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Abstract

In this paper a novel co-energy modelling framework is pre-
sented for a relevant class of linear and nonlinear mechani-
cal systems. The approach uses the classical Brayton-Moser
equations which are deduced from a (port-)Hamiltonian de-
scription. The approach allows classical results from electrical
circuit synthesis and analysis to be carried over exactly to the
mechanical domain. It also enables one to apply (nonlinear)
control techniques like Power Shaping as recently proposed in
[7]. Illustrative examples are provided to facilitate the theoret-
ical developments.

1 Introduction

Commonly appreciated tools in the dynamical modelling
of electrical and mechanical systems are the Lagrangian
and (port-)Hamiltonian framework, see e.g. [6, 9] and the
references therein. Based on the energy and interconnection
properties, one is able to derive the equations of motion in
a systemic way. Starting from the energy-balance of the
system these formalisms have proven to be very useful for
gaining insight in the behavior of the system, stability analysis
and the design of (nonlinear) stabilizing controllers, see
e.g. [6, 8]. However, there are some disadvantages of using
the Lagrangian or (port-)Hamiltonian descriptions. One of
these disadvantages is that the choices of the state variables
are not always the most intuitively meaningful ones. For
example, as pointed out in [4], in the electrical domain, the
(port-)Hamiltonian uses the inductor fluxes and capacitor
charges as the state variables. Apart from the fact that Ohm’s
law is formulated in terms of the currents and voltages (or
flows and efforts, respectively), the fluxes and charges are in
practice not the most common states or outputs to measure
when designing a feedback controller. This also holds for
mechanical systems where the dissipation is usually described
in terms of the Rayleigh dissipation function depending on the
velocities in the system instead of the momenta. Besides that,
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in a practical situation one rather measures velocity instead of
momenta.

Recently, in [3] we have proposed an alternative modelling
framework for a limited class of nonlinear electro-mechanical
systems that differs from the conventional modelling setting.
The formalism is based on an explicit definition of Brayton-
Moser’s mixed potential and the co-energy of the system. In
this way the equations of motion are directly expressed in
terms of the (‘easily’ measurable) flows and efforts of the
system. However, the approach in [3] treats the conservative
forces stemming from some potential energy function as
external ports. In case of gravity this can be considered
natural, but if the system contains translational or rotational
springs we may treat this differently. Also, in [3] we have
a ‘canonical’ description of the Brayton-Moser equations,
whereas a more general form that includes a larger class
of systems will be treated here. In this paper we present a
complete mechanical analog of Brayton and Moser’smixed
potential function in terms of the conservative forces and
generalized velocities acting in the system. This leads to
the notion of mechanicalcontentand mechanicalco-content,
which represent the characteristics of the velocity- and force
controlled mechanical dissipators, respectively.

Notation: By Tx(x, ·) we denote the partial derivative of
T (x, ·) with respect tox, i.e, Tx(x, ·) = ∂T (x, ·)/∂x. Con-
sequently,Txx(x, ·) = ∂2T (x, ·)/∂x2, etc.. Furthermore, by
ŷ(x) we define the vector of the constitutive relations for the,
sayk, (x–controlled) elements of a certain type (resistance, in-
ductance, etc.),̂y(x) = col(ŷ1(x), . . . , ŷk(x)).

2 Topologically Complete Mechanical Systems

In this section we aim at a precise analog of the classical Bray-
ton and Moser framework [1] to describe the equations of mo-
tion for a practical class of mechanical systems. During our
developments we restrict ourselves to mechanical systems that
can be described by a class of the celebrated port-Hamiltonian
equations [9], and we will rewrite them in a similar form as the
Brayton-Moser equations. In the construction we do not want
to elaborate on the existence of a mixed potential function of



mechanical type in general. For example, in [2] it is argued
that there may exist state-modulated systems that can not be
generated by one mixed potential. Instead, we will focus on a
topological construction of such function and for now we sim-
ply assume that such function exists.

