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Abstract: The existing methods of decentralized control suffer 
from two major restrictions. First, almost all of them hinge on 
Lyapunov's method, and second, they do not address the 
problem of performance robustness. A novel methodology to 
overcome the above defects is presented in this paper. Central 
to this approach is the notion of a finite-spectrum-equivalent 
descriptor system in the input-output decentralized form. By 
way of this notion, a new formulation of the interaction which 
introduces some degrees of freedom into the design procedure 
is offered. The main result, i.e. a sufficient condition for 
decentralized performance stabilization in a desirable 
performance region and maximal robustness to unstructured 
uncertainties in the controller and plant parameters, 
nevertheless, is in terms of regular systems. Based on minimal 
sensitivity design of isolated subsystems via eigenstructure 
assignment, an analytic method for the satisfaction of the 
aforementioned sufficient condition is also presented. 

 
1   INTRODUCTION 
 
Many real-world large-scale systems, such as urban traffic 
networks, digital communication networks, cooperating robotic 
systems, power systems and economic systems, comprise a 
number of small interconnected subsystems. For such systems, 
a centralized controller is difficult to design and very costly to 
implement. As a result, decentralized control theory emerged in 
the 1960s and developed to a pole of attraction for the system 
and control community thereafter. 
 
In the broad sense, existing results on large-scale systems 
appear in two main directions, see [2-9,11] and the references 
therein. On the one hand some structural properties have been 
explored and on the other hand stabilization methods have been 
developed. With reference to stabilization, the complex nature 
of the problem has encouraged the use of nonlinear control 
and/or Lyapunov's stability criteria in almost all of the existing 

methods. Lyapunov's method, none the less, provides only a 
sufficient condition for stability and one may search in vain for 
a stabilizing control. Moreover, the stability property of the 
system is highly dependent on the choice of the Lyapunov 
functions for the subsystems. Thus, linear controllers which 
have the advantage of being simpler, more feasible and 
economical than the nonlinear ones, are of particular importance 
in decentralized control, especially if they can be designed 
without using Lyapunov's method. This is one of the underlying 
motivations for this research work. 
 
A central issue in control systems design is that of robustness. 
The existing decentralized robust control schemes mostly 
address the problem of robust stabilization, not robust 
performance, and hinge on Lyapunov's method. A step towards 
performance robustness was taken in [1] by the introduction of 
the so-called guaranteed cost control. This, although being used 
in decentralized control methods, provides only an upper bound 
on a given performance index, does not address the 
uncertainties in the controller itself, and is based on Lyapunov's 
stability criteria as well. The above mentioned shortcomings are 
other motivations for this work. 
 
It is well-known that especially for large-scale systems state 
estimation is often infeasible and may even result in the curse of 
dimensionality. Thus, output feedback control is of special 
significance for high-order systems. This is the third motivation 
for this research work.  
 
A number of existing results have some other special 
restrictions. For instance, in [2,3] it is assumed that the system 
is generically (i.e. in almost all cases) stable, minimum-phase 
and square. There are also some ∞H -based methods which are 
all iterative. It should also be noted that there are only few 
output-feedback linear design methods for decentralized 
control. In particular some results can be found in [4-6] which 
all pivot on Lyapunov's method. In addition, in [4] all the 
isolated subsystems were restricted to be invertible and have 
their transmission zeros in the open left half plane; local 



controllers were then synthesized using observer-based high-
gain feedback strategy. 
 
Very recently the above-mentioned defects were partly rectified 
in [7-9]. In [7,8], without using Lyapunov's method, a sufficient 
condition for output feedback linear decentralized stabilization 
of large-scale systems was introduced. Then, based on [7,8,10], 
the problem of linear output-feedback decentralized robust 
exponential stabilization was addressed in [9]. The method 
provides a desirable rate of decay and maximal robustness to 
unstructured perturbations in the system and controller 
parameters. However, the system is restricted to be in the input-
output decentralized form. 
 
