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Abstract

The Speed-gradient approach to building dynamical
models of physical systems is described. It is based on
the Speed-gradient principle:Among all possible mo-
tions only those are realized for which the input vari-
ables change proportionally to the speed gradient of
appropriate goal functional. Application of the prin-
ciple is demonstrated by examples: motion of a particle
in the potential field; wave, diffusion and heat transfer
equations; viscous flow equation. Based on the Speed-
gradient principle the proof of the Onzagger principle
from thermodynamics and its extension to a class of sys-
tems far from equilibrium are given.

1 Introduction

During decades the interest of the physics community
in control theory was not substantial. The situation
changed dramatically in the 90s after it was discov-
ered that even small feedback introduced into a chaotic
system can change its behavior significantly, e.g., turn
chaotic motion into periodic one [1]. The seminal pa-
per [1] gave rise to a variety of publications demonstrat-
ing metamorphoses of numerous systems - both simple
and complicated - under the action of feedback. How-
ever, the potential of modern nonlinear control theory
still was not seriously appreciated although the key role
of nonlinearity definitely was. On the other hand, new
problems seem not traditional for control theorists: the
desired position or the desired trajectory of the system is
not specified whilst the “small feedback” requirement is
imposed instead. It took some time to realize that such
kind of problems is typical for control of more general
oscillatory behavior and to work out a unified approach
to nonlinear control of oscillations and chaos [2].
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It needs only one more effort to make the next step
and to undertake a systematic study of the properties of
physical (as well as chemical, biological, etc.) systems
by means of feedback actions.

A number of new applications of control theory to
physics were presented in [3, 4]. Particularly, the
phenomenon of feedback resonance was studied and
its possible applications to nonlinear spectroscopy, es-
cape from a potential well, and stabilization of unsta-
ble modes were demonstrated. In [5] the subject and
methodology ofcybernetical physicswere outlined.

This paper is aimed at demonstration of some applica-
tions of the “feedback” approach to physical problems.
Namely, the Speed-gradient approach to modeling of
physical systems dynamics is described in Section 2.
The proposed approach is demonstrated by examples:
motion of a particle in the potential field; wave,
diffusion and heat transfer equations; viscous flow
equation. Other possible applications of the approach
are illustrated in Section 3 by the proof of the Onzagger
principle from thermodynamics.

2 Speed-gradient Principle and Laws of
Dynamics

In this section we will study the links between control
laws in technical systems and laws of dynamics in phys-
ical systems. It will be demonstrated that the methods
of control system design can be applied to explanation
of evolution principles for natural systems. To be more
specific, a number of dynamical models of physical sys-
tems will be interpreted as speed-gradient algorithms
for properly chosen goal functionals.

Consider a class of physical systems described by sys-
tems of differential equations

ẋ = f(x, u, t), (1)

wherex ∈ Rn is the vector of the system state,u is
the vector of free (input) variables,t ≥ 0. The prob-
lem of system evolution modeling can be posed as the



search of a law of changingu(t) meeting some criterion
of “natural”, or “reasonable” behavior of the system.

The most common criteria describing both physical
(natural) and technical (artificial) systems are formu-
lated as variational principles (e.g., Hamilton’s princi-
ple of least action). They are based on specification of a
functional (usually, integral functional) and determina-
tion of real system motions{x(t), u(t)} as points in an
appropriate functional space providing extrema of the
specified functional. In order to explicitly describe ei-
ther a control law or system dynamics the powerful ma-
chinery of calculus of variations and optimal control is
used.

In addition to integral principles, differential (local)
ones were proposed: Gauss principle of least constraint,
principle of minimum energy dissipation, etc. It has
been pointed out by M. Planck [9] that the local princi-
ples have some preference with respect to integral ones
because they do not fix dependence of the current states
and motions of the system on its later states and mo-
tions. One more local evolution principle is motivated
by the Speed-gradient method [2, 6, 7, 8]. It can be for-
mulated as follows.

Speed-gradient Principle: Among all possible mo-
tions only those are realized for which the input vari-
ables change proportionally to the speed gradient of an
appropriate goal functional.

In the next section using the Speed-gradient principle
will be illustrated by examples.

3 Examples: Speed-gradient Laws of Dy-
namics

Suppose that the model (1) has a simple form

ẋ = u. (2)

The relation (2) means just that we are seeking for law
of change of the state velocities. According to the
Speed-gradient principle, first we need to introduce the
goal functionQ(x). The choice ofQ(x) should reflect
the tendency of natural behavior to decrease the current
valueQ(x(t)).