2.1 Brayton and Moser’s Equations

The Brayton-Moser framework was originally developed to
model the dynamics of (possibly nonlinear) topologically com-
plete1 electrical RLC circuits and is based on the introduction
of a single scalar function. In general, the Brayton-Moser equa-
tions [1] are described by

C(v)
dv

dt
= Pv(v, i), −L(i)

di

dt
= Pi(v, i), (1)

wherev represents the vector of independent capacitor voltages
and i represents the vector of independent inductor currents.
Furthermore, the matricesC(v) and L(i) denote the incre-
mental capacitor and inductor characteristics, respectively,
and P (v, i) is a scalar function called themixed potential
function. This function captures the physical structure, like
interconnection and dissipation, of the circuit and can also be
used as a Lyapunov-type function to determine stability under
certain conditions on the circuit elements.

To this end, we do not elaborate any further on the mixed po-
tential function of electrical type. Instead, we will show, in a
piece by piece manner, how to construct this function starting
from a port-Hamiltonian description for mechanical systems.

2.2 Port-Hamiltonian Mechanics

It is well-known that a rather general class of (possibly non-
linear) mechanical systems defined on an-dimensional differ-
entiable state-space manifoldM, with local coordinates(x, p),
admit a port-Hamiltonian description with Dirac structureD,
see [9]. The class of port-Hamiltonian systems we consider
herein are in local coordinates given by

ẋ = γ>Hp(x, p)

ṗ = −γHx(x, p),
(2)

wherex = col(x1, . . . , x%) ∈ R% denote the generalized dis-
placement coordinates andp = col(p1, . . . , pς) ∈ Rς denote
the corresponding generalized momenta (thus,n = % + ς).
Furthermore,γ ∈ D is a ς × % matrix which may depend
on the coordinates2, and the scalar functionH(x, p) denotes
the Hamiltonian which in this case is defined as the sum of
the kinetic energyT (x, p) and potential energyV (x), i.e.,

1A circuit is called ‘topologically complete’ if it can be described by an in-
dependent set of inductor currents and capacitor voltages such that Kirchhoff’s
laws are satisfied. For a detailed treatment, the reader is referred to [10].

2In many mechanical systemsγ is the identity matrix (symplectic), hence
ς = %.

H(x, p) = T (x, p) + V (x). In the sequel, we assume that
the mechanical systems under consideration allow a Hamilto-
nian of the formH(x, p) = 1

2

∑
j,k{M−1}jk(x)pjpk + V (x),

where{M−1}jk(x) refers to the(j, k)-th element ofM−1(x),
with M(x) a positive definite symmetricς × ς matrix called
the inertia or generalized mass matrix. In this coordinate set-
ting the definition of the potential energy has the general form

V (x) =
∫ x

0

f̂(x′)dx′, (3)

wheref = f̂(x), with f = col(f1, . . . , f%) ∈ R%, are the con-
servative forces generated by the system. In order to be able to
find a Brayton-Moser type description of (2) we need to define
the total co-energyH∗(f, v) = T ∗(f, v) + V ∗(f). If the con-
stitutive relations are bijective this is easily accomplished by
performing a Legendre transformation on the energy variables
x 7→ f , i.e.,

V ∗(f) =
∫ f

0

x̂(f ′)df ′. (4)

The Legendre transformation on the momentap 7→ v, where
v = col(v1, . . . , vς) ∈ Rς denote the generalized velocities,
yields the kinetic co-energy

T ∗(x, v) =
∫ v

0

p̂(x, v′)dv′. (5)

The resulting co-energy is then given by

H∗(f, v) = T ∗(x, v)
∣∣
x=x̂(f)

+ V ∗(f)

=
1
2

∑

j,k

{M}j,k(f)vjvk + V ∗(f). (6)

It is interesting to remark thatH∗(f, v) is often called the co-
Hamiltonian. Again we point out thatV ∗(f) is only well-
defined if there exists some bijective constitutive relationf =
f̂(x). In case the system is subject to, for example, gravita-
tional fields, such transformation does not exist. We come back
to this in Section 4.

Remark 1 Notice that the port-Hamiltonian system (2) can
also be considered as a topologically complete system, i.e.,
there should exist an independent set of forces (resp. displace-
ments) and velocities (resp. momenta) such that each branch
(e.g., masses and springs) is determined by at least one ele-
ment from the set of forces (resp. displacements) and velocities
(resp. momenta). An example of a topologically non-complete
mechanical system is treated in the following section.

