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Abstract Recently, in [3] we have proposed an alternative modelling
. . . framework for a limited class of nonlinear electro-mechanical
In this paper a novel co-energy modelling framework is pre- . : . .
. . Systems that differs from the conventional modelling setting.

sented for a relevant class of linear and nonlinear mechanj- oo - .
e formalism is based on an explicit definition of Brayton-

cal systems. The approach uses the classical Brayton-M dser's mixed potential and the co-energy of the system. In

equations which are deduced from a (port-)Hamiltonian dg- ! : X .
s way the equations of motion are directly expressed in

sprlptuon. The gpproach alloyvs classu:al.results from electnch%'rms of the (‘easily’ measurable) flows and efforts of the
circuit synthesis and analysis to be carried over exactly to the

4 . .~ _system. However, the approach in [3] treats the conservative
mechanical domain. It also enables one to apply (nonline

control techniques like Power Shaping as recently pro osejﬂ) ces stemming from some potential energy function as
q hing Y prop Wernal ports. In case of gravity this can be considered

i[(gl ggj\,sé@g\ﬁe?:smples are provided to facilitate the theore:il{atyral, but if the system cqntains translational or rotational
' springs we may treat this differently. Also, in [3] we have
a ‘canonical’ description of the Brayton-Moser equations,
1 Introduction whereas a more general form that includes a larger class
of systems will be treated here. In this paper we present a

Commonly appreciated tools in the dynamical mOde”ingomplete mechanical analog of Brayton and Mosenized

of electrical and mechanical systems are the I“’;‘grang'acr)wtential function in terms of the conservative forces and

and (port-)Hamiltonian framework, see e.g. [6, 9] and ﬂPeeneraIized velocities acting in the system. This leads to

references therein. Based on the energy and interconnecﬁgn . . .
. . . . ) e notion of mechanicatontentand mechanicato-content
properties, one is able to derive the equations of motion |

. . Wwhich represent the characteristics of the velocity- and force
a systemic way. Starting from the energy-balance of the

. tcontrolled mechanical dissipators, respectively.
system these formalisms have proven to be very useful for
gaining insight in the behavior of the system, stability analysis
and the design of (nonlinear) stabilizing controllers, sd¥otation: By T,(z,-) we denote the partial derivative of
e.g. [6, 8]. However, there are some disadvantages of usiig, -) with respect taz, i.e, T (z,-) = 0T(z,-)/0x. Con-
the Lagrangian or (port-)Hamiltonian descriptions. One sequentlyl,,(z, ) = 9*T(x,-)/0x?, etc.. Furthermore, by
these disadvantages is that the choices of the state variablgs we define the vector of the constitutive relations for the,
are not always the most intuitively meaningful ones. F®ayk, (x—controlled) elements of a certain type (resistance, in-
example, as pointed out in [4], in the electrical domain, thductance, etc.)j(z) = col(91(z), ..., Jx(x)).
(port-)Hamiltonian uses the inductor fluxes and capacitor
charges as the state variables. Apart from the fact that Ohm's Topologically Complete Mechanical Systems
law is formulated in terms of the currents and voltages (or
flows and efforts, respectively), the fluxes and charges arelirthis section we aim at a precise analog of the classical Bray-
practice not the most common states or outputs to meastme and Moser framework [1] to describe the equations of mo-
when designing a feedback controller. This also holds ftion for a practical class of mechanical systems. During our
mechanical systems where the dissipation is usually descrilslesrelopments we restrict ourselves to mechanical systems that
in terms of the Rayleigh dissipation function depending on tle@n be described by a class of the celebrated port-Hamiltonian
velocities in the system instead of the momenta. Besides tretpations [9], and we will rewrite them in a similar form as the
Brayton-Moser equations. In the construction we do not want
to elaborate on the existence of a mixed potential function of
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mechanical type in general. For example, in [2] it is argueld (x,p) = T(z,p) + V(z). In the sequel, we assume that
that there may exist state-modulated systems that can notthe mechanical systems under consideration allow a Hamilto-
generated by one mixed potential. Instead, we will focus oméan of the formH (z,p) = ZM{M—lh«k(x)pjp;C + V(x),
topological construction of such function and for now we sinwhere{M '}, (z) refers to thej, k)-th element of\/ ~! (),
ply assume that such function exists. with M (z) a positive definite symmetric x ¢ matrix called