Motivated by the aforementioned arguments, the results of [9] 
are extended to performance robustness of generic systems, i.e. 
systems not in the input-output decentralized form. This paper 
is organized as follows: In Section 2, in order to simplify the 
design procedure and to get rid of the interaction due to input-
output centralization, for a given large-scale system a finite-
spectrum-equivalent descriptor system [7] in the input-output 
decentralized form is introduced. The proposed formulation 
enjoys some flexibility (degrees of freedom) which is exploited 
in the design procedure. In Section 3, it is proved that this 
descriptor system is regular, impulse-free, and its finite 
spectrum is exactly the same as the spectrum of the original 
system. Thus, stability of the finite spectrum of this descriptor 
system is (necessarily and sufficiently) equivalent to the 
stability (of the spectrum) of the original system. The design 
procedure will be based on this descriptor system. However, the 
final result is in terms of nonsingular systems - the descriptor 
system vanishes. In Section 4, the problem of performance 
stabilization is defined and a necessary and sufficient condition 
for that of descriptor systems is presented. A sufficient 
condition for decentralized performance stabilization of large-
scale systems is then derived. To incorporate maximal 
robustness (minimal sensitivity) into the above condition, the 
newly developed analytic approach of [9,10], resulting in a 
compact-form sufficient condition, is utilized. The main result 
of the paper, i.e. a sufficient condition for performance 
stabilization in a desirable performance region and maximal 
robustness to unstructured uncertainties in the controller and 
plant parameters by decentralized linear output feedback of 
generic large-scale systems, is established thereafter. An 
analytic solution to the problem arising from the 
aforementioned sufficient condition is hence available.  
 
Throughout the paper it is assumed that the desirable closed-
loop eigenvalues are distinct, since they possess better 
robustness properties than the repeated ones. In addition, 
because the design of a linear dynamic controller can be 
reduced to that of a linear static one [9], and also for notational 
implicity, only static controllers are addressed. All the results 
are presented for output feedback; state feedback thus follows 
directly. 

2   PROBLEM FORMULATION 
 
Consider a large-scale system G with the state-space equations 
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where nnA ×∈ R , mnB ×∈ R and npC ×∈ R  are the system state, 
input and output matrices. The system is partitioned into N 
linear-time-invariant subsystems )(sGi described by 
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where jnin
ijA

×∈ R , 
jmin

ijB
×∈ R , jnip

ijC
×∈ R , nni

N =�1 , 

mmi
N =�1  and ppi

N =�1 . The terms jij
N
j xA1=� , jij

N
j uB1=�  

and jij
N
j xC1=�  describe the interactions with other subsystems. 

In this work, in contrast to the literature, the isolated 
subsystems, i.e. the triples ),,( iiiiii CBA  Ni ,...,1= , are not 
restricted to be minimal (see Remark 4.1). 
 
To simplify the design procedure and to get rid of the 
interaction due to input-output centralization, for the above 
system a finite-spectrum-equivalent descriptor system in the 
input-output decentralized form is introduced. To this end, 
similar to the behavioral approach [12], the augmented state 
vector is defined by [7] 
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by which Equatios (1) are transformed to 
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Extracting a diagonal part of A

~  as in 
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for Ni ,...,1= , the descriptor system )

~
,

~
,

~
,

~
( CBAE d , denoted by 

G
~ , will be in the input-output decentralized form. As will be 

proved, G
~  is regular and impulse-free, and its finite spectrum is 

exactly the same as the spectrum of G
~ ; this is also valid for 

their isolated subsystems. Therefore, stability of the finite 
spectrum of G

~  is equivalent to the stability of (the spectrum of) 
G, and G

~  is called a finite-spectrum-equivalent descriptor 
system for G. Hence, the design procedure is simplified and 
based on each isolated subsystem iG

~  given by 
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provided a sufficient condition, which is derived in Section 4.4, 
is satisfied. Thus, the objective of this paper is to design, for 
each isolated subsystem iG

~
),...,1( Ni = , a local static output-

feedback controller iK  
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~
( iiiiii XCRKU −=                               (18) 

 
where iR  is the ith reference input vector, such that the overall 
system is stabilized in a desirable performance region with 
maximal robustness to unstructured uncertainties in the 
controller and plant parameters. 
 
By the application of the linear decentralized output-feedback 
controller }{ iKdiagK =  to system (4), i.e. G