In the remaining of the document, we assume that the mechan-
ical system is defined onRn and hence the approach can be
considered to be global. We are now ready to define a Brayton-
Moser description by introducing a mixed potential function of
mechanical type.



2.3 Mechanical Mixed-Potential, Content and Co-Con-
tent

Our purpose is to write the equations obtained in the previous
subsection in a Brayton-Moser form for the framework of me-
chanical systems. To do this, we have to search for the suitable
functionP which allows us to write (2) in a form

d
dtH

∗
f (f, v) = Pf (f, v)

− d
dtH

∗
v (f, v) = Pv(f, v).

(7)

Completely analog to [1], we have the following proposition:

Proposition 1 Assume that̂x(f) and f̂(x) are bijective func-
tions smoothly defined onR%, and letP : Rn → R be a smooth
function defined as

P (f, v) = v>γf, (8)

then the equations of motion for a complete mechanical sys-
tem described by (2) can be rewritten in terms of the co-energy
variables(f, v) in the form (7)–(8).

Proof: Let F denote a linearn-dimensional space spanned by
the forces(f, f ′), wheredim{f ′} = ς, acting in the system
and letV denote a linearn-dimensional space spanned by the
velocities(v, v′), dim{v′} = %, generated by the system. Then
from Tellegen’s Theorem3 we know thatF andV are orthogo-
nal subspaces spanning the total configuration spaceR2n. Fur-
thermore, letΓ be a one-dimensional curve inR2n with pro-
jections onF andV denoted by the2n forces and velocities,
respectively. Since(v, v′) ∈ V then also(dv, dv′) ∈ V. Hence,
by lettingf ′ = d

dtH
∗
v (f, v), v′ = d

dtH
∗
f (f, v) and using Telle-

gen’s Theorem we have that
∫

Γ

%∑

i=1

v′idfi +
∫

Γ

ς∑

j=1

vjdf
′
j = 0, (9)

or by integrating the second line integral by parts,
∫

Γ

%∑

i=1

v′idfi −
∫

Γ

ς∑

j=1

f ′jdvj +
ς∑

k=1

vkf ′k

∣∣∣∣
Γ

= 0. (10)

Hence, by using the Legendre transformationv = Hp(x, p)
andf = Hx(x, p) we obtain from (2) thatv′ = γ>v andf ′ =
−γf , see (2),P (f, v) is defined by

P (f, v) =
∑

k,j

vkγkjfk

∣∣∣∣
Γ

, γkj ∈ γ. (11)

Notice thatP (f, v) is a function depending only on the end
points ofΓ and therefore only depends on the variablesf and
v. This concludes the proof. ¥

3Dirac structures [9] provide a natural generalization of this theorem, char-
acterizing in an elegant geometrical language the key notion of power preserv-
ing interconnections of the system elements. Due to the assumed form of the
port-Hamiltonian equations (2), which in the electrical domain just constitute
the Kirchhoff laws, we can still apply Tellegen’s Theorem in its classical defi-
nition.

Remark 2 Our aim of the proof was to emphasize the geomet-
rical structure and origin of the mixed potential function. The
proof is constructed along the same lines as in [1].

Next, we like to include the effect of a set of external and dis-
sipative forces and velocities on the system. An ideal (trans-
lational or rotational) mechanical dissipator is defined as an
object which exhibits no mass or spring effects, but only dis-
sipative forces or velocities. If the dissipation is nonlinear we
may distinguish between velocity-controlled, force-controlled
and one-to-one (both velocity and force controlled) dissipators.
For the velocity-controlled dissipators we consider the usual
description in terms of the Rayleigh dissipation function, de-
fined as

D(v) =
∫ v

0

δ̂(v′)dv′,

where δ̂(v) represents the vector of functions describing the
characteristics of the mechanical dissipation depending on the
velocities. Note that the content is a known function of the dis-
sipator velocity so thatDv(v) represents the dissipator force.
It is interesting to notice that this framework also admits a
Rayleigh dissipation co-function in terms of the forces, i.e.,

K(f) =
∫ f

0

κ̂(f ′)df ′,

where κ̂(f) represents the vector of functions describing the
characteristics of the mechanical dissipation depending on the
forces. Since the co-content is a known function of the dissipa-
tor force,Kf (f) represents the dissipator velocity.