the inertia or generalized mass matrix. In this coordinate set-
2.1 Brayton and Moser’s Equations ting the definition of the potential energy has the general form

The Brayton-Moser framework was originally developed to Viz) = /T Fa ) da! 3
model the dynamics of (possibly nonlinear) topologically com- (z) 0 fa)da, @)
pletét electrical RLC circuits and is based on the introduction

of a single scalar function. In general, the Brayton-Moser equitheref = f(z), with f = col(f1, ..., f,) € R?, are the con-
tions [1] are described by servative forces generated by the system. In order to be able to
J di find a Brayton-Moser type description of (2) we need to define
C(U)l = Py(v,1), —L(i)fZ = Py(v,i), (1) the total co-energy?*(f,v) = T(f,v) + V*(f). If the con-
dt dt stitutive relations are bijective this is easily accomplished by

wherev represents the vector of independent capacitor voltagegforming a Legendre transformation on the energy variables
andi represents the vector of independent inductor currents— f, i.e.,
Furthermore, the matrice§'(v) and L(i) denote the incre- VH(F) = o FVdF
mental capacitor and inductor characteristics, respectively, (f) = 0 2(f')df".
and P(v,:) is a scalar function called thmixed potential .

. . . . . The Legendre transformation on the momemnta> v, where
function. This function captures the physical structure, like . . -
) . L O Be= col(vy,...,vc) € RS denote the generalized velocities,
interconnection and dissipation, of the circuit and can also be )

. : . dylelds the kinetic co-energy

used as a Lyapunov-type function to determine stability under
certain conditions on the circuit elements.

(4)

T (x,v) = /OU px,v")dv'. (5)

To this end, we do not elaborate any further on the mixed
tential function of electrical type. Instead, we will show, in
piece by piece manner, how to construct this function starting H*(f,v) = T*(z U)| V)
from a port-Hamiltonian description for mechanical systems. ’ T e=a(f)

piﬁe resulting co-energy is then given by

% Z{M}j,k(f)vjvk + V(). ©)
ik

2.2 Port-Hamiltonian Mechanics

It is well-known that a rather general class of (possibly nofi-is interesting to remark that*(f, v) is often called the co-
linear) mechanical systems defined on-dimensional differ- Hamiltonian. Again we point out thalt™*(f) is only well-
entiable state-space manifdid, with local coordinate$x, p), defined if there exists some bijective constitutive relatfos
admit a port-Hamiltonian description with Dirac structube f (z). In case the system is subject to, for example, gravita-
see [9]. The class of port-Hamiltonian systems we considéenal fields, such transformation does not exist. We come back
herein are in local coordinates given by to this in Section 4.

& = " Hpy(z,p) : e

2 Remark 1 Notice that the port-Hamiltonian system (2) can
p = —yHi(z,p), also be considered as a topologically complete system, i.e.,
there should exist an independent set of forces (resp. displace-

— o i is- .
wherez = col(zy,...,z,) € R? denote the generalized dis ¢y and velocities (resp. momenta) such that each branch
placement coordinates apd= col(py,...,p.) € R° denote

h di lized hi (e.g., masses and springs) is determined by at least one ele-
the corresponding generalize momenta _(t S o+ 9). ment from the set of forces (resp. displacements) and velocities
Furthermore,y € D is a¢ x p matrix which may depend

, ) (resp. momenta). An example of a topologically non-complete
on the coordinatés and the scalar functiofif (z, p) denotes

o o . , , mechanical system is treated in the following section.
the Hamiltonian which in this case is defined as the sum of

the kinetic ener x,p) and potential ener x), i.e., .
oy (. p) P 9y () In the remaining of the document, we assume that the mechan-

1A circuit is called ‘topologically complete’ if it can be described by an injcg| system is defined oR"™ and hence the approach can be
dependent set of inductor currents and capacitor voltages such that Kirchhoéf(’)shsidered to be global. We are now ready to define a Brayton-
laws are satisfied. For a detailed treatment, the reader is referred to [10]. .. . . . . .