Example 1. Motion of a particle in the potential field.
In this case the vectorx = col (x1, x2, x3) consists
of coordinatesx1, x2, x3 of a particle. Choose smooth
Q(x) as the potential energy of a particle and derive the
Speed-gradient law in the differential form. To this end,
calculate the speed gradient

Q̇ = [∇xQ(x)]T u, ∇uQ̇ = ∇xQ(x).

Then, choosing the diagonal positive definite gain ma-
trix Γ = m−1I3, wherem > 0 is a parameter,I3 is the
3×3 identity matrix, we arrive at familiar Newton’s law
u̇ = −m−1∇xQ(x) or

mẍ = −∇xQ(x). (3)

Note that the speed-gradient laws with nondiagonal gain
matrixΓ can be incorporated if a non-Euclidean metrics
in the space of inputs is adopted induced by the matrix
Γ−1. Moreover, admitting dependence of the metric
matrix Γ on x, we can obtain evolution laws for com-
plex mechanical systems described by Lagrangian and
Hamiltonian equations.

The Speed-gradient principle applies not only to finite
dimensional systems, but also to infinite dimensional
(distributed) ones. Particularly,x may be a vector of
a Hilbert spaceX andf(x, u, t) may be a nonlinear op-
erator defined in a dense setDF ⊂ X (in such a case
the solutions of (1) should be understood as generalized
ones).

Example 2. Wave, diffusion and heat transfer equations.
Let x = x(r), r = col (r1, r2, r3) ∈ Ω be the temper-
ature field or the concentration of a substance field de-
fined in the domainΩ ⊂ R3. Choose the goal functional
as the following nonuniformity measure of the field

Qt(x) =
1
2

∫
Ω

|∇rx(r, t)|2 dr, (4)

where∇rx(r, t) is the spatial gradient of the field. As-
suming zero boundary conditions for simplicity, we
have

Q̇t = −
∫
Ω

∆x(r, t)u(r, t) dr, ∇uQ̇t = −∆x(r, t),

where∆ =
3∑

i=1

∂2

∂r2
i

is the Laplace operator. Therefore

the Speed-gradient evolution law in differential form is

∂2

∂t2
x(r, t) = −γ∆x(r, t), (5)

which corresponds to the D’Alembert wave equation,
while its finite form is

∂x

∂t
(t) = −γ∆x(r, t) (6)

and coincides with the diffusion or heat transfer equa-
tion.

Note that the differential form of Speed-gradient laws



corresponds to reversible processes while the finite form
generates irreversible ones.

Example 3. Viscous flow equation.Let v(r, t) ∈ R3 be
the velocity field of fluid,p(r, t) be the pressure field,
i.e., x = col (v(r, t), p(r, t)). Introduce the goal func-
tional as follows

Qt =
∫
Ω

p(r, t) dr + ν

∫
Ω

|∇rv(r, t)|2 dr, (7)

whereν > 0. Calculation of the Speed-gradient with
respect to (2) yields∇uQ̇t = ∇rp − ν∆v. Then, the
differential form of speed gradient is just the Navier-
Stokes equation for viscous fluid motion

ρ
∂v

∂t
(r, t) = −∇rp(r, t) + ν∆v(r, t), (8)

whereν > 0 is the viscosity coefficient,ρ = γ−1 is
density.

Other examples of reproducing dynamical equations for
mechanical, electrical and thermodynamic systems can
be found in [7]. The Speed-gradient principle applies to
a broad class of physical systems subjected to potential
and/or dissipative forces. On the other hand, it seems
that the systems with vortex motion (e.g., mechanical
systems affected by gyroscopic forces) do not belong to
it.

4 Onzagger Equations

The Speed-gradient approach provides the new insight
for various physical facts and phenomena. For example,
we will give evidence for an extended version of the
symmetry principle for kinetic coefficients (Onzagger
principle) in thermodynamics [11] (it is also called the
Maxwell-Betti theorem in elasticity theory). Consider
an isolated physical system whose state is character-
ized by a set of variables (thermodynamic parameters)
ξ1, ξ2, . . . , ξn. Letxi = ξi−ξ∗i be deviations of the vari-
ables from their equilibrium valuesξ∗1 , ξ∗2 , . . . , ξ∗n. Let
the dynamics of the vectorx1, x2, . . . , xn be described
by the differential equations

ẋi = ui(x1, x2, . . . , xn), i = 1, 2, . . . , n. (9)

Linearize equations (9) near equilibrium

ẋi = −
n∑

k=1

λikxk, i = 1, 2, . . . , n. (10)

TheOnzagger principle[11] claims that the valuesλik

(so called kinetic coefficients) satisfy the equations

λik = λki, i, k = 1, 2, . . . , n. (11)

In general, the Onzagger principle is not valid for all
systems or far from equilibrium. Its existing proofs (see,
e.g., [10]) require additional postulates. Below the new
proof is given showing that it is valid for irreversible
Speed-gradient systems without exceptions.