6

-
force, f

velocity, v

CONTENT

D(v)

CO-CONTENT

K(f)

Figure 1: Mechanical content and co-content

In order to be fully consistent with the electrical domain,
where current-controlled and voltage-controlled resistors are
calledcontentandco-content, respectively, we may refer to the
velocity-controlled dissipatorsD(v) as themechanical content
and the force-controlled dissipatorsK(f) as themechanical
co-content, see also Figure 1. Originally, this terminology has
been introduced by W. Millar and C. Cherry in the early-fifties
(see [1] and the references therein). For a one-to-one dissipator
the sum of the content and co-content yields the total absorbed



power, i.e.,
Pdiss(v, f) = D(v) + K(f).

The external forces (control inputs),τ = col(τ1, . . . , τm) ∈
Rm, can be included through the total supplied power defined
by Pin(v, τ) = v>Bτ , whereB ∈ Rm×n reflects the degree of
(under-)actuation. Hence, in a similar fashion as the proof of
Proposition 1, the total mixed potential function of mechanical
type is constructed as

P (f, v) = D(v)−K(f) + v>γf − v>Bτ. (12)

Concerning the mechanical content and co-content, we observe
that, in caseH∗(f, v) is quadratic, the power-balance is given
by

Ḣ∗(f, v) = Pin(v, τ)− {
f>Kf (f) + v>Dv(v)

}
︸ ︷︷ ︸

dissipated power

, (13)

which implies that (7) defines a passive port with power-port
variables(v, τ). Equations (7) define the complete mechani-
cal analog of (1), except for the fact that the mechanical co-
content does not include an analog of the electrical current
sources. This would suggest something in the direction of ve-
locity sources. However, if necessary the velocity sources can
be included as supplied co-content in a similar fashion as the
external forces in the supplied content. Notice that if the ki-
netic co-energy does not depend on the conservative forcesf ,
then (7) reduces to the canonical form of the Brayton-Moser
equations of mechanical type. Let us conclude this section by
a simple example of a mechanical system.

Example 1 Consider the mechanical mass-spring-damper sys-
tem depicted in Figure 2.

m

d

k1

k2

x2 x1

τ
�

Figure 2: Mechanical system with co-content

Assume that the springs are linear with spring constantsk1 and
k2. Furthermore, letm be the mass of the block,d the resis-
tance of the damper and letδ̂(v1) denote the constitutive rela-
tion for the friction of the mass with the surface. The externally
supplied force is denoted byτ and the total co-energy is given
by

H∗(f1, f2, v1) =
m

2
v2
1 +

1
2k1

f2
1 +

1
2k2

f2
2 .

Then, the mixed potential for this system is defined by

P (f, v) = − 1
2d

(f2−f1)2−τv1+
∫ v1

0

δ̂(v′1)dv′1+v1f2. (14)

Hence, the equations of motion are determined by substitution
of (14) together with the total co-energyH∗(f1, f2, v1) into

(7), i.e.,

1
k1

ḟ1 =
1
d
(f2 − f1)

1
k2

ḟ2 = v1 − 1
d
(f2 − f1)

mv̇1 = τ − f2 − δ̂(v1).

3 Topologically Non-Complete Mechanical Sys-
tems

Although topological completeness can, in some sense as
discussed in [1, 10] for electrical circuits, be considered as typ-
ical, in general it may occur that a system is not topologically
complete. To see this we consider a topologically complete
mechanical mass-spring-damper system withm2 6= 0 depicted
in Figure 3. Assume that the spring is linear, i.e.,f1 = k1x1,
the masses are constant,d1 is velocity-controlled with con-
stitutive relation given bŷδ1(v2 − v1) and d2 is linear with
δ̂2(v2) = d1v2. There is no friction between the masses and
the surfaces.

If m2 > 0 the system is obviously complete since the velocity
v2 is well-defined by the corresponding displacement ofm2.
The mixed potential function is easily computed to be

P (f1, v1, v2) = f1(v2−v1)+
∫ v2−v1

0

δ̂1(s)ds+ 1
2d2v

2
2−v1τ.