2Jn many mechanical systemsis the identity matrix (symplectic), hence MOSEr description by introducing a mixed potential function of

s=o. mechanical type.




2.3 Mechanical Mixed-Potential, Content and Co-Con- Remark 2 Our aim of the proof was to emphasize the geomet-
tent rical structure and origin of the mixed potential function. The

) ] ) ) ] _ proof is constructed along the same lines as in [1].
Our purpose is to write the equations obtained in the previous

subsection in a Brayton-Moser form for the framework of me- _ . '
chanical systems. To do this, we have to search for the suitab@<t we like to include the effect of a set of external and dis-

function P which allows us to write (2) in a form sipative forces :_;md velocities on theT system. An ideal (trans-
P lational or rotational) mechanical dissipator is defined as an

EHf(ﬁ”) = Py(f,) @ object which exhibits no mass or spring effects, but only dis-

—LH:(f,v) = Py(f,v). sipative forces or velocities. If the dissipation is nonlinear we

may distinguish between velocity-controlled, force-controlled
and one-to-one (both velocity and force controlled) dissipators.
For the velocity-controlled dissipators we consider the usual
description in terms of the Rayleigh dissipation function, de-
fined as

Completely analog to [1], we have the following proposition:

Proposition 1 Assume that(f) and f(x) are bijective func-
tions smoothly defined d&e, and letP : R* — R be a smooth
function defined as

P(f,v)=v"~f, (8)

then the equations of motion for a complete mechanical syvhereg(v) represents the vector of functions describing the

tem described by (2) can be rewritten in terms of the co-energlyaracteristics of the mechanical dissipation depending on the

variables(f, v) in the form (7)—(8). velocities. Note that the content is a known function of the dis-
sipator velocity so thaD, (v) represents the dissipator force.

Proof: Let ¥ denote a linean-dimensional space spanned byt is interesting to notice that this framework also admits a

the forces(f, '), wheredim{f’'} = ¢, acting in the system Rayleigh dissipation co-function in terms of the forces, i.e.,

and letV denote a linearn-dimensional space spanned by the

velocities(v, v'), dim{v’} = p, generated by the system. Then K(f) = /f s

from Tellegen’s Theorefwe know thatF andV are orthogo- 0 ’

nal subspaces spanning the total configuration sgaéeFur- _ o
thermore, le” be a one-dimensional curve &?" with pro- where4(f) represents the vector of functions describing the
jections onF andV denoted by then forces and velocities, characteristics of the mechanical dissipation depending on the
respectively. Sincév, v') € V then alsq(dv, dv') € V. Hence forces. Since the co-content is a known function of the dissipa-
by letting f' = 4 H*(f,v), v/ = %H]*c(f, v) and using Telle- tor force, K¢ ( f) represents the dissipator velocity.

gen’s Theorem we have that

D(v) = /ng(vl)dv/,

velocity, v |
|

/F;Uidfi + /F ;vjdfj =0, ©) N _

CONTENT
or by integrating the second line integral by parts, D(v)

0 S S CO-CONTENT
/ngdf,- - / > fjdvi+> wkfi| =0.  (10) K(f)
Fi=1 =1 k=1 r

Hence, by using the Legendre transformatior= H,(x, p)

andf = H,(z,p) we obtain from (2) that’ = v"v andf’ = force, f
—~f, see (2),P(f,v) is defined by

