and
show that the draw class, seen as union of the tracing and tar-
geting motions, can be described in terms of constraints * � ,+ � , * � ,

+ � as introduced in Lemma 2.3, such that the sys-
tem of equations (8) is infeasible. Driven by the characteris-
tics of the velocity profiles of the targeting and tracing draw
(almost constant velocity) and reach (bell shaped velocity pro-
file), as shown in Figure 3 (right), we define the following con-
straints. The reach trajectories should be characterized by a
certain acceleration peak, and the draw trajectories should be
characterized by a small velocity. We then rewrite these con-
straints in the form of Lemma 2.3 as

�* 5 � �� � * � � �* R �� � �%$
and � 5 T � �* R �� � T � + � � �* R �� ��#k$

for the draw motions, andT � �* R �� � T 5 �`� + � � �* R �� � # $
for the reach motion, so that

the system of inequalities (8) becomes infeasible for suitable� and
�
. Then if we assume that the constraints above define

fair specifications for reach and draw trajectories for the val-
ues of � and

�
that make system (8) infeasible, then the reach

and draw classes of signals are well-posed according to Lemma
2.3 . Moreover the

HB��
and
HB��

clusters of Figure 3 (left) well
represent reach and draw actions, which thus define a pair of
movemes

� �
and

� �
.

4 Conclusions

We have provided the definition of well-posed sets of signals.
We provided an operative way to check if sets of actions are
well-posed according to a dynamical model class

�
, and thus

they can generate movemes. We have tested our ideas on hu-
man drawing data and discovered two sets of actions (reach and
draw), which can define movemes and one set of actions (free
motion) that is not well-posed according to the already formed
alphabet of reach and draw movemes.
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