Suppose now thatm2 = 0, thenv2 is no longer an independent
variable and must be eliminated be lettingPv2(f1, v1, v2) = 0,
see [1], or by setting

τ = δ̂1(v2 − v1) + d2v2 + f1,

which leads toτ − f2 − d2v1 = δ̂1(v2 − v1) + d2(v2 − v1), or
equivalently

v2 − v1 = ĥ(τ − f1 − d2v1).

Hence, after substituting the latter into the mixed potential
P (f1, v1, v2) function yields a new mixed potential̃P (f1, v1)
in terms of the independent variablesf1 andv1, i.e.,

P̃ (f1, v1) = f1ĥ(τ − f1 − d2v1) +
∫ ĥ(τ−f1−d2v1)

0

δ̂1(s)ds +

1
2d2[ĥ(τ − f1 − d2v1) + v1]2 − v1τ.

If we assume thatd1 is also linear, i.e.,̂δ1[ĥ(τ − f1− d2v1)] =
d1ĥ(τ − f1− d2v1) and thusv2 = 1

d1+d2
(τ + d1v1− f1), then

the equations of motion become

1
k1

ḟ1 =
τ − f1

d1 + d2
− d2

d1 + d2
v1

m1v̇1 =
d1

d1 + d2
(τ + d1v1 − f1)− d1v1.
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τ
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Figure 3: Topologically complete mechanical system system
for m2 6= 0; topologically non-complete form2 = 0.

Although this is a very simple example, which could be
modelled with much simpler techniques, the method becomes
of interest if rather complex systems have to be studied. A
similar but detailed systematic solution to such problems for
electrical circuits is proposed in [10]. The general procedure
applied to mechanical systems is as follows.

Procedure:

1. If possible, make the system topologically complete
by adding additional dynamic elements (e.g., masses
or springs). Derive the mixed potential function
P (f, v, fadd, vadd) for the extended topologically com-
plete system, wherefadd = col(f%+1, . . . , fµ) and
vadd = col(vς+1, . . . , vν) with µ−% andν−ς the number
of additional elements, respectively.

2. Find the relationsfadd = f̂add(f, v) and vadd =
v̂add(f, v), substitute the latter into step 1 and solve

Pfadd(f, v, fadd, vadd) = Pvadd(f, v, fadd, vadd) = 0.

3. Obtain the mixed potential functioñP (f, v) by insert-
ing fadd = f̂add(f, v) and vadd = v̂add(f, v) into
P (f, v, fadd, vadd).

A necessary condition forfadd = f̂add(f, v) and vadd =
v̂add(f, v) to exist is that the content and co-content need
to be continuous functions. Furthermore, the Hessians of
P (f, v, fadd, vadd) with respect tofadd and vadd need to be
regular.

4 Non-Bijective Potential Fields

So far we have defined a precise mechanical analog of the
Brayton-Moser equations. We have seen that this is only
possible if the Legendre transformationsp 7→ v andx 7→ f are
well-defined. Unfortunately, in general this is not always the
case. For example, if a systems operates under the influence
of gravity the mappingx 7→ f simply does not exist. For that
reason we extend the previous developments to systems having
non-bijective potential fields introducing a parameterized
version of the Brayton-Moser equations as follows.

Let λ ≤ % denote the number of non-bijective functions de-
pending on the partitioned generalized displacementsx =

col(x1, . . . , xλ, xλ+1, . . . , x%) and let the corresponding total
potential energy be given by

V (x) =
λ∑

j=1

Vj(x). (15)

The remaining%−λ bijective relations should be expressible in
terms of the related conservative forcesf = col(fλ+1, . . . , f%)
with the corresponding potential co-energy

V ∗(f) =
%∑

k=1+λ

V ∗
k (f). (16)

Consequently, we have that the first equation of (7) becomes
ẋ1 = v1, . . . , ẋλ = vλ and d

dtH
∗
fλ+1

= Pfλ+1 , . . . ,
d
dtH

∗
f%

=
Pf%

. Hence, by defining̃x = col(x1, . . . , xλ) and ṽ =
col(v1, . . . , vλ), the complete description becomes

d
dt x̃ = ṽ

d
dtH

∗
f (x̃, f, v) = Pf (x̃, f, v)

− d
dtH

∗
v (x̃, f, v) = Pv(x̃, f, v).