P(f,v) = vk fu| W € 7- (11) Figure 1: Mechanical content and co-content
T

" In order to be fully consistent with the electrical domain,

Notice thatP(f,v) is a function depending only on the endyhere current-controlled and voltage-controlled resistors are
points ofI" and therefore only depends on the variableand  cjledcontentandco-contentrespectively, we may refer to the
v. This concludes the proof. B \elocity-controlled dissipator®(v) as themechanical content

3Dirac structures [9] provide a natural generalization of this theorem, ch@nd the force-controlled dissipatof§(f) as themechanical
acterizing in an elegant geometrical language the key notion of power presgfg~contentsee also Figure 1. Originally, this terminology has
ing interconnections of the system elements. Due to the assumed form offg, ., introduced by W. Millar and C. Cherry in the early-fifties
port-Hamiltonian equations (2), which in the electrical domain just constitute . L
the Kirchhoff laws, we can still apply Tellegen's Theorem in its classical dev{See [1] and the references therein). For a one-to-one dissipator

nition. the sum of the content and co-content yields the total absorbed




power, i.e., (7), i.e.,
Riiss(”a f) = D(U) + K(f)

| i = 2(fa = )
The external forces (control inputs), = col(ry,...,7) € 1
R™, can be included through the total supplied power defined ifQ = v — l(fQ —f1)
by P, (v,7) = v' Br, whereB € R™*" reflects the degree of k2 d X
(under-)actuation. Hence, in a similar fashion as the proof of mo; = 7 — fo — (v1).

Proposition 1, the total mixed potential function of mechanical

type is constructed as 3 Topologically Non-Complete Mechanical Sys-
P(f,v) = D(v) — K(f)+v'~vf—v'Br. (12) tems

Concerning the mechanical content and co-content, we obse@ough topological completeness can, in some sense as
that, in caseH*(f, v) is quadratic, the power-balance is givesliscussed in [1, 10] for electrical circuits, be considered as typ-
by ical, in general it may occur that a system is not topologically
. complete. To see this we consider a topologically complete
H*(f,v) = Pu(v,7) = {fTK;(f) +v" Dy(v)}, (13) mechanical mass-spring-damper system with-% 0 depicted
dissipated power in Figure 3. Assume that the spring is linear, i&.,.= kjz1,
o ] ) . the masses are constady, is velocity-controlled with con-
which implies that (7) defines a passive port with power-pogfirtive relation given by (vs — v1) andds is linear with
variables(v, 7). Equations (7) define the complete me_chang—2 v2) = dyva. There is no friction between the masses and
cal analog of (1), except for the fact that the mechanical ¢ syrfaces.
content does not include an analog of the electrical current
sources. This would suggest something in the direction of ve-
locity sources. However, if necessary the velocity sources chrrz > 0 the system is obviously complete since the velocity
be included as supplied co-content in a similar fashion as tfeis Well-defined by the corresponding displacementrat
external forces in the supplied content. Notice that if the ki-ne mixed potential function is easily computed to be
netic co-energy does not depend on the conservative fgrces va—11
then (7) reduces to the canonical form of the Brayton-MoséX(f1, v, v2) = f1(ve —v1) +/ b61(s)ds+ 1dyvd —viT.
equations of mechanical type. Let us conclude this section by 0
a simple example of a mechanical system. Suppose now that, = 0, thenu, is no longer an independent
variable and must be eliminated be lettiRg, (f1, v1,v2) = 0,
Example 1 Consider the mechanical mass-spring-damper syee [1], or by setting
tem depicted in Figure 2.