~  plus uncertainty 

H
~ , the closed-loop state matrix will be 

HAHCKBA cl
d ~~~~~~

+=++  where }
~

{
~

iclcl AdiagA =  in which 

iiiii
d
iiicl CKBAA

~~~~
−=  denotes the closed-loop state matrix of the 

ith isolated subsystem. 
 
Remark 2.1: In the design procedure H

~ , which embodies the 
interactions, will be treated as an uncertainty in dA

~ . The 
definition of H

~  (interaction measure) in decomposition (9) 
introduces some flexibility into the design procedure by the 

freedom in choosing  ),...,1(
~

NiAd
ii =  up to the following 

structure 
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in which ),,( x

ii
x
ii

x
ii CBA  forms any arbitrary-element minimal 

triple, X represents arbitrary elements, and iaiaD ×  denotes any 

full rank diagonal matrix. It is clear that there are always 
infinite number of choices for H

~ . 
 
Remark 2.2: In [13] it has been shown that for a minimal 
representation (1) a generic (i.e. for almost all systems) 



sufficient condition for linear output feedback pole assignment 
is that nmp > . Thus, eigenvalues of ),...,1(

~
NiA icl =  are 

assignable if iiiii npmpm ++> . Consequently, the order (and 
number) of the subsystems is dictated by this condition. 
 
3   A FINITE-SPECTRUM-EQUIVALENT 
DESCRIPTOR  SYSTEM 
 
It is well known that the existence and uniqueness of (classical) 
solutions to a descriptor system ),,

~
,

~
( CBAE d  is guaranteed if the 

pair )
~

,
~

( dAE  is regular, i.e., if )
~~

det( dAE −λ  is not identically 
zero. In addition, the system is called impulse-free if  

)
~

()
~~

det(deg ErankAE d =−λ  where ∈λ C. 
 
Theorem 3.1 [7]: The descriptor system G

~  has (classical) 
unique solutions. (Proof: Left to the reader.) 
 
Theorem 3.2 [7]: The descriptor system G

~  is impulse-free. 
(Proof: Left to the reader.) 
 
The problem of controllability, observability and duality in 
descriptor systems has been extensively studied. There are 
several controllability concepts with different meanings, 
namely, c-controllability, r-controllability, i-controllability and 
s-controllability. Observability is the dual of controllability, and 
thus similar concepts exist for observability of descriptor 
systems. 
 
Theorem 3.3 [7]: All the isolated subsystems iG  are strongly 
controllable. (Proof: Left to the reader.) 
 
Theorem 3.4 [7]: All the isolated subsystems iG  are strongly 
observable. (Proof: Left to the reader.) 
 
Theorem 3.5 [7]: The decentralized controller K  stabilizes G  
iff it stabilizes the finite spectrum of G

~ . 
Proof: Clearly, there exists a similarity transformation by which 
Equations (4) are transformed to  
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Since similarity transformations do not affect the eigenvalues, 
finite poles of G

~  are given by the roots of 

0)ˆˆˆˆdet( =+− CKBAEλ  where ∈λ C. On the other hand, it is 
easily seen that  
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and because the reverse of the above argument is also valid, 
stability of the finite spectrum of G

~  is (necessarily and 
sufficiently) equivalent to the stability of (the spectrum of) G.  
                                                                                                  .∆  
Evidently, the above argument is also valid for all the isolated 
subsystems of G

~ and G. Thus, G
~  is called a finite-spectrum-

equivalent descriptor system for G.  
 
4   DECENTRALIZED ROBUST PERFORMANCE 
STABILIZATION 
 
4.1   PERFORMANCE STABILIZATION 
 
Performance stabilization of a system refers to assigning the 
poles of the system in some prescribed region which represents 
the requirements on the stability and performance. From among 
the common desirable performance regions, i.e. sector, 
elliptical, vertical strip and parabolic regions, sector region is 
adopted in the sequel. The proceeding analysis and synthesis, 
nevertheless, is applicable to all of the abovementioned regions. 
 
Ω  region: This represents the whole part of the left-half 
complex s-plane left to both lines 
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where x and y denote )(sℜ  and )(sℑ  in the complex s-plane, 
respectively, 2/0 πδ <<  and .0>α  
 
Theorem 4.1: The decentralized controller K assigns 
(stabilizes) the finite spectrum of system (4) into Ω  region iff it 
assigns (stabilizes) the finite spectrum of its associated 



augmented system given by (21) into the open left-half complex 
s-plane. (Proof: Left to the reader.) 
 
Augmented System: The system described by 
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with 0>α , 2/0 πδ <<  and where ⊗  is the Kronecker product 
of matrices. 
 
Corollary 4.1: The decentralized controller K  stabilizes the 
performance of system G  into Ω  region iff it assigns 
(stabilizes) the finite spectrum of system (21) into the open left-
half complex s-plane.  
 
4.2   DECENTRALIZED PERFORMANCE 
STABILIZATION 
 
A sufficient condition for decentralized performance 
stabilization is presented in the following Theorem. 
 
Theorem 4.2: The decentralized controller K stabilizes the 
performance of system G into Ω  region, if 