(17)

The total co-energyH∗(x̃, f, v) is defined asH∗(x̃, f, v) =
T ∗(x̃, v) + V ∗(f) and the mixed potential functionP :
R%+ς → R takes the form

P (x̃, f, v) = D(x̃, v) − K(x̃, f) + v>γf + ṽ>Vx̃(x̃)

−
∫ v

0

H∗
x̃(x̃, f, v′)dv′ − v>Bτ,

whereγ is now aς × (% − λ) matrix not necessarily constant,
i.e.,γ may depend oñx, f andv. Notice that ˙̃x = ṽ represents
the constraints on the additional velocity. The term

∫ v

0

H∗
x̃(x̃, f, v′)dv′

corresponds to the power generated by the ‘geometrical’ forces
H∗

x(x, v), which is part of the forces called the Coriolis and
centrifugal forces represented byH∗

vx̃
˙̃x−H∗

x̃ , see [9] for more
details. One easily recognizes in (17) the underlying partial
Lagrangian structure, i.e., in caseλ = %, by noting that̃x = x,
ẋ = v and by writingPv(x, v) explicitly, (17) reduces to

− d
dtH

∗
v (x, v) + H∗

x(x, v) = −Dv(x, v) + Vx(x) + Bτ,

where we assume thatH∗(x, v) = T ∗(x, v) andK(f) = 0.
Hence, by definingL(x, v) = T ∗(x, v)−V (x), the latter equa-
tion can be written as

− d
dtLv(x, v) + Lx(x, v) = −Dv(x, v) + Bτ.

This is just the well-known Euler-Lagrange equation with
LagrangianL(x, v).

We conclude this section with the remark that if the kinetic
co-energy depends on the generalized displacements (or pos-
sibly forces as well), then (17) establishes a set of generalized
parameterized Brayton-Moser equations. In this case it is not
possible to find a canonical set of equations due to the fact that
the Coriolis and centrifugal forces are workless [3].



5 Concluding Remarks

In this paper we have presented a precise mechanical analog
of the Brayton and Moser framework. The method uses the
kinetic and potential co-energy and a mixed potential deduced
from the topological constraints of the system. A necessary
condition for the framework to be valid is that the kinetic
and potential energy are homogeneous quadratic functions.
Although this seems quite a strong restriction there is still a
broad class of systems that can be approached by the method.
On the other hand, if the potential energy is non-quadratic we
may try to find a description of the system locally or we can
use a parameterized version of the Brayton-Moser equations
proposed in the previous section. As shown in an example,
it may occur that one has to deal with a mechanical system
having force controlled dampers or friction. In contrast to the
(port-)Hamiltonian equations, this type of elements can be
naturally incorporated in the framework.

An advantage of using the mixed potential function is that we
can apply Brayton and Moser’s stability criteria to investigate
the stability of the equilibrium points of a mechanical sys-
tem or use it to find tuning rules for feedback controllers, like
the passivity-based control algorithms [5]. Also, in the pro-
posed framework we are able to apply the recently developed
novel nonlinear control technique, calledPower Shaping, as
proposed in [7], to the class of mechanical systems considered
here. This control method aims at shaping the mixed poten-
tial function in order to stabilize the system towards a desired
(non-zero) equilibrium. However, it is not precisely clear to
what extend the method can be used in general. What we do
know is that for a given system described by a function, say
f(z, ·) = Pz(z, ·), the existence of a mixed potential function
P (z, ·) hangs upon the fact that the Jacobian off(z, ·) should
be symmetric. As stated in e.g. [2] there may exist (internally
modulated) Dirac structures that can not be generated by one
mixed potential function due to a particular kind of nonlin-
earity. An example of such system is a rigid body spinning
around its center of mass described by Euler’s equations, see
e.g., [2, 9]. For that reason, future research should be devoted
to find conditions for the existence of a mixed potential func-
tion of mechanical type.
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