T = 61(va — v1) + dova + fi1,

m L7 which leads ta- — f5 — davy = 81 (va — v1) + da(va — v1), OF
equivalently
To Ky x1 vy — vy = h(T — fi — dauy).
Figure 2: Mechanical system with co-content Hence, after substituting the latter into the mixed potential

P(f1,v1,v2) function yields a new mixed potenti@(f;,v1)

Assume that the springs are linear with spring constangnd in terms of the independent variablgsandu,, i.e.,

ko. Furthermore, lein be the mass of the block, the resis-
tance of the damper and Ié([vl) denote the constitutive rela- _ . h(r—fi—dav1)

tion for the friction of the mass with the surface. The externall§f (f1,v1) = fih(T — fi — dov1) + / 01(s)ds +
supplied force is denoted kyand the total co-energy is given 0

by %dg[iL(T - f1 - dg’l)l) + U1]2 — U1T.
* m o L L A
H*(f1, f2,01) = bR + Tklfl + 27;2]”2- If we assume thad; is also linear, i.e.01[h(T — f1 — dav1)] =
. o B
Then, the mixed potential for this system is defined by dih(T = fi = dpvy) and thusy = g2 (7 +div1 — f1), then
the equations of motion become
1 v
P(f,v) = —ﬁ(f2—f1)2—7'v1+/0 (vy)dvi4v1 fo. (14) if _T—h d ;
kit T di+dy dy+dy !
Hence, the equations of motion are determined by substitution _ dy
of (14) together with the total co-energy*(fi, fo,v1) into mity = g (T +div1 — f1) — dyor.



2 dy— 1 col(x,...,xx,Txp1,---,2,) and let the corresponding total
% ds — ‘ 1 potential energy be given by
% = - 1 A
777,
A V(z) = g Vi(@). (15)

Figure 3: Topologically complete mechanical system systeﬂ?e remaining — A bijective relations should be expressible in

for ms # 0; topologically non-complete far, = 0. terms of the related conservative forgés= col( fat1,--., fp)
with the corresponding potential co-energy

Although this is a very simple example, which could be VH(f) = zg: VA
modelled with much simpler techniques, the method becomes (f) = e (/)
of interest if rather complex systems have to be studied.

similar but detailed systematic solution to such problems f

(16)
A k=14+X
gronsequently, we have that the first equation of (7) becomes

electrical circuits is proposed in [10]. The general procedu?é - U|_1|’ o Ab_dwf and dtjif/\-HI Ppyrsoons dté{fe :
applied to mechanical systems is as follows. Py, ence, by definings = co (x_l’ -5 @3) and o
col(vy,...,vy), the complete description becomes
43 =15

Procedure: dt

SH; (%, f,v) = Pp(%, f,v) (17)

1. If possible, make the system topologically complete . ~
p ! y p gl y p dH(If’ )_ ( fav)'

by adding additional dynamic elements (e.g., masses _ }
or springs). Derive the mixed potential functionhe total co-energyi*(z, f,v) is defined asi*(z, f,v) =
P(f, v, fadd, Vada) for the extended topologically com-17(Z,v) + V*(f) and the mixed potential functios

plete system, whergfuqq = col(foi1,...,f,) and R¢" — Rtakes the form

Uadd = COl(vi i1, -, 0y) With i — g andy —g the number p(z, f,v) = D(#,v) — K (&, f) + v 1f +3 V(&)

of additional elements, respectively.

. . . / Hi(z, f,o")dv' —v!
2. Find the relationsfaaa = faad(f,v) and vaaa =

Daaa(f,v), substitute the latter into step 1 and solve  where~ is now as x (¢ — A) matrix not necessarily constant,
i.e.,¥ may depend of¥, f andv. Notice thatt = v represents

P , U, fadd, ¥ =P, ,, , U, =0. . o .
faaa (£ fadd; Vada) vaaa (£,0: Faaa; Vaaa) the constraints on the additional velocity. The term

3. Obtain the mixed potential functio®(f,v) by insert- /'“ HE (7, f.0]
. - “ . x,J,
iNg fadda = faada(f,v) and vaga = Daaa(f,v) into
P(f,v, fadd;Vadd)- corresponds to the power generated by the ‘geometrical’ forces