First of all, the classical formulation of Onzagger prin-
ciple (11) should be extended to nonlinear systems. A
natural extension is the following set of identities:

∂ui

∂xk
(x1, x2, . . . , xn) =

∂uk

∂xi
(x1, x2, . . . , xn). (12)

Obviously, for the case when the system equations (9)
have linear form (10) the identities (12) coincide with
(11). However, since linearization is not used in the for-
mulation (12) there is a hope that the extended version
of the Onzagger law holds for some nonlinear systems
far from equilibrium. The following theorem specifies a
class of systems for which this hope comes true.

Theorem 1. Assume that there exists a smooth func-
tion Q(x) such that equations (9) represent the Speed-
gradient law in finite form for the goal functionQ(x).

Then, the identities (12) hold for allx1, x2, . . . , xn.

Proof of Theorem 1.The proof is very simple. Since (9)
is the Speed-gradient law forQ(x), its right-hand sides
can be represented in the form

ui = −γ
∂Q̇

∂Qi
, i = 1, 2, . . . , n.

Therefore ui = −γ(∂Q/∂xi) (in view of Q̇ =
(∇xQ)T u). Hence

∂ui

∂xk
= −γ

∂2Q

∂xi∂xk
=

∂uk

∂xi
,

and identities (12) are valid.

Thus, for Speed-gradient systems the extended form
of Onzagger equations (12) hold without linearization,
i.e., they are valid not only near the equilibrium state.
It is worth mentioning that the above derivation is
valid only under assumption that all the derivatives
exist, i.e. all the involved functions are smooth. It
excludes a number of nonsmooth physical problems,
like description of shock waves, etc.

5 Discussion

We have shown that nonlinear control design meth-
ods developed in control theory (cybernetics) may pro-
vide new interpretations and new insights for dynamical



models of physical systems. Moreover, using nonlinear
control methods allows one to investigate new phenom-
ena like feedback resonance. Existence of such strong
analogies between dynamics of physical systems and
control systems is not very surprising because both are
generated by similar variational principles. Systematic
usage of the above analogy to study physical systems
constitutes a new research area in physics that can be
calledcybernetical physics.

The subject of cybernetical physics is investigation of
natural systems depending on (weak) feedback inter-
actions with the environment. Its methodology heav-
ily relies on the design methods developed in cyber-
netics. However, the approach of cybernetical physics
differs from the conventional use of feedback in con-
trol applications (e.g., robotics, mechatronics, see [12])
aimed mainly at driving a system to a pre-specified po-
sition or a given trajectory. The cybernetical methodol-
ogy may also gain new insights into chemistry, biology
and environmental studies. Perhaps the oncoming years
will provide new important contributions in this exciting
field.

It is interesting to link the speed-gradient approach with
the results of H.Rosenbrock [13, 14] who demonstrated
how to obtain Schr̈odinger’s equation and some other
results from the elementary theory of quantum mechan-
ics by means of optimality principle of dynamic pro-
gramming. Although using extremal principles is by
no means a new approach, most of previous applica-
tions belong to the engineering area where optimality
is a goal of creating an artificial engineering system.
In the contrast, the goal-seeking in physics was many
times criticized as a way of scientific description of na-
ture. For example, let us quote A.Einstein [15], follow-
ing [14]:

“For the scientist there is only being, but no wishing, no
valuing, no good, no evil; no goal”.

Rosenbrock characterizes such an opinion as outdated,
arguing that the goal-seeking is natural for much
broader class of systems than just living organisms.

The above Speed-gradient principle as a local (differ-
ential) extremal principle relies upon goal-seeking idea
even more heavily than integral variational principles
and it may add arguments into the discussion. In the
cases where obtaining physical results is easier from ex-
tremal principle than from system equations (see [14]),
using simple Speed-gradient formulation may further
facilitate analysis of a physical system.

Authors takes a chance to thank an anonymous reviewer
for useful comments.
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