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in which maxλ   denotes the maximum eigenvalue of (.) . 
(Proof: Left to the reader.) 
 
4.3   MAXIMAL ROBUSTNESS DESIGN 
 
Let the condition number of a matrix be defined as the ratio of 
its greatest singular value to its smallest one. 
 
Problem ��[9,10]: The problem of minimal sensitivity (maximal 
robustness) of eigenvalues in linear output feedback is to find 
an analytic solution for the static output feedback gain such 
that: a) condition number of the modal matrix of the closed-
loop state matrix be at its minimum, i.e. one, and b) pole 
assignment be accomplished in some admissible region Ω  
which represents the requirements on the stability and 
performance. Region Ω  is restricted to produce nondefective 
(completely diagonalizable) closed-loop system matrices, since 

such matrices exhibit better sensitivity properties than the 
defective ones. 
A compact-form solution to Problem � is given in the 
subsequent Theorem. 
 
Theorem 4.3 [9,10]: Let a linear-time-invariant multivariable 
plant be described by Equations (1) with the output-feedback 
linear controller Kyu −= . If a real matrix Y can be found such 
that 
                               YACCYABB TT +=+ ++ )(                     (24) 

 
and b) be satisfied, then problem��  is solved and the solution is 
given by 

                                    ++ +−= CYABK T )(                         (25) 
 
where +(.)  denotes the pseudo-inverse of (.) . 
 
A natural method for finding Y is to use a random-number 
generator. Yet, a better and faster approach is to invoke a 
genetic algorithm. This way, part b) of the objective along with 
some other design criteria - e.g. reliability, decoupling and low 
actuator gain [14], and the flexibility in the decomposition (9) 
which helps satisfy conditions (24), (27) and (29) - can easily be 
incorporated in the design procedure. 
 
Remark 4.1: No assumption is made on the controllability and 
observability of the system, because condition number 
minimization is accomplished by eigenvector assignment which 
is possible for all poles. Hence, region Ω  must include the 
uncontrollable and unobservable modes. With reference to 
Sections 4.2,4.4, region Ω  represents part of the complex s-
plane described by (23), (26), (27) and (29). 
 
4.4   DECENTRALIZED ROBUST PERFORMANCE 
STABILIZATION 
 
Utilizing Theorems 4.2,4.3, a sufficient condition for 
decentralized performance robustness is established in the 
following Theorem. 
 
Theorem 4.4: If the eigenstructure of each isolated closed-loop 
subsystem is assigned such that its eigenvectors compose a set 
of orthonormal vectors and 
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where H

~∆  is the 2-norm bounded uncertainty in H
~ , then 

performance stabilization in Ω  region with maximal 



robustness to unstructured perturbations in the controller and 
plant parameters of system G  is assured. 
(Proof: Left to the reader.) 
 
The sequel Corollary follows from the above Theorem directly. 
The analytical method for the satisfaction of its condition is 
readily available by Theorem 4.3. 
 
Corollary 4.2: If the decentralized controller K is designed 
such that all closed-loop subsystems have symmetric state 
matrices and 
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then performance stabilization in Ω  region with maximal 
robustness to unstructured uncertainties in the controller and 
plant parameters of system G  is guaranteed. 
 
Remark 4.2: If only an upper bound of the interaction is 
known, since  
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2

( maxmax M
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where (.)maxσ  denotes the maximum singular value of (.)  and 
M  is any square matrix, condition (27) can be substituted by 
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5   CONCLUSIONS 
 
The literature on decentralized control is lacking a method 
which is not based on Lyapunov's stability criteria and/or 
addresses the problem of performance robustness. This paper 
offers a solution to the above defects. Central to the 
methodology is the concept of a finite-spectrum-equivalent 
descriptor system in the input-output decentralized form. The 
main result, i.e. a sufficient condition for decentralized 
performance stabilization in a desirable performance region and 
maximal robustness to unstructured perturbations in the 
controller and plant parameters, non the less, is in terms of 
regular systems. Based on maximal robustness design of 
isolated subsystems through eigenstructure assignment, an 
analytic method for the satisfaction of the aforementioned 
sufficient condition is also presented. In addition to addressing 
the abovementioned shortcomings, the proposed methodology 
has the sequel distinctions: a) minimal sensitivity to 
unstructured uncertainties in the controller and plant 
parameters, b) some flexibility introduced by a new formulation 

of the interaction, c) applicability to nonminimum-phase and 
nonsquare systems, and d) noniterativeness. 
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