H?(z,v), which is part of the forces called the Coriolis and

centrifugal forces represented ﬁyfgcx — H?, see [9] for more
tails. One easily recognizes in (17) the underlying partial

I_Oe[grang|an structure, i.e., in cade= p, by noting thatt = z,

& = v and by writing P, (z, v) explicitly, (17) reduces to

— 4 Hi(z,v) + H}(2,0) = —Dy(z,v) + Vi (z) + Br,

4 Non-Bijective Potential Fields where we assume thal*(z,v) = 7" (z,v) and K(f) = 0.
Hence, by definind.(x, v) = T*(x,v) — V(z), the latter equa-

So far we have defined a precise mechanical analog of % can be written as

Brayton-Moser equations. We have seen that this is only J B

possible if the Legendre transformatigns- v andz — f are ~dtLo(@,0) + Lo(2,v) = =Do(2,v) + Br.

well-defined. Unfortunately, in general this is not always thEhis is just the well-known Euler-Lagrange equation with

case. For example, if a systems operates under the influebagrangianL (z, v).

of gravity the mapping: — f simply does not exist. For that

reason we extend the previous developments to systems ha\(geq conclude this section with the remark that if the kinetic

non-bijective potential fields introducing a parameterlze

version of the Brayton-Moser equations as follows. co-energy depends on the generalized displacements (or pos-
sibly forces as well), then (17) establishes a set of generalized
parameterized Brayton-Moser equations. In this case it is not

Let A < p denote the number of non-bijective functions degsossible to find a canonical set of equations due to the fact that

pending on the partitioned generalized displacements- the Coriolis and centrifugal forces are workless [3].

A necessary condition fof,qq = fadd( fyv) and vaqq =
Uaad(f,v) 10 exist is that the content and co-content ne
to be continuous functions. Furthermore, the Hessians
P(f, v, fadd, Vada) With respect tof,qq andv,qq need to be
regular.



5 Concluding Remarks

Selected References

In this paper we have presented a precise mechanical analg R. K. Brayton and J. K. Moser. A theory of nonlinear

of the Brayton and Moser framework. The method uses the
kinetic and potential co-energy and a mixed potential deduced
from the topological constraints of the system. A necessar
condition for the framework to be valid is that the kinetic
and potential energy are homogeneous quadratic functions.
Although this seems quite a strong restriction there is still a
broad class of systems that can be approached by the method.
On the other hand, if the potential energy is non-quadratic WEs]
may try to find a description of the system locally or we can
use a parameterized version of the Brayton-Moser equations
proposed in the previous section. As shown in an example,
it may occur that one has to deal with a mechanical system
having force controlled dampers or friction. In contrast to the
(port-)Hamiltonian equations, this type of elements can bé

naturally incorporated in the framework.

An advantage of using the mixed potential function is that we
can apply Brayton and Moser’s stability criteria to investigatd5]
the stability of the equilibrium points of a mechanical sys-
tem or use it to find tuning rules for feedback controllers, like
the passivity-based control algorithms [5]. Also, in the pro-
posed framework we are able to apply the recently develop

novel nonlinear control technique, call@®wer Shapingas

proposed in [7], to the class of mechanical systems considered
here. This control method aims at shaping the mixed poten-
tial function in order to stabilize the system towards a desiregl7)
(non-zero) equilibrium. However, it is not precisely clear to
what extend the method can be used in general. What we do
know is that for a given system described by a function, say
f(z,-) = P,(z,-), the existence of a mixed potential function

P(z,-) hangs upon the fact that the Jacobiary ¢f, -) should

be symmetric. As stated in e.g. [2] there may exist (internally
modulated) Dirac structures that can not be generated by offdl
mixed potential function due to a particular kind of nonlin-
earity. An example of such system is a rigid body spinning
around its center of mass described by Euler's equations, s
e.g., [2, 9]. For that reason, future research should be devot
to find conditions for the existence of a mixed potential func-

tion of mechanical